File: YarrJIT.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (5625 lines) | stat: -rw-r--r-- 275,511 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
/*
 * Copyright (C) 2009-2023 Apple Inc. All rights reserved.
 * Copyright (C) 2019 the V8 project authors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "YarrJIT.h"

#include "AllowMacroScratchRegisterUsage.h"
#include "CCallHelpers.h"
#include "LinkBuffer.h"
#include "Options.h"
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
#include "JITThunks.h"
#endif
#include "VM.h"
#include "Yarr.h"
#include "YarrCanonicalize.h"
#include "YarrDisassembler.h"
#include "YarrJITRegisters.h"
#include "YarrMatchingContextHolder.h"
#include <wtf/ASCIICType.h>
#include <wtf/BitVector.h>
#include <wtf/HexNumber.h>
#include <wtf/ListDump.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/Threading.h>
#include <wtf/text/MakeString.h>

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

#if ENABLE(YARR_JIT)

namespace JSC { namespace Yarr {
namespace YarrJITInternal {
static constexpr bool verbose = false;
}

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
enum class TryReadUnicodeCharCodeLocation { CompiledInline, CompiledAsHelper };
#endif

#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(operationAreCanonicallyEquivalent, bool, (unsigned, unsigned, CanonicalMode));

// Since the generator areCanonicallyEquivalentThunkGenerator() needs to be static,
// we set the incoming argument registers to the thunk here and ASSERT at runtime
// that they match.
#if CPU(ARM64)
static constexpr GPRReg areCanonicallyEquivalentCharArgReg = ARM64Registers::x6;
static constexpr GPRReg areCanonicallyEquivalentPattCharArgReg = ARM64Registers::x7;
static constexpr GPRReg areCanonicallyEquivalentCanonicalModeArgReg = ARM64Registers::x10;
#elif CPU(X86_64)
static constexpr GPRReg areCanonicallyEquivalentCharArgReg = X86Registers::eax;
static constexpr GPRReg areCanonicallyEquivalentPattCharArgReg = X86Registers::r9;
static constexpr GPRReg areCanonicallyEquivalentCanonicalModeArgReg = X86Registers::r13;

// The thunk code assumes that we return the result to areCanonicallyEquivalentCharArgReg.
static_assert(areCanonicallyEquivalentCharArgReg == GPRInfo::returnValueGPR);
#endif
#endif

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
// This enhancement allows us to advance the index by 2 when we read a non-BMP surrogate pair, but fail to match.
// The way it works is that we initialize the firstCharacterAdditionalReadSize register to an initial sentinal value.
// When reading a possible surrogate pair, we change firstCharacterAdditionalReadSize from the sentinal to 0 if we read
// a BMP (16-bit) character or 1 if the read value is a non-BMP. Once changed from the sentinel value, we don't change
// again during the next read. We add firstCharacterAdditionalReadSize to index for the next iteration on a failed
// match and when setting the the possible new match start location.
constexpr static int32_t additionalReadSizeSentinel = 0x4;
#endif

WTF_MAKE_TZONE_ALLOCATED_IMPL(BoyerMooreBitmap);
WTF_MAKE_TZONE_ALLOCATED_IMPL(BoyerMooreFastCandidates);
WTF_MAKE_TZONE_ALLOCATED_IMPL(YarrBoyerMooreData);
WTF_MAKE_TZONE_ALLOCATED_IMPL(YarrCodeBlock);

#if CPU(ARM64E)
JSC_ANNOTATE_JIT_OPERATION_RETURN(vmEntryToYarrJITAfter);
#endif

// We should pick the less frequently appearing character as a BM search's anchor to make BM search more and more efficient.
// This class takes some samples from the passed subject string to put weight on characters so that we can pick an optimal one adaptively.
class SubjectSampler {
public:
    static constexpr unsigned sampleSize = 128;

    explicit SubjectSampler(CharSize charSize)
        : m_is8Bit(charSize == CharSize::Char8)
    {
    }

    int32_t frequency(UChar character) const
    {
        if (!m_size)
            return 1;
        return static_cast<int32_t>(m_samples[character & BoyerMooreBitmap::mapMask]) * sampleSize / m_size;
    }

    void sample(StringView string)
    {
        unsigned half = string.length() > sampleSize ? (string.length() - sampleSize) / 2 : 0;
        unsigned end = std::min(string.length(), half + sampleSize);
        if (string.is8Bit()) {
            auto characters8 = string.span8();
            for (unsigned i = half; i < end; ++i)
                add(characters8[i]);
        } else {
            auto characters16 = string.span16();
            for (unsigned i = half; i < end; ++i)
                add(characters16[i]);
        }
    }

    void dump() const
    {
        dataLogLn("Sampling Results size:(", m_size, ")");
        for (unsigned i = 0; i < BoyerMooreBitmap::mapSize; ++i)
            dataLogLn("    [", makeString(pad(' ', 3, i)), "] ", m_samples[i]);
    }

    bool is8Bit() const { return m_is8Bit; }

private:
    inline void add(UChar character)
    {
        ++m_size;
        ++m_samples[character & BoyerMooreBitmap::mapMask];
    }

    std::array<uint8_t, BoyerMooreBitmap::mapSize> m_samples { };
    uint8_t m_size { };
    bool m_is8Bit { true };
};

void BoyerMooreFastCandidates::dump(PrintStream& out) const
{
    if (!isValid()) {
        out.print("isValid:(false)");
        return;
    }
    out.print("isValid:(true),characters:(", listDump(m_characters), ")");
}

class BoyerMooreInfo {
    WTF_MAKE_NONCOPYABLE(BoyerMooreInfo);
    WTF_MAKE_TZONE_ALLOCATED(BoyerMooreInfo);
public:
    static constexpr unsigned maxLength = 32;

    explicit BoyerMooreInfo(CharSize charSize, unsigned length)
        : m_characters(length)
        , m_charSize(charSize)
    {
        ASSERT(this->length() <= maxLength);
    }

    unsigned length() const { return m_characters.size(); }
    void shortenLength(unsigned length)
    {
        if (length <= this->length())
            m_characters.shrink(length);
    }

    void set(unsigned index, char32_t character)
    {
        m_characters[index].add(m_charSize, character);
    }

    void setAll(unsigned index)
    {
        m_characters[index].setAll();
    }

    void addCharacters(unsigned index, const Vector<char32_t>& characters)
    {
        m_characters[index].addCharacters(m_charSize, characters);
    }

    void addRanges(unsigned index, const Vector<CharacterRange>& range)
    {
        m_characters[index].addRanges(m_charSize, range);
    }

    static UniqueRef<BoyerMooreInfo> create(CharSize charSize, unsigned length)
    {
        return makeUniqueRef<BoyerMooreInfo>(charSize, length);
    }

    std::optional<std::tuple<unsigned, unsigned>> findWorthwhileCharacterSequenceForLookahead(const SubjectSampler&) const;
    std::tuple<BoyerMooreBitmap::Map, BoyerMooreFastCandidates> createCandidateBitmap(unsigned begin, unsigned end) const;

    void dump(PrintStream&) const;

private:
    std::tuple<int32_t, unsigned, unsigned> findBestCharacterSequence(const SubjectSampler&, unsigned numberOfCandidatesLimit) const;

