1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
/*
* Copyright (C) 2013-2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "DFGCommon.h"
#if ENABLE(FTL_JIT)
#include "B3BasicBlockInlines.h"
#include "B3CCallValue.h"
#include "B3FrequentedBlock.h"
#include "B3Procedure.h"
#include "B3SwitchValue.h"
#include "B3Width.h"
#include "FTLAbbreviatedTypes.h"
#include "FTLAbstractHeapRepository.h"
#include "FTLCommonValues.h"
#include "FTLSelectPredictability.h"
#include "FTLState.h"
#include "FTLSwitchCase.h"
#include "FTLTypedPointer.h"
#include "FTLValueFromBlock.h"
#include "FTLWeight.h"
#include "FTLWeightedTarget.h"
#include "HeapCell.h"
#include "JITCompilation.h"
#include <wtf/OrderMaker.h>
#include <wtf/StringPrintStream.h>
// FIXME: remove this once everything can be generated through B3.
IGNORE_WARNINGS_BEGIN("missing-noreturn")
ALLOW_UNUSED_PARAMETERS_BEGIN
namespace JSC {
namespace DFG {
struct Node;
} // namespace DFG
namespace B3 {
class FenceValue;
class SlotBaseValue;
} // namespace B3
namespace FTL {
enum Scale { ScaleOne, ScaleTwo, ScaleFour, ScaleEight, ScalePtr };
class Output : public CommonValues {
public:
Output(State&);
~Output();
void initialize(AbstractHeapRepository&);
void setFrequency(double value)
{
m_frequency = value;
}
LBasicBlock newBlock();
LBasicBlock insertNewBlocksBefore(LBasicBlock nextBlock)
{
LBasicBlock lastNextBlock = m_nextBlock;
m_nextBlock = nextBlock;
return lastNextBlock;
}
void applyBlockOrder();
void probeDebugPrint(const String& str, LValue value);
LBasicBlock appendTo(LBasicBlock, LBasicBlock nextBlock);
void appendTo(LBasicBlock);
void setOrigin(DFG::Node* node) { m_origin = node; }
B3::Origin origin() { return B3::Origin(m_origin); }
LValue framePointer();
B3::SlotBaseValue* lockedStackSlot(uint64_t bytes);
LValue constBool(bool value);
LValue constInt32(int32_t value);
LValue alreadyRegisteredWeakPointer(DFG::Graph& graph, JSCell* cell)
{
ASSERT(graph.m_plan.weakReferences().contains(cell));
return constIntPtr(std::bit_cast<intptr_t>(cell));
}
LValue alreadyRegisteredFrozenPointer(DFG::FrozenValue* value)
{
RELEASE_ASSERT(value->value().isCell());
return constIntPtr(std::bit_cast<intptr_t>(value->cell()));
}
template<typename T>
LValue constIntPtr(T* value)
{
static_assert(!std::is_base_of<HeapCell, T>::value, "To use a GC pointer, the graph must be aware of it. Use gcPointer instead and make sure the graph is aware of this reference.");
if (sizeof(void*) == 8)
return constInt64(std::bit_cast<intptr_t>(value));
return constInt32(std::bit_cast<intptr_t>(value));
}
template<typename T>
LValue constIntPtr(T value)
{
if (sizeof(void*) == 8)
return constInt64(static_cast<intptr_t>(value));
return constInt32(static_cast<intptr_t>(value));
}
LValue constInt64(int64_t value);
LValue constDouble(double value);
LValue phi(LType);
template<typename... Params>
LValue phi(LType, ValueFromBlock, Params... theRest);
template<typename VectorType>
LValue phi(LType, const VectorType&);
void addIncomingToPhi(LValue phi, ValueFromBlock);
template<typename... Params>
void addIncomingToPhi(LValue phi, ValueFromBlock, Params... theRest);
template<typename... Params>
void addIncomingToPhiIfSet(LValue phi, Params... theRest);
LValue opaque(LValue);
LValue extract(LValue tuple, unsigned index);
LValue add(LValue, LValue);
LValue sub(LValue, LValue);
LValue mul(LValue, LValue);
LValue div(LValue, LValue);
LValue chillDiv(LValue, LValue);
LValue mod(LValue, LValue);
LValue chillMod(LValue, LValue);
LValue neg(LValue);
LValue purifyNaN(LValue);
LValue doubleAdd(LValue, LValue);
LValue doubleSub(LValue, LValue);
