1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*
* Copyright (C) 2013-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGTierUpCheckInjectionPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGNaturalLoops.h"
#include "DFGPhase.h"
#include "FTLCapabilities.h"
#include "FunctionAllowlist.h"
#include "JSCJSValueInlines.h"
#include <wtf/NeverDestroyed.h>
namespace JSC { namespace DFG {
static FunctionAllowlist& ensureGlobalFTLAllowlist()
{
static LazyNeverDestroyed<FunctionAllowlist> ftlAllowlist;
static std::once_flag initializeAllowlistFlag;
std::call_once(initializeAllowlistFlag, [] {
const char* functionAllowlistFile = Options::ftlAllowlist();
ftlAllowlist.construct(functionAllowlistFile);
});
return ftlAllowlist;
}
using NaturalLoop = CPSNaturalLoop;
class TierUpCheckInjectionPhase : public Phase {
public:
TierUpCheckInjectionPhase(Graph& graph)
: Phase(graph, "tier-up check injection"_s)
{
}
bool run()
{
RELEASE_ASSERT(m_graph.m_plan.isDFG());
if (!Options::useFTLJIT())
return false;
if (m_graph.m_profiledBlock->m_didFailFTLCompilation)
return false;
if (!Options::bytecodeRangeToFTLCompile().isInRange(m_graph.m_profiledBlock->instructionsSize()))
return false;
if (!ensureGlobalFTLAllowlist().contains(m_graph.m_profiledBlock))
return false;
#if ENABLE(FTL_JIT)
FTL::CapabilityLevel level = FTL::canCompile(m_graph);
if (level == FTL::CannotCompile)
return false;
if (!Options::useOSREntryToFTL())
level = FTL::CanCompile;
m_graph.ensureCPSNaturalLoops();
CPSNaturalLoops& naturalLoops = *m_graph.m_cpsNaturalLoops;
UncheckedKeyHashMap<const NaturalLoop*, BytecodeIndex> naturalLoopToLoopHint = buildNaturalLoopToLoopHintMap(naturalLoops);
UncheckedKeyHashMap<BytecodeIndex, LoopHintDescriptor> tierUpHierarchy;
InsertionSet insertionSet(m_graph);
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
if (node->op() != LoopHint)
continue;
NodeOrigin origin = node->origin;
bool canOSREnter = canOSREnterAtLoopHint(level, block, nodeIndex);
NodeType tierUpType = CheckTierUpAndOSREnter;
if (!canOSREnter)
tierUpType = CheckTierUpInLoop;
insertionSet.insertNode(nodeIndex + 1, SpecNone, tierUpType, origin);
auto bytecodeIndex = origin.semantic.bytecodeIndex();
if (canOSREnter)
m_graph.m_plan.tierUpAndOSREnterBytecodes().append(bytecodeIndex);
if (const NaturalLoop* loop = naturalLoops.innerMostLoopOf(block)) {
LoopHintDescriptor descriptor;
descriptor.canOSREnter = canOSREnter;
const NaturalLoop* outerLoop = loop;
while ((outerLoop = naturalLoops.innerMostOuterLoop(*outerLoop))) {
auto it = naturalLoopToLoopHint.find(outerLoop);
if (it != naturalLoopToLoopHint.end())
descriptor.osrEntryCandidates.append(it->value);
}
tierUpHierarchy.add(bytecodeIndex, WTFMove(descriptor));
}
break;
}
NodeAndIndex terminal = block->findTerminal();
if (terminal.node->isFunctionTerminal()) {
insertionSet.insertNode(
terminal.index, SpecNone, CheckTierUpAtReturn, terminal.node->origin);
}
insertionSet.execute(block);
}
// Add all the candidates that can be OSR Entered.
for (auto entry : tierUpHierarchy) {
Vector<BytecodeIndex> tierUpCandidates;
for (BytecodeIndex bytecodeIndex : entry.value.osrEntryCandidates) {
auto descriptorIt = tierUpHierarchy.find(bytecodeIndex);
if (descriptorIt != tierUpHierarchy.end()
&& descriptorIt->value.canOSREnter)
tierUpCandidates.append(bytecodeIndex);
}
if (!tierUpCandidates.isEmpty())
m_graph.m_plan.tierUpInLoopHierarchy().ensure(entry.key, [&] { return FixedVector<BytecodeIndex>(WTFMove(tierUpCandidates)); });
}
m_graph.m_plan.setWillTryToTierUp(true);
return true;
#else // ENABLE(FTL_JIT)
RELEASE_ASSERT_NOT_REACHED();
return false;
#endif // ENABLE(FTL_JIT)
}
private:
#if ENABLE(FTL_JIT)
struct LoopHintDescriptor {
Vector<BytecodeIndex> osrEntryCandidates;
bool canOSREnter;
};
bool canOSREnterAtLoopHint(FTL::CapabilityLevel level, const BasicBlock* block, unsigned nodeIndex)
{
Node* node = block->at(nodeIndex);
ASSERT(node->op() == LoopHint);
NodeOrigin origin = node->origin;
if (level != FTL::CanCompileAndOSREnter || origin.semantic.inlineCallFrame())
return false;
// We only put OSR checks for the first LoopHint in the block. Note that
// more than one LoopHint could happen in cases where we did a lot of CFG
// simplification in the bytecode parser, but it should be very rare.
for (unsigned subNodeIndex = nodeIndex; subNodeIndex--;) {
if (!block->at(subNodeIndex)->isSemanticallySkippable())
return false;
}
return true;
}
UncheckedKeyHashMap<const NaturalLoop*, BytecodeIndex> buildNaturalLoopToLoopHintMap(const CPSNaturalLoops& naturalLoops)
{
UncheckedKeyHashMap<const NaturalLoop*, BytecodeIndex> naturalLoopsToLoopHint;
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
if (node->op() != LoopHint)
continue;
if (const NaturalLoop* loop = naturalLoops.innerMostLoopOf(block)) {
BytecodeIndex bytecodeIndex = node->origin.semantic.bytecodeIndex();
naturalLoopsToLoopHint.add(loop, bytecodeIndex);
}
break;
}
}
return naturalLoopsToLoopHint;
}
#endif
};
bool performTierUpCheckInjection(Graph& graph)
{
return runPhase<TierUpCheckInjectionPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|