    Vector<BoyerMooreBitmap> m_characters;
    CharSize m_charSize;
};

WTF_MAKE_TZONE_ALLOCATED_IMPL(BoyerMooreInfo);

std::tuple<int32_t, unsigned, unsigned> BoyerMooreInfo::findBestCharacterSequence(const SubjectSampler& sampler, unsigned numberOfCandidatesLimit) const
{
    int32_t biggestPoint = INT32_MIN;
    unsigned beginResult = 0;
    unsigned endResult = 0;
    for (unsigned index = 0; index < length();) {
        while (index < length() && m_characters[index].count() > numberOfCandidatesLimit)
            ++index;
        if (index == length())
            break;
        unsigned begin = index;
        BoyerMooreBitmap::Map map { };
        for (; index < length() && m_characters[index].count() <= numberOfCandidatesLimit; ++index)
            map.merge(m_characters[index].map());

        int32_t frequency = 0;
        map.forEachSetBit([&](unsigned index) {
            frequency += sampler.frequency(index);
        });

        // Cutoff at 50%. If we could encounter the character more than 50%, then BM search would be useless probably.
        int32_t matchingProbability = (BoyerMooreBitmap::mapSize / 2) - frequency;
        int32_t point = (index - begin) * matchingProbability;
        if (point > biggestPoint) {
            biggestPoint = point;
            beginResult = begin;
            endResult = index;
        }
    }
    return std::tuple { biggestPoint, beginResult, endResult };
}

std::optional<std::tuple<unsigned, unsigned>> BoyerMooreInfo::findWorthwhileCharacterSequenceForLookahead(const SubjectSampler& sampler) const
{
    // If candiates-per-character becomes larger, then sequence is not profitable since this sequence will match against
    // too many characters. But if we limit candiates-per-character smaller, it is possible that we only find very short
    // character sequence. We start with low limit, then enlarging the limit to find more and more profitable
    // character sequence.
    int32_t biggestPoint = INT32_MIN;
    unsigned begin = 0;
    unsigned end = 0;
    constexpr unsigned maxCandidatesPerCharacter = 32;
    static_assert(maxCandidatesPerCharacter < BoyerMooreBitmap::mapSize);
    for (unsigned limit = 4; limit < maxCandidatesPerCharacter; limit *= 2) {
        auto [newPoint, newBegin, newEnd] = findBestCharacterSequence(sampler, limit);
        if (newPoint > biggestPoint) {
            biggestPoint = newPoint;
            begin = newBegin;
            end = newEnd;
        }
    }
    if (biggestPoint < 0)
        return std::nullopt;
    return std::tuple { begin, end };
}

std::tuple<BoyerMooreBitmap::Map, BoyerMooreFastCandidates> BoyerMooreInfo::createCandidateBitmap(unsigned begin, unsigned end) const
{
    BoyerMooreBitmap::Map map { };
    BoyerMooreFastCandidates charactersFastPath;
    for (unsigned index = begin; index < end; ++index) {
        auto& bmBitmap = m_characters[index];
        map.merge(bmBitmap.map());
        charactersFastPath.merge(bmBitmap.charactersFastPath());
    }
    return std::tuple { WTFMove(map), WTFMove(charactersFastPath) };
}

void BoyerMooreInfo::dump(PrintStream& out) const
{
    out.println("BoyerMooreInfo size:(", m_characters.size(), ")");
    unsigned index = 0;
    for (auto& map : m_characters)
        out.println("    [", makeString(pad(' ', 3, index++)), "] ", map);
}

void BoyerMooreBitmap::dump(PrintStream& out) const
{
    out.print(m_map);
}

template<class YarrJITRegs = YarrJITDefaultRegisters>
class YarrGenerator final : public YarrJITInfo {
    static constexpr int32_t errorCodePoint = -1;

    class MatchTargets {
    public:
        enum class PreferredTarget : uint8_t {
            NoPreference = 0,
            PreferMatchSucceeded = 1,
            MatchFailFallThrough = PreferMatchSucceeded,
            PreferMatchFailed = 2,
            MatchSuccessFallThrough = PreferMatchFailed
        };

        MatchTargets(MacroAssembler::JumpList& matchDest)
            : m_matchSucceededTargets(&matchDest)
            , m_preferredTarget(PreferredTarget::PreferMatchSucceeded)
        { }

        MatchTargets(MacroAssembler::JumpList& compareDest, PreferredTarget preferredTarget)
            : m_preferredTarget(&preferredTarget)
        {
            if (preferredTarget == PreferredTarget::PreferMatchFailed)
                m_matchFailedTargets = &compareDest;
            else
                m_matchSucceededTargets  = &compareDest;
        }

        MatchTargets(MacroAssembler::JumpList& matchDest, MacroAssembler::JumpList& failDest, PreferredTarget preferredTarget = PreferredTarget::NoPreference)
            : m_matchSucceededTargets(&matchDest)
            , m_matchFailedTargets(&failDest)
            , m_preferredTarget(preferredTarget)
        { }

        PreferredTarget preferredTarget()
        {
            return m_preferredTarget;
        }

        bool hasSucceedTarget()
        {
            return m_matchSucceededTargets != nullptr;
        }

        bool hasFailedTarget()
        {
            return m_matchFailedTargets != nullptr;
        }

        MacroAssembler::JumpList& matchSucceeded() { return *m_matchSucceededTargets; }
        MacroAssembler::JumpList& matchFailed() { return *m_matchFailedTargets; }

        void appendSucceeded(MacroAssembler::Jump jump)
        {
            ASSERT(m_matchSucceededTargets != nullptr);
            m_matchSucceededTargets->append(jump);
        }

        void appendFailed(MacroAssembler::Jump jump)
        {
            ASSERT(m_matchFailedTargets != nullptr);
            m_matchFailedTargets->append(jump);
        }

    private:
        MacroAssembler::JumpList* m_matchSucceededTargets { nullptr };
        MacroAssembler::JumpList* m_matchFailedTargets { nullptr };
        PreferredTarget m_preferredTarget;
    };

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
    struct ParenContextSizes {
        size_t m_numSubpatterns;
        size_t m_numDuplicateNamedCaptures;
        size_t m_frameSlots;