LValue doubleMul(LValue, LValue);
LValue doubleDiv(LValue, LValue);
LValue doubleMod(LValue, LValue);
LValue doubleNeg(LValue value) { return neg(value); }
LValue bitAnd(LValue, LValue);
LValue bitOr(LValue, LValue);
LValue bitXor(LValue, LValue);
LValue shl(LValue, LValue shiftAmount);
LValue aShr(LValue, LValue shiftAmount);
LValue lShr(LValue, LValue shiftAmount);
LValue bitNot(LValue);
LValue logicalNot(LValue);
LValue ctlz32(LValue);
LValue doubleAbs(LValue);
LValue doubleCeil(LValue);
LValue doubleFloor(LValue);
LValue doubleTrunc(LValue);
LValue doubleUnary(DFG::Arith::UnaryType, LValue);
LValue doubleStdPow(LValue base, LValue exponent);
LValue doublePowi(LValue base, LValue exponent);
LValue doubleSqrt(LValue);
LValue doubleMax(LValue, LValue);
LValue doubleMin(LValue, LValue);
LValue doubleToInt32(LValue);
LValue doubleToInt64(LValue);
LValue doubleToUInt32(LValue);
LValue signExt32To64(LValue);
LValue signExt32ToPtr(LValue);
LValue zeroExt(LValue, LType);
LValue zeroExtPtr(LValue value) { return zeroExt(value, B3::Int64); }
LValue intToDouble(LValue);
LValue unsignedToDouble(LValue);
LValue castToInt32(LValue);
LValue doubleToFloat(LValue);
LValue floatToDouble(LValue);
LValue bitCast(LValue, LType);
LValue fround(LValue);
LValue f16round(LValue);
LValue load(TypedPointer, LType);
LValue store(LValue, TypedPointer);
B3::FenceValue* fence(const AbstractHeap* read, const AbstractHeap* write);
LValue load8SignExt32(TypedPointer);
LValue load8ZeroExt32(TypedPointer);
LValue load16SignExt32(TypedPointer);
LValue load16ZeroExt32(TypedPointer);
LValue load32(TypedPointer pointer) { return load(pointer, B3::Int32); }
LValue load64(TypedPointer pointer) { return load(pointer, B3::Int64); }
LValue loadPtr(TypedPointer pointer) { return load(pointer, B3::pointerType()); }
LValue loadFloat(TypedPointer pointer) { return load(pointer, B3::Float); }
LValue loadDouble(TypedPointer pointer) { return load(pointer, B3::Double); }
LValue loadFloat16AsDouble(TypedPointer);
LValue store32As8(LValue, TypedPointer);
LValue store32As16(LValue, TypedPointer);
LValue store32(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Int32);
return store(value, pointer);
}
LValue store64(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Int64);
return store(value, pointer);
}
LValue storePtr(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::pointerType());
return store(value, pointer);
}
LValue storeFloat(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Float);
return store(value, pointer);
}
LValue storeDouble(LValue value, TypedPointer pointer)
{
ASSERT(value->type() == B3::Double);
return store(value, pointer);
}
LValue storeDoubleAsFloat16(LValue, TypedPointer);
enum LoadType {
Load8SignExt32,
Load8ZeroExt32,
Load16SignExt32,
Load16ZeroExt32,
Load32,
Load64,
LoadPtr,
LoadFloat,
LoadDouble
};
LValue load(TypedPointer, LoadType);
enum StoreType {
Store32As8,
Store32As16,
Store32,
Store64,
StorePtr,
StoreFloat,
StoreDouble
};
LValue store(LValue, TypedPointer, StoreType);
LValue addPtr(LValue value, ptrdiff_t immediate = 0)
{
if (!immediate)
return value;
return add(value, constIntPtr(immediate));
}
// Construct an address by offsetting base by the requested amount and ascribing
// the requested abstract heap to it.
TypedPointer address(const AbstractHeap& heap, LValue base, ptrdiff_t offset = 0)
{
return TypedPointer(heap, addPtr(base, offset));
}
// Construct an address by offsetting base by the amount specified by the field,
// and optionally an additional amount (use this with care), and then creating
// a TypedPointer with the given field as the heap.