        ParenContextSizes(size_t numSubpatterns, size_t numDuplicateNamedCaptures, size_t frameSlots)
            : m_numSubpatterns(numSubpatterns)
            , m_numDuplicateNamedCaptures(numDuplicateNamedCaptures)
            , m_frameSlots(frameSlots)
        {
        }

        size_t numSubpatterns() { return m_numSubpatterns; }

        size_t numDuplicateNamedCaptures() { return m_numDuplicateNamedCaptures; }

        size_t frameSlots() { return m_frameSlots; }
    };

    struct ParenContext {
        struct ParenContext* next;
        struct BeginAndMatchAmount {
            uint32_t begin;
            uint32_t matchAmount;
        } beginAndMatchAmount;
        uintptr_t returnAddress;
        struct Subpatterns {
            unsigned start;
            unsigned end;
        } subpatterns[0];
        unsigned duplicateNamedCaptures[0];
        uintptr_t frameSlots[0];

        static size_t sizeFor(ParenContextSizes& parenContextSizes)
        {
            return sizeof(ParenContext) + sizeof(Subpatterns) * parenContextSizes.numSubpatterns() + sizeof(unsigned) * (parenContextSizes.numDuplicateNamedCaptures()) + sizeof(uintptr_t) * parenContextSizes.frameSlots();
        }

        static constexpr ptrdiff_t nextOffset()
        {
            return offsetof(ParenContext, next);
        }

        static constexpr ptrdiff_t beginOffset()
        {
            return offsetof(ParenContext, beginAndMatchAmount) + offsetof(BeginAndMatchAmount, begin);
        }

        static constexpr ptrdiff_t matchAmountOffset()
        {
            return offsetof(ParenContext, beginAndMatchAmount) + offsetof(BeginAndMatchAmount, matchAmount);
        }

        static constexpr ptrdiff_t returnAddressOffset()
        {
            return offsetof(ParenContext, returnAddress);
        }

        static constexpr ptrdiff_t subpatternOffset(size_t subpattern)
        {
            return offsetof(ParenContext, subpatterns) + (subpattern - 1) * sizeof(Subpatterns);
        }

        static constexpr ptrdiff_t duplicateNamedCaptureOffset(ParenContextSizes& parenContextSizes, size_t namedCapture)
        {
            return offsetof(ParenContext, subpatterns) + (parenContextSizes.numSubpatterns()) * sizeof(Subpatterns) + (namedCapture - 1) * sizeof(unsigned);
        }

        static ptrdiff_t savedFrameOffset(ParenContextSizes& parenContextSizes)
        {
            return offsetof(ParenContext, subpatterns) + (parenContextSizes.numSubpatterns()) * sizeof(Subpatterns) + (parenContextSizes.numDuplicateNamedCaptures()) * sizeof(unsigned);
        }
    };

    void initParenContextFreeList()
    {
        MacroAssembler::RegisterID parenContextPointer = m_regs.regT0;
        MacroAssembler::RegisterID nextParenContextPointer = m_regs.regT2;

        m_usesT2 = true;

        size_t parenContextSize = ParenContext::sizeFor(m_parenContextSizes);

        parenContextSize = WTF::roundUpToMultipleOf<sizeof(uintptr_t)>(parenContextSize);

        if (parenContextSize > VM::patternContextBufferSize) {
            m_failureReason = JITFailureReason::ParenthesisNestedTooDeep;
            return;
        }

        m_jit.load32(MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfPatternContextBufferSize()), m_regs.freelistSizeRegister);
        // Note that matchingContext and freelistRegister are likely the same register.
        m_jit.loadPtr(MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfPatternContextBuffer()), m_regs.freelistRegister);
        MacroAssembler::Jump emptyFreeList = m_jit.branchTestPtr(MacroAssembler::Zero, m_regs.freelistRegister);
        m_jit.move(m_regs.freelistRegister, parenContextPointer);
        m_jit.addPtr(MacroAssembler::TrustedImm32(parenContextSize), m_regs.freelistRegister, nextParenContextPointer);
        m_jit.addPtr(m_regs.freelistRegister, m_regs.freelistSizeRegister);
        m_jit.subPtr(MacroAssembler::TrustedImm32(parenContextSize), m_regs.freelistSizeRegister);

        MacroAssembler::Label loopTop(&m_jit);
        MacroAssembler::Jump initDone = m_jit.branchPtr(MacroAssembler::Above, nextParenContextPointer, m_regs.freelistSizeRegister);
        m_jit.storePtr(nextParenContextPointer, MacroAssembler::Address(parenContextPointer, ParenContext::nextOffset()));
        m_jit.move(nextParenContextPointer, parenContextPointer);
        m_jit.addPtr(MacroAssembler::TrustedImm32(parenContextSize), parenContextPointer, nextParenContextPointer);
        m_jit.jump(loopTop);

        initDone.link(&m_jit);
        m_jit.storePtr(MacroAssembler::TrustedImmPtr(nullptr), MacroAssembler::Address(parenContextPointer, ParenContext::nextOffset()));
        emptyFreeList.link(&m_jit);
    }

    void allocateParenContext(MacroAssembler::RegisterID result)
    {
        m_abortExecution.append(m_jit.branchTestPtr(MacroAssembler::Zero, m_regs.freelistRegister));
        m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.remainingMatchCount);
        m_hitMatchLimit.append(m_jit.branchTestPtr(MacroAssembler::Zero, m_regs.remainingMatchCount));
        m_jit.move(m_regs.freelistRegister, result);
        m_jit.loadPtr(MacroAssembler::Address(m_regs.freelistRegister, ParenContext::nextOffset()), m_regs.freelistRegister);
    }

    void freeParenContext(MacroAssembler::RegisterID headPtrRegister, MacroAssembler::RegisterID newHeadPtrRegister)
    {
        m_jit.loadPtr(MacroAssembler::Address(headPtrRegister, ParenContext::nextOffset()), newHeadPtrRegister);
        m_jit.storePtr(m_regs.freelistRegister, MacroAssembler::Address(headPtrRegister, ParenContext::nextOffset()));
        m_jit.move(headPtrRegister, m_regs.freelistRegister);
    }

    void storeBeginAndMatchAmountToParenContext(MacroAssembler::RegisterID beginGPR, MacroAssembler::RegisterID matchAmountGPR, MacroAssembler::RegisterID parenContextGPR)
    {
        static_assert(ParenContext::beginOffset() + 4 == ParenContext::matchAmountOffset());
        m_jit.storePair32(beginGPR, matchAmountGPR, parenContextGPR, MacroAssembler::TrustedImm32(ParenContext::beginOffset()));
    }

    void loadBeginAndMatchAmountFromParenContext(MacroAssembler::RegisterID parenContextGPR, MacroAssembler::RegisterID beginGPR, MacroAssembler::RegisterID matchAmountGPR)
    {
        static_assert(ParenContext::beginOffset() + 4 == ParenContext::matchAmountOffset());
        m_jit.loadPair32(parenContextGPR, MacroAssembler::TrustedImm32(ParenContext::beginOffset()), beginGPR, matchAmountGPR);
    }

    void saveParenContext(MacroAssembler::RegisterID parenContextReg, MacroAssembler::RegisterID tempReg, unsigned firstSubpattern, unsigned lastSubpattern, unsigned subpatternBaseFrameLocation)
    {
        BitVector duplicateNamedCaptureGroups;
        bool hasNamedCaptures = m_pattern.hasDuplicateNamedCaptureGroups();

        loadFromFrame(subpatternBaseFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), tempReg);
        storeBeginAndMatchAmountToParenContext(m_regs.index, tempReg, parenContextReg);
        loadFromFrame(subpatternBaseFrameLocation + BackTrackInfoParentheses::returnAddressIndex(), tempReg);
        m_jit.storePtr(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::returnAddressOffset()));
        if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
            for (unsigned subpattern = firstSubpattern; subpattern <= lastSubpattern; subpattern++) {
                static_assert(is64Bit());
                m_jit.load64(MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(unsigned)), tempReg);
                m_jit.store64(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::subpatternOffset(subpattern)));
                if (hasNamedCaptures) {
                    unsigned duplicateNamedGroup = m_pattern.m_duplicateNamedGroupForSubpatternId[subpattern];
                    if (duplicateNamedGroup)
                        duplicateNamedCaptureGroups.set(duplicateNamedGroup);
                }
                clearSubpatternStart(subpattern);
            }
            for (unsigned duplicateNamedGroupId : duplicateNamedCaptureGroups) {
                m_jit.load32(MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned))), tempReg);
                m_jit.store32(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::duplicateNamedCaptureOffset(m_parenContextSizes, duplicateNamedGroupId)));
                m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned))));
            }
        }
        subpatternBaseFrameLocation += YarrStackSpaceForBackTrackInfoParentheses;
        for (unsigned frameLocation = subpatternBaseFrameLocation; frameLocation < m_parenContextSizes.frameSlots(); frameLocation++) {
            loadFromFrame(frameLocation, tempReg);
            m_jit.storePtr(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::savedFrameOffset(m_parenContextSizes) + frameLocation * sizeof(uintptr_t)));
        }
    }

    void restoreParenContext(MacroAssembler::RegisterID parenContextReg, MacroAssembler::RegisterID tempReg, unsigned firstSubpattern, unsigned lastSubpattern, unsigned subpatternBaseFrameLocation)
    {
        BitVector duplicateNamedCaptureGroups;
        bool hasNamedCaptures = m_pattern.hasDuplicateNamedCaptureGroups();

        loadBeginAndMatchAmountFromParenContext(parenContextReg, m_regs.index, tempReg);
        storeToFrame(m_regs.index, subpatternBaseFrameLocation + BackTrackInfoParentheses::beginIndex());
        storeToFrame(tempReg, subpatternBaseFrameLocation + BackTrackInfoParentheses::matchAmountIndex());
        m_jit.loadPtr(MacroAssembler::Address(parenContextReg, ParenContext::returnAddressOffset()), tempReg);
        storeToFrame(tempReg, subpatternBaseFrameLocation + BackTrackInfoParentheses::returnAddressIndex());
        if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
            for (unsigned subpattern = firstSubpattern; subpattern <= lastSubpattern; subpattern++) {
                static_assert(is64Bit());
                m_jit.load64(MacroAssembler::Address(parenContextReg, ParenContext::subpatternOffset(subpattern)), tempReg);
                m_jit.store64(tempReg, MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(unsigned)));
                if (hasNamedCaptures) {
                    unsigned duplicateNamedGroup = m_pattern.m_duplicateNamedGroupForSubpatternId[subpattern];
                    if (duplicateNamedGroup)
                        duplicateNamedCaptureGroups.set(duplicateNamedGroup);
                }
            }
            for (unsigned duplicateNamedGroupId : duplicateNamedCaptureGroups) {
                m_jit.load32(MacroAssembler::Address(parenContextReg, ParenContext::duplicateNamedCaptureOffset(m_parenContextSizes, duplicateNamedGroupId)), tempReg);
                m_jit.store32(tempReg, MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
            }
        }
        subpatternBaseFrameLocation += YarrStackSpaceForBackTrackInfoParentheses;
        for (unsigned frameLocation = subpatternBaseFrameLocation; frameLocation < m_parenContextSizes.frameSlots(); frameLocation++) {
            m_jit.loadPtr(MacroAssembler::Address(parenContextReg, ParenContext::savedFrameOffset(m_parenContextSizes) + frameLocation * sizeof(uintptr_t)), tempReg);
            storeToFrame(tempReg, frameLocation);
        }
    }
#endif

    void optimizeAlternative(PatternAlternative* alternative)
    {
        if (!alternative->m_terms.size())
            return;

        for (unsigned i = 0; i < alternative->m_terms.size() - 1; ++i) {
            PatternTerm& term = alternative->m_terms[i];
            PatternTerm& nextTerm = alternative->m_terms[i + 1];

            // We can move BMP only character classes after fixed character terms.
            if ((term.type == PatternTerm::Type::CharacterClass)
                && (term.quantityType == QuantifierType::FixedCount)
                && (!m_decodeSurrogatePairs || (term.characterClass->hasOneCharacterSize() && !term.m_invert))
                && (nextTerm.type == PatternTerm::Type::PatternCharacter)
                && (nextTerm.quantityType == QuantifierType::FixedCount)) {
                PatternTerm termCopy = term;
                alternative->m_terms[i] = nextTerm;
                alternative->m_terms[i + 1] = termCopy;
            }
        }
    }

    constexpr static unsigned MaximumCharacterClassSizeForBitTest = 8 * sizeof(UCPURegister);
    using CharacterBitSet = WTF::BitSet<MaximumCharacterClassSizeForBitTest>;

    void matchCharacterClassByBitTest(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& matchDest, char32_t min, char32_t max, CharacterBitSet mask)
    {
        switch (mask.count()) {
        case 0:
            return;
        case 1:
        case 2:
        case 3:
        case 4:
            // If the set is small enough, still defer to a series of branches.
            mask.forEachSetBit([&](size_t value) {
                matchDest.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(min + value)));
                return IterationStatus::Continue;
            });
            break;
        default: {
            // Otherwise, actually perform the bit test.
#if CPU(REGISTER64)
            m_jit.sub32(character, MacroAssembler::Imm32(static_cast<unsigned>(min)), scratch);
            MacroAssembler::Jump notInVector = m_jit.branch32(MacroAssembler::Above, scratch, MacroAssembler::TrustedImm32(max - min));
            m_jit.lshift64(MacroAssembler::TrustedImm32(1), scratch, scratch);
            matchDest.append(m_jit.branchTest64(MacroAssembler::NonZero, scratch, MacroAssembler::TrustedImm64(mask.storage()[0])));
#else
            m_jit.sub32(character, MacroAssembler::Imm32(static_cast<unsigned>(min)), scratch);
            MacroAssembler::Jump notInVector = m_jit.branch32(MacroAssembler::Above, scratch, MacroAssembler::TrustedImm32(max - min));
            m_jit.lshift32(MacroAssembler::TrustedImm32(1), scratch, scratch);
            matchDest.append(m_jit.branchTest32(MacroAssembler::NonZero, scratch, MacroAssembler::TrustedImm32(mask.storage()[0])));
#endif
            notInVector.link(&m_jit);
        }
        }
    }

    void matchCharacterClassSet(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& matchDest, std::span<const char32_t> matches)
    {
        if (matches.empty())
            return;

        if (matches.size() == 1) {
            matchDest.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(static_cast<unsigned>(matches.front()))));
            return;
        }

        // If we have multiple matches close together (not necessarily contiguous), we
        // can try a biased bitmask - subtract the minimum match from the character,
        // then see if it's present in a precomputed mask. We keep the bitset size quite
        // small in order to keep it easy to materialize - this approach lets us avoid
        // a load or lookup table in favor of just masking against an immediate.

        char32_t min = matches.front();
        char32_t max = matches.back();
        ASSERT(max > min);
        if ((max - min) < MaximumCharacterClassSizeForBitTest) {
            CharacterBitSet mask;
            for (char32_t character : matches)
                mask.set(character - min);
            matchCharacterClassByBitTest(character, scratch, matchDest, min, max, mask);
            return;
        }

        // We have too many matches to handle in a single set, but we may be able to
        // recursively group some of our matches together. Worst case, we just do a
        // character-by-character match. Greedily matching is potentially suboptimal,
        // but I doubt worth spending time doing better.