TypedPointer address(LValue base, const AbstractHeap& field, ptrdiff_t offset = 0)
{
return address(field, base, offset + field.offset());
}
LValue baseIndex(LValue base, LValue index, Scale, ptrdiff_t offset = 0);
TypedPointer baseIndex(const AbstractHeap& heap, LValue base, LValue index, Scale scale, ptrdiff_t offset = 0)
{
return TypedPointer(heap, baseIndex(base, index, scale, offset));
}
TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0, LValue mask = nullptr)
{
return heap.baseIndex(*this, base, index, indexAsConstant, offset, mask);
}
TypedPointer absolute(const void* address);
LValue load8SignExt32(LValue base, const AbstractHeap& field) { return load8SignExt32(address(base, field)); }
LValue load8ZeroExt32(LValue base, const AbstractHeap& field) { return load8ZeroExt32(address(base, field)); }
LValue load16SignExt32(LValue base, const AbstractHeap& field) { return load16SignExt32(address(base, field)); }
LValue load16ZeroExt32(LValue base, const AbstractHeap& field) { return load16ZeroExt32(address(base, field)); }
LValue load32(LValue base, const AbstractHeap& field) { return load32(address(base, field)); }
LValue load64(LValue base, const AbstractHeap& field) { return load64(address(base, field)); }
LValue loadPtr(LValue base, const AbstractHeap& field) { return loadPtr(address(base, field)); }
LValue loadDouble(LValue base, const AbstractHeap& field) { return loadDouble(address(base, field)); }
void store32As8(LValue value, LValue base, const AbstractHeap& field) { store32As8(value, address(base, field)); }
void store32As16(LValue value, LValue base, const AbstractHeap& field) { store32As16(value, address(base, field)); }
void store32(LValue value, LValue base, const AbstractHeap& field) { store32(value, address(base, field)); }
void store64(LValue value, LValue base, const AbstractHeap& field) { store64(value, address(base, field)); }
void storePtr(LValue value, LValue base, const AbstractHeap& field) { storePtr(value, address(base, field)); }
void storeDouble(LValue value, LValue base, const AbstractHeap& field) { storeDouble(value, address(base, field)); }
// FIXME: Explore adding support for value range constraints to B3. Maybe it could be as simple as having
// a load instruction that guarantees that its result is non-negative.
// https://bugs.webkit.org/show_bug.cgi?id=151458
void ascribeRange(LValue, const ValueRange&) { }
LValue nonNegative32(LValue loadInstruction) { return loadInstruction; }
LValue load32NonNegative(TypedPointer pointer) { return load32(pointer); }
LValue load32NonNegative(LValue base, const AbstractHeap& field) { return load32(base, field); }
LValue load64NonNegative(LValue base, const AbstractHeap& field) { return load64(base, field); }
LValue equal(LValue, LValue);
LValue notEqual(LValue, LValue);
LValue above(LValue, LValue);
LValue aboveOrEqual(LValue, LValue);
LValue below(LValue, LValue);
LValue belowOrEqual(LValue, LValue);
LValue greaterThan(LValue, LValue);
LValue greaterThanOrEqual(LValue, LValue);
LValue lessThan(LValue, LValue);
LValue lessThanOrEqual(LValue, LValue);
LValue doubleEqual(LValue, LValue);
LValue doubleEqualOrUnordered(LValue, LValue);
LValue doubleNotEqualOrUnordered(LValue, LValue);
LValue doubleLessThan(LValue, LValue);
LValue doubleLessThanOrEqual(LValue, LValue);
LValue doubleGreaterThan(LValue, LValue);
LValue doubleGreaterThanOrEqual(LValue, LValue);
LValue doubleNotEqualAndOrdered(LValue, LValue);
LValue doubleLessThanOrUnordered(LValue, LValue);
LValue doubleLessThanOrEqualOrUnordered(LValue, LValue);
LValue doubleGreaterThanOrUnordered(LValue, LValue);
LValue doubleGreaterThanOrEqualOrUnordered(LValue, LValue);
LValue isZero32(LValue);
LValue notZero32(LValue);
LValue isZero64(LValue);
LValue notZero64(LValue);
LValue isNull(LValue value) { return isZero64(value); }
LValue notNull(LValue value) { return notZero64(value); }
LValue testIsZero32(LValue value, LValue mask) { return isZero32(bitAnd(value, mask)); }
LValue testNonZero32(LValue value, LValue mask) { return notZero32(bitAnd(value, mask)); }
LValue testIsZero64(LValue value, LValue mask) { return isZero64(bitAnd(value, mask)); }
LValue testNonZero64(LValue value, LValue mask) { return notZero64(bitAnd(value, mask)); }
LValue testIsZeroPtr(LValue value, LValue mask) { return isNull(bitAnd(value, mask)); }
LValue testNonZeroPtr(LValue value, LValue mask) { return notNull(bitAnd(value, mask)); }
LValue select(LValue value, LValue taken, LValue notTaken, SelectPredictability = SelectPredictability::NotPredictable);
// These are relaxed atomics by default. Use AbstractHeapRepository::decorateFencedAccess() with a
// non-null heap to make them seq_cst fenced.