        size_t lastStart = 0;
        for (size_t index = 1; index < matches.size(); ++index) {
            if ((matches[index] - matches[lastStart]) >= MaximumCharacterClassSizeForBitTest) {
                matchCharacterClassSet(character, scratch, matchDest, matches.subspan(lastStart, index - lastStart));
                lastStart = index;
            }
        }
        if (lastStart < matches.size())
            matchCharacterClassSet(character, scratch, matchDest, matches.subspan(lastStart));
    }

    void matchCharacterClassRange(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& failures, MacroAssembler::JumpList& matchDest, std::span<const CharacterRange> ranges, std::span<const char32_t> matches, bool& shouldGenerateFailureJump, bool isTopLevel)
    {
        if (ranges.size() == 1 && !matches.size()) {
            matchCharacterClassOnlyOneRange(character, scratch, failures, ranges.front());
            matchDest.append(m_jit.jump());
            shouldGenerateFailureJump = false;
            return;
        }
        ASSERT(ranges.size()); // We could handle this case, but we shouldn't expect to reach here without any ranges.

        // Let's first see if all our ranges and matches neatly fit into a bitvector...
        uint32_t min = ranges.front().begin;
        uint32_t max = ranges.back().end;
        if (matches.size()) {
            min = std::min<uint32_t>(min, matches.front());
            max = std::max<uint32_t>(max, matches.back());
        }
        if ((max - min) < MaximumCharacterClassSizeForBitTest) {
            CharacterBitSet mask;
            for (auto range : ranges) {
                for (char32_t ch = range.begin; ch <= range.end; ++ch)
                    mask.set(ch - min);
            }
            for (auto character : matches)
                mask.set(character - min);
            matchCharacterClassByBitTest(character, scratch, matchDest, min, max, mask);
            return;
        }

        // Otherwise, binary search the ranges and matches. We still want to take advantage of a bitvector test
        // if possible, so we greedily add ranges to the median as long as we fit within the bit test size.
        unsigned whichFirst = ranges.size() >> 1;
        unsigned whichLast = whichFirst;
        char32_t lo = ranges[whichFirst].begin;
        char32_t hi = ranges[whichLast].end;
        while (whichLast < ranges.size() - 1) {
            char32_t nextHi = ranges[whichLast + 1].end;
            if (nextHi - lo < MaximumCharacterClassSizeForBitTest) {
                whichLast++;
                hi = nextHi;
            } else
                break;
        }

        // First, explore any matches below the minimum of the current range.
        unsigned smallerMatchCount = 0;
        while (smallerMatchCount < matches.size() && matches[smallerMatchCount] < lo)
            smallerMatchCount++;

        // Otherwise, explore any matches beyond the maximum of the current range.
        unsigned higherMatchStart = smallerMatchCount;
        while (higherMatchStart < matches.size() && matches[higherMatchStart] <= hi)
            higherMatchStart++;

        if (whichFirst) {
            MacroAssembler::Jump loOrAbove = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, character, MacroAssembler::Imm32(static_cast<unsigned>(lo)));
            bool shouldGenerateFailureJump = true;
            matchCharacterClassRange(character, scratch, failures, matchDest, ranges.first(whichFirst), matches.first(smallerMatchCount), shouldGenerateFailureJump, false);
            if (shouldGenerateFailureJump)
                failures.append(m_jit.jump());
            loOrAbove.link(&m_jit);
        } else if (smallerMatchCount) {
            MacroAssembler::Jump loOrAbove = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, character, MacroAssembler::Imm32(static_cast<unsigned>(lo)));
            matchCharacterClassSet(character, scratch, matchDest, matches.first(smallerMatchCount));
            failures.append(m_jit.jump());
            loOrAbove.link(&m_jit);
        } else
            failures.append(m_jit.branch32(MacroAssembler::LessThan, character, MacroAssembler::Imm32(static_cast<unsigned>(lo))));

        // At this point we will have either matched, failed, or character is >= lo. Next, let's check if we're actually in the current range.

        if (whichFirst != whichLast) {
            CharacterBitSet mask;
            for (auto range : ranges.subspan(whichFirst, whichLast - whichFirst + 1)) {
                for (char32_t ch = range.begin; ch <= range.end; ++ch)
                    mask.set(ch - lo);
            }
            for (auto character : matches.subspan(smallerMatchCount, higherMatchStart - smallerMatchCount))
                mask.set(character - lo);
            matchCharacterClassByBitTest(character, scratch, matchDest, lo, hi, mask);
        } else
            matchDest.append(m_jit.branch32(MacroAssembler::LessThanOrEqual, character, MacroAssembler::Imm32(static_cast<unsigned>(hi))));

        if (whichLast + 1 < ranges.size()) {
            bool shouldGenerateFailureJump = true;
            matchCharacterClassRange(character, scratch, failures, matchDest, ranges.subspan(whichLast + 1), matches.subspan(higherMatchStart), shouldGenerateFailureJump, false);
            if (shouldGenerateFailureJump)
                failures.append(m_jit.jump());
        } else if (higherMatchStart < matches.size()) {
            matchCharacterClassSet(character, scratch, matchDest, matches.subspan(higherMatchStart));
            if (!isTopLevel)
                failures.append(m_jit.jump());
        }
    }

    void matchCharacterClassOnlyOneRange(const MacroAssembler::RegisterID character, const MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& failMatches, const CharacterRange& range)
    {
        // Instead of doing two branches, we rely on unsigned underflow - any values below ranges.begin
        // will wrap around to the top of the 32-bit unsigned integer range, meaning all values outside
        // the range will be strictly above (end - begin).
        unsigned biasedEnd = range.end - range.begin;
        m_jit.sub32(character, MacroAssembler::Imm32(static_cast<unsigned>(range.begin)), scratch);
        failMatches.append(m_jit.branch32(MacroAssembler::Above, scratch, MacroAssembler::TrustedImm32(biasedEnd)));
    }

    void matchCharacterClassOnlyOneRange(const MacroAssembler::RegisterID character, const MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& failMatches, const Vector<CharacterRange>& ranges)
    {
        ASSERT(ranges.size() == 1);
        matchCharacterClassOnlyOneRange(character, scratch, failMatches, ranges[0]);
    }

    void matchCharacterClassTable(MacroAssembler::RegisterID character, MacroAssembler::JumpList& failMatches, const char* table, bool tableInverted = false)
    {
        ASSERT(!m_decodeSurrogatePairs);
        MacroAssembler::ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(table));
        failMatches.append(m_jit.branchTest8(tableInverted ? MacroAssembler::NonZero : MacroAssembler::Zero, tableEntry));
    }

    void matchCharacterClass(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MatchTargets matchTargets, const CharacterClass* charClass)
    {
        if (charClass->m_table && !m_decodeSurrogatePairs) {
            if (matchTargets.hasFailedTarget()) {
                MacroAssembler::ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table));
                matchTargets.appendFailed(m_jit.branchTest8(charClass->m_tableInverted ? MacroAssembler::NonZero : MacroAssembler::Zero, tableEntry));
                return;
            }
            MacroAssembler::ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table));
            matchTargets.appendSucceeded(m_jit.branchTest8(charClass->m_tableInverted ? MacroAssembler::Zero : MacroAssembler::NonZero, tableEntry));
            return;
        }

        Vector<char32_t, 32> unifiedMatches;
        Vector<CharacterRange, 32> unifiedRanges;
        unifiedMatches.appendVector(charClass->m_matches);
        unifiedMatches.appendVector(charClass->m_matchesUnicode);
        unifiedRanges.appendVector(charClass->m_ranges);
        unifiedRanges.appendVector(charClass->m_rangesUnicode);

        ASSERT(std::is_sorted(unifiedMatches.begin(), unifiedMatches.end(), [](auto& lhs, auto& rhs) {
            return lhs < rhs;
        }));
        ASSERT(std::is_sorted(unifiedRanges.begin(), unifiedRanges.end(), [](auto& lhs, auto& rhs) {
            return lhs.begin < rhs.begin;
        }));

        std::sort(unifiedMatches.begin(), unifiedMatches.end(), [](auto& lhs, auto& rhs) {
            return lhs < rhs;
        });
        std::sort(unifiedRanges.begin(), unifiedRanges.end(), [](auto& lhs, auto& rhs) {
            return lhs.begin < rhs.begin;
        });

        if (!unifiedRanges.size() && !unifiedMatches.size() && matchTargets.hasFailedTarget()) {
            matchTargets.appendFailed(m_jit.jump());
            return;
        }

        if (unifiedRanges.size()) {
            MacroAssembler::JumpList failures;
            bool shouldGenerateFailureJump = false;
            matchCharacterClassRange(character, scratch, failures, matchTargets.matchSucceeded(), unifiedRanges.span(), unifiedMatches.span(), shouldGenerateFailureJump, true);
            failures.link(&m_jit);
        } else if (unifiedMatches.size())
            matchCharacterClassSet(character, scratch, matchTargets.matchSucceeded(), unifiedMatches.span());
    }

    void matchCharacterClassTermInner(PatternTerm* term, MacroAssembler::JumpList& failures, const MacroAssembler::RegisterID character, const MacroAssembler::RegisterID scratch)
    {
        ASSERT(term->type == PatternTerm::Type::CharacterClass);

        auto processCharacterClass = [&] (CharacterClass* characterClassToProcess) {
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
            if (m_decodeSurrogatePairs && term->invert())
                failures.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(errorCodePoint)));
#endif
            if (term->invert())
                matchCharacterClass(character, scratch, failures, characterClassToProcess);
            else if (characterClassToProcess->m_matches.isEmpty() && characterClassToProcess->m_matchesUnicode.isEmpty()
                && (characterClassToProcess->m_ranges.size() + characterClassToProcess->m_rangesUnicode.size()) == 1) {
                matchCharacterClassOnlyOneRange(character, scratch, failures, characterClassToProcess->m_ranges.size() ? characterClassToProcess->m_ranges : characterClassToProcess->m_rangesUnicode);
            } else {
                MacroAssembler::JumpList matchDest;
                // If we are matching the "any character" builtin class for non-unicode patterns,
                // we only need to read the character and don't need to match as it will always succeed.
                if (!characterClassToProcess->m_anyCharacter) {
                    matchCharacterClass(character, scratch, MatchTargets(matchDest, failures, MatchTargets::PreferredTarget::MatchSuccessFallThrough), characterClassToProcess);
                    if (!matchDest.empty())
                        failures.append(m_jit.jump());
                }
                matchDest.link(&m_jit);
            }
        };

        if (m_charSize == CharSize::Char8) {
            CharacterClass characterClass8Bit;

            characterClass8Bit.copyOnly8BitCharacterData(*term->characterClass);
            processCharacterClass(&characterClass8Bit);
        } else
            processCharacterClass(term->characterClass);

        // Note that this falls through on a successful characterClass match.
    }

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
    void advanceIndexAfterCharacterClassTermMatch(const PatternTerm* term, MacroAssembler::JumpList& failuresAfterIncrementingIndex, const MacroAssembler::RegisterID character)
    {
        ASSERT(term->type == PatternTerm::Type::CharacterClass);

        if (term->isFixedWidthCharacterClass())
            m_jit.add32(MacroAssembler::TrustedImm32(term->characterClass->hasNonBMPCharacters() ? 2 : 1), m_regs.index);
        else {
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
            MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, m_regs.supplementaryPlanesBase);
            failuresAfterIncrementingIndex.append(atEndOfInput());
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
            isBMPChar.link(&m_jit);
        }
    }
#endif

    // Jumps if input not available; will have (incorrectly) incremented already!
    MacroAssembler::Jump jumpIfNoAvailableInput(unsigned countToCheck = 0)
    {
        if (countToCheck)
            m_jit.add32(MacroAssembler::Imm32(countToCheck), m_regs.index);
        return m_jit.branch32(MacroAssembler::Above, m_regs.index, m_regs.length);
    }

    MacroAssembler::Jump jumpIfAvailableInput(unsigned countToCheck)
    {
        m_jit.add32(MacroAssembler::Imm32(countToCheck), m_regs.index);
        return m_jit.branch32(MacroAssembler::BelowOrEqual, m_regs.index, m_regs.length);
    }

    MacroAssembler::Jump checkNotEnoughInput(MacroAssembler::RegisterID additionalAmount)
    {
        m_jit.add32(m_regs.index, additionalAmount);
        return m_jit.branch32(MacroAssembler::Above, additionalAmount, m_regs.length);
    }

    MacroAssembler::Jump checkInput()
    {
        return m_jit.branch32(MacroAssembler::BelowOrEqual, m_regs.index, m_regs.length);
    }

    MacroAssembler::Jump atEndOfInput()
    {
        return m_jit.branch32(MacroAssembler::Equal, m_regs.index, m_regs.length);
    }

    MacroAssembler::Jump notAtEndOfInput()
    {
        return m_jit.branch32(MacroAssembler::NotEqual, m_regs.index, m_regs.length);
    }

    MacroAssembler::BaseIndex negativeOffsetIndexedAddress(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID tempReg)
    {
        return negativeOffsetIndexedAddress(negativeCharacterOffset, tempReg, m_regs.index);
    }

    MacroAssembler::BaseIndex negativeOffsetIndexedAddress(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID tempReg, MacroAssembler::RegisterID indexReg)
    {
        MacroAssembler::RegisterID base = m_regs.input;

        // MacroAssembler::BaseIndex() addressing can take a int32_t offset. Given that we can have a regular
        // expression that has unsigned character offsets, MacroAssembler::BaseIndex's signed offset is insufficient
        // for addressing in extreme cases where we might underflow. Therefore we check to see if
        // negativeCharacterOffset will underflow directly or after converting for 16 bit characters.
        // If so, we do our own address calculating by adjusting the base, using the result register
        // as a temp address register.
        unsigned maximumNegativeOffsetForCharacterSize = m_charSize == CharSize::Char8 ? 0x7fffffff : 0x3fffffff;
        unsigned offsetAdjustAmount = 0x40000000;
        if (negativeCharacterOffset > maximumNegativeOffsetForCharacterSize) {
            base = tempReg;
            m_jit.move(m_regs.input, base);
            while (negativeCharacterOffset > maximumNegativeOffsetForCharacterSize) {
                m_jit.subPtr(MacroAssembler::TrustedImm32(offsetAdjustAmount), base);
                if (m_charSize != CharSize::Char8)
                    m_jit.subPtr(MacroAssembler::TrustedImm32(offsetAdjustAmount), base);
                negativeCharacterOffset -= offsetAdjustAmount;
            }
        }