LValue atomicXchgAdd(LValue operand, TypedPointer pointer, Width);
LValue atomicXchgAnd(LValue operand, TypedPointer pointer, Width);
LValue atomicXchgOr(LValue operand, TypedPointer pointer, Width);
LValue atomicXchgSub(LValue operand, TypedPointer pointer, Width);
LValue atomicXchgXor(LValue operand, TypedPointer pointer, Width);
LValue atomicXchg(LValue operand, TypedPointer pointer, Width);
LValue atomicStrongCAS(LValue expected, LValue newValue, TypedPointer pointer, Width);
template<typename VectorType>
LValue call(LType type, LValue function, const VectorType& vector)
{
B3::CCallValue* result = m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function);
result->appendArgs(vector);
return result;
}
LValue call(LType type, LValue function) { return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function); }
LValue call(LType type, LValue function, LValue arg1) { return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function, arg1); }
template<typename... Args>
LValue call(LType type, LValue function, LValue arg1, Args... args) { return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), function, arg1, args...); }
template<typename Function, typename... Args>
LValue callWithoutSideEffects(B3::Type type, Function function, LValue arg1, Args... args)
{
static_assert(!std::is_same<Function, LValue>::value);
return m_block->appendNew<B3::CCallValue>(m_proc, type, origin(), B3::Effects::none(),
constIntPtr(tagCFunctionPtr<void*, OperationPtrTag>(function)), arg1, args...);
}
// FIXME: Consider enhancing this to allow the client to choose the target PtrTag to use.
// https://bugs.webkit.org/show_bug.cgi?id=184324
template<typename FunctionType>
LValue operation(FunctionType function) { return constIntPtr(tagCFunctionPtr<void*, OperationPtrTag>(function)); }
LValue operation(CodePtr<OperationPtrTag> function) { return constIntPtr(function.taggedPtr()); }
void jump(LBasicBlock);
void branch(LValue condition, LBasicBlock taken, Weight takenWeight, LBasicBlock notTaken, Weight notTakenWeight);
void branch(LValue condition, WeightedTarget taken, WeightedTarget notTaken)
{
branch(condition, taken.target(), taken.weight(), notTaken.target(), notTaken.weight());
}
// Branches to an already-created handler if true, "falls through" if false. Fall-through is
// simulated by creating a continuation for you.
void check(LValue condition, WeightedTarget taken, Weight notTakenWeight);
// Same as check(), but uses Weight::inverse() to compute the notTakenWeight.
void check(LValue condition, WeightedTarget taken);
template<typename VectorType>
void switchInstruction(LValue value, const VectorType& cases, LBasicBlock fallThrough, Weight fallThroughWeight)
{
B3::SwitchValue* switchValue = m_block->appendNew<B3::SwitchValue>(m_proc, origin(), value);
switchValue->setFallThrough(B3::FrequentedBlock(fallThrough));
for (const SwitchCase& switchCase : cases) {
int64_t value = switchCase.value()->asInt();
B3::FrequentedBlock target(switchCase.target(), switchCase.weight().frequencyClass());
switchValue->appendCase(B3::SwitchCase(value, target));
}
}
void entrySwitch(const Vector<LBasicBlock>&);
void ret(LValue);
void verify(LValue);
void unreachable();
void appendSuccessor(WeightedTarget);
B3::CheckValue* speculate(LValue);
B3::CheckValue* speculateAdd(LValue, LValue);
B3::CheckValue* speculateSub(LValue, LValue);
B3::CheckValue* speculateMul(LValue, LValue);
B3::PatchpointValue* patchpoint(LType);
void trap();
ValueFromBlock anchor(LValue);
void incrementSuperSamplerCount();
void decrementSuperSamplerCount();
#if PLATFORM(COCOA)
#pragma mark - States
#endif
B3::Procedure& m_proc;
DFG::Node* m_origin { nullptr };
LBasicBlock m_block { nullptr };
LBasicBlock m_nextBlock { nullptr };
AbstractHeapRepository* m_heaps;
double m_frequency { 1 };
private:
OrderMaker<LBasicBlock> m_blockOrder;
};
template<typename... Params>
inline LValue Output::phi(LType type, ValueFromBlock value, Params... theRest)
{
LValue phiNode = phi(type);
addIncomingToPhi(phiNode, value, theRest...);
return phiNode;
}
template<typename VectorType>
inline LValue Output::phi(LType type, const VectorType& vector)
{
LValue phiNode = phi(type);
for (const ValueFromBlock& valueFromBlock : vector)
addIncomingToPhi(phiNode, valueFromBlock);
return phiNode;
}
template<typename... Params>
inline void Output::addIncomingToPhi(LValue phi, ValueFromBlock value, Params... theRest)
{
addIncomingToPhi(phi, value);
addIncomingToPhi(phi, theRest...);
}
ALLOW_UNUSED_PARAMETERS_END
IGNORE_WARNINGS_END
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)
|