        Checked<int32_t> characterOffset(-static_cast<int32_t>(negativeCharacterOffset));

        if (m_charSize == CharSize::Char8)
            return MacroAssembler::BaseIndex(m_regs.input, indexReg, MacroAssembler::TimesOne, characterOffset * static_cast<int32_t>(sizeof(char)));

        return MacroAssembler::BaseIndex(m_regs.input, indexReg, MacroAssembler::TimesTwo, characterOffset * static_cast<int32_t>(sizeof(UChar)));
    }

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
    template<TryReadUnicodeCharCodeLocation readUnicodeCharCodeLocation>
    void tryReadUnicodeCharImpl(MacroAssembler::RegisterID resultReg)
    {
        ASSERT(m_charSize == CharSize::Char16);

        MacroAssembler::JumpList notUnicode;
        MacroAssembler::JumpList haveTrailingSurrogate;
        MacroAssembler::JumpList haveResult;
        MacroAssembler::JumpList haveDanglingSurrogate;

        m_jit.load16Unaligned(MacroAssembler::Address(m_regs.regUnicodeInputAndTrail), resultReg);

        // Is the character a surrogate?
        m_jit.and32(m_regs.surrogateTagMask, resultReg, m_regs.unicodeAndSubpatternIdTemp);
        notUnicode.append(m_jit.branch32(MacroAssembler::Equal, m_regs.unicodeAndSubpatternIdTemp, MacroAssembler::TrustedImm32(0)));

        // Is it a trailing surrogate, then check if it part of a surrogate pair.
        haveTrailingSurrogate.append(m_jit.branch32(MacroAssembler::Equal, m_regs.unicodeAndSubpatternIdTemp, m_regs.trailingSurrogateTag));

        // Is the input long enough to read a trailing surrogate?
        m_jit.addPtr(MacroAssembler::TrustedImm32(2), m_regs.regUnicodeInputAndTrail);
        notUnicode.append(m_jit.branchPtr(MacroAssembler::AboveOrEqual, m_regs.regUnicodeInputAndTrail, m_regs.endOfStringAddress));

        // Is the character a trailing surrogate?
        m_jit.load16Unaligned(MacroAssembler::Address(m_regs.regUnicodeInputAndTrail), m_regs.regUnicodeInputAndTrail);
        m_jit.and32(m_regs.surrogateTagMask, m_regs.regUnicodeInputAndTrail, m_regs.unicodeAndSubpatternIdTemp);
        notUnicode.append(m_jit.branch32(MacroAssembler::NotEqual, m_regs.unicodeAndSubpatternIdTemp, m_regs.trailingSurrogateTag));

        // Combine leading and trailing surrogates to produce a code point.
        m_jit.lshift32(MacroAssembler::TrustedImm32(10), resultReg);
        m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(resultReg, m_regs.regUnicodeInputAndTrail, MacroAssembler::TimesOne, -U16_SURROGATE_OFFSET), resultReg);
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
        if (m_useFirstNonBMPCharacterOptimization) {
            // If this is the first read of the alternation, set additional read size to 1.
            m_jit.moveConditionallyTest32(MacroAssembler::NonZero, m_regs.firstCharacterAdditionalReadSize, MacroAssembler::TrustedImm32(additionalReadSizeSentinel), ARM64Registers::zr, m_regs.firstCharacterAdditionalReadSize);
            m_jit.addOneConditionally32(MacroAssembler::NonZero, m_regs.firstCharacterAdditionalReadSize, m_regs.firstCharacterAdditionalReadSize);
        }
#endif

        if (readUnicodeCharCodeLocation == TryReadUnicodeCharCodeLocation::CompiledAsHelper)
            m_jit.ret();
        else
            haveResult.append(m_jit.jump());

        haveTrailingSurrogate.link(&m_jit);

        // Are there characters before the current current input pointer? If not, return dangling surrogate.
        m_jit.subPtr(MacroAssembler::TrustedImm32(2), m_regs.regUnicodeInputAndTrail);
        haveDanglingSurrogate.append(m_jit.branchPtr(MacroAssembler::Below, m_regs.regUnicodeInputAndTrail, m_regs.input));

        // Is the prior character is a leading surrogate? If not, return the dangling surrogate.
        m_jit.load16Unaligned(MacroAssembler::Address(m_regs.regUnicodeInputAndTrail), m_regs.regUnicodeInputAndTrail);
        m_jit.and32(m_regs.surrogateTagMask, m_regs.regUnicodeInputAndTrail, m_regs.unicodeAndSubpatternIdTemp);
        haveDanglingSurrogate.append(m_jit.branch32(MacroAssembler::NotEqual, m_regs.unicodeAndSubpatternIdTemp, m_regs.leadingSurrogateTag));

        // If we have a surrogate pair we tried reading from the trailing surrogate, return error codepoint (never matches).
        m_jit.move(MacroAssembler::TrustedImm32(errorCodePoint), resultReg);

        notUnicode.link(&m_jit);
        haveDanglingSurrogate.link(&m_jit);
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
        if (m_useFirstNonBMPCharacterOptimization) {
            // If this is the first read of the alternation, set additional read size to 0.
            m_jit.moveConditionallyTest32(MacroAssembler::NonZero, m_regs.firstCharacterAdditionalReadSize, MacroAssembler::TrustedImm32(additionalReadSizeSentinel), ARM64Registers::zr, m_regs.firstCharacterAdditionalReadSize);
        }
#endif

        haveResult.link(&m_jit);
    }

    void tryReadUnicodeChar(MacroAssembler::BaseIndex address, MacroAssembler::RegisterID resultReg)
    {
        ASSERT(m_charSize == CharSize::Char16);

        m_jit.getEffectiveAddress(address, m_regs.regUnicodeInputAndTrail);

        if (resultReg == m_regs.regT0)
            m_tryReadUnicodeCharacterCalls.append(m_jit.nearCall());
        else
            tryReadUnicodeCharImpl<TryReadUnicodeCharCodeLocation::CompiledInline>(resultReg);
    }
#endif
    
    void readCharacter(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID resultReg)
    {
        readCharacter(negativeCharacterOffset, resultReg, m_regs.index);
    }

    void readCharacter(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID resultReg, MacroAssembler::RegisterID indexReg)
    {
        MacroAssembler::BaseIndex address = negativeOffsetIndexedAddress(negativeCharacterOffset, resultReg, indexReg);

        if (m_charSize == CharSize::Char8)
            m_jit.load8(address, resultReg);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        else if (m_decodeSurrogatePairs)
            tryReadUnicodeChar(address, resultReg);
#endif
        else
            m_jit.load16Unaligned(address, resultReg);
    }

    MacroAssembler::Jump jumpIfCharNotEquals(char32_t ch, Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID character, bool ignoreCase)
    {
        readCharacter(negativeCharacterOffset, character);

        // For case-insesitive compares, non-ascii characters that have different
        // upper & lower case representations are converted to a character class.
        ASSERT(!ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch, m_canonicalMode));
        if (ignoreCase && isASCIIAlpha(ch)) {
            m_jit.or32(MacroAssembler::TrustedImm32(0x20), character);
            ch |= 0x20;
        }

        return m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(ch));
    }
    
    void storeToFrame(MacroAssembler::RegisterID reg, unsigned frameLocation)
    {
        m_jit.poke(reg, frameLocation);
    }

    void storeToFrame(MacroAssembler::TrustedImm32 imm, unsigned frameLocation)
    {
        m_jit.poke(imm, frameLocation);
    }

#if CPU(ARM64) || CPU(X86_64) || CPU(RISCV64)
    void storeToFrame(MacroAssembler::TrustedImmPtr imm, unsigned frameLocation)
    {
        m_jit.poke(imm, frameLocation);
    }
#endif

    MacroAssembler::DataLabelPtr storeToFrameWithPatch(unsigned frameLocation)
    {
        return m_jit.storePtrWithPatch(MacroAssembler::TrustedImmPtr(nullptr), MacroAssembler::Address(MacroAssembler::stackPointerRegister, frameLocation * sizeof(void*)));
    }

    void loadFromFrame(unsigned frameLocation, MacroAssembler::RegisterID reg)
    {
        m_jit.peek(reg, frameLocation);
    }

    void loadFromFrameAndJump(unsigned frameLocation)
    {
        m_jit.farJump(MacroAssembler::Address(MacroAssembler::stackPointerRegister, frameLocation * sizeof(void*)), YarrBacktrackPtrTag);
    }

    unsigned alignCallFrameSizeInBytes(unsigned callFrameSize)
    {
        if (!callFrameSize)
            return 0;

        callFrameSize *= sizeof(void*);
        if (callFrameSize / sizeof(void*) != m_pattern.m_body->m_callFrameSize)
            CRASH();
        callFrameSize = (callFrameSize + 0x3f) & ~0x3f;
        return callFrameSize;
    }
    void removeCallFrame()
    {
        unsigned callFrameSizeInBytes = alignCallFrameSizeInBytes(m_pattern.m_body->m_callFrameSize);
        if (callFrameSizeInBytes)
            m_jit.addPtr(MacroAssembler::Imm32(callFrameSizeInBytes), MacroAssembler::stackPointerRegister);
    }

    void generateFailReturn()
    {
        m_jit.move(MacroAssembler::TrustedImmPtr((void*)WTF::notFound), m_regs.returnRegister);
        m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);

#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
        if (m_compileMode == JITCompileMode::InlineTest) {
            m_inlinedFailedMatch.append(m_jit.jump());
            return;
        }
#endif

        generateReturn();
    }

    void generateJITFailReturn()
    {
        if (m_abortExecution.empty() && m_hitMatchLimit.empty())
            return;

        MacroAssembler::JumpList finishExiting;
        if (!m_abortExecution.empty()) {
            m_abortExecution.link(&m_jit);
            m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
            finishExiting.append(m_jit.jump());
        }

        if (!m_hitMatchLimit.empty()) {
            m_hitMatchLimit.link(&m_jit);
            m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::ErrorNoMatch)), m_regs.returnRegister);
        }

        finishExiting.link(&m_jit);
        removeCallFrame();
        m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
        generateReturn();
    }

    // Used to record subpatterns, should only be called if m_compileMode is JITCompileMode::IncludeSubpatterns.
    void setSubpatternStart(MacroAssembler::RegisterID reg, unsigned subpattern)
    {
        ASSERT(subpattern);
        // FIXME: should be able to ASSERT(m_compileMode == JITCompileMode::IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
        m_jit.store32(reg, MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(int)));
    }
    void setSubpatternEnd(MacroAssembler::RegisterID reg, unsigned subpattern)
    {
        ASSERT(subpattern);
        // FIXME: should be able to ASSERT(m_compileMode == JITCompileMode::IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
        m_jit.store32(reg, MacroAssembler::Address(m_regs.output, ((subpattern << 1) + 1) * sizeof(int)));
    }
    void clearSubpatternStart(unsigned subpattern)
    {
        ASSERT(subpattern);
        // FIXME: should be able to ASSERT(m_compileMode == JITCompileMode::IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
        m_jit.store32(MacroAssembler::TrustedImm32(-1), MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(int)));
    }

    // We use one of three different strategies to track the start of the current match,
    // while matching.
    // 1) If the pattern has a fixed size, do nothing! - we calculate the value lazily
    //    at the end of matching. This is irrespective of m_compileMode, and in this case
    //    these methods should never be called.
    // 2) If we're compiling JITCompileMode::IncludeSubpatterns, 'm_regs.output' contains a pointer to an output
    //    vector, store the match start in the output vector.
    // 3) If we're compiling MatchOnly or InlinedTest, 'm_regs.output' is unused, store the match start directly
    //    in this register.
    void setMatchStart(MacroAssembler::RegisterID reg)
    {
        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        if (m_compileMode == JITCompileMode::IncludeSubpatterns)
            m_jit.store32(reg, MacroAssembler::Address(m_regs.output));
        else
            m_jit.move(reg, m_regs.output);
    }
    void getMatchStart(MacroAssembler::RegisterID reg)
    {
        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        if (m_compileMode == JITCompileMode::IncludeSubpatterns)
            m_jit.load32(MacroAssembler::Address(m_regs.output), reg);
        else
            m_jit.move(m_regs.output, reg);
    }

    enum class YarrOpCode : uint8_t {
        // These nodes wrap body alternatives - those in the main disjunction,
        // rather than subpatterns or assertions. These are chained together in
        // a doubly linked list, with a 'begin' node for the first alternative,
        // a 'next' node for each subsequent alternative, and an 'end' node at
        // the end. In the case of repeating alternatives, the 'end' node also
        // has a reference back to 'begin'.
        BodyAlternativeBegin,
        BodyAlternativeNext,
        BodyAlternativeEnd,
        // Similar to the body alternatives, but used for subpatterns with two
        // or more alternatives.
        NestedAlternativeBegin,
        NestedAlternativeNext,
        NestedAlternativeEnd,
        // Used for alternatives in subpatterns where there is only a single
        // alternative (backtracking is easier in these cases), or for alternatives
        // which never need to be backtracked (those in parenthetical assertions,
        // terminal subpatterns).
        SimpleNestedAlternativeBegin,
        SimpleNestedAlternativeNext,
        SimpleNestedAlternativeEnd,
        // Used to wrap 'Once' subpattern matches (quantityMaxCount == 1).
        ParenthesesSubpatternOnceBegin,
        ParenthesesSubpatternOnceEnd,
        // Used to wrap 'Terminal' subpattern matches (at the end of the regexp).
        ParenthesesSubpatternTerminalBegin,
        ParenthesesSubpatternTerminalEnd,
        // Used to wrap generic captured matches
        ParenthesesSubpatternBegin,
        ParenthesesSubpatternEnd,
        // Used to wrap parenthetical assertions.
        ParentheticalAssertionBegin,
        ParentheticalAssertionEnd,
        // Wraps all simple terms (pattern characters, character classes).
        Term,
        // Where an expression contains only 'once through' body alternatives
        // and no repeating ones, this op is used to return match failure.
        MatchFailed
    };

    // This structure is used to hold the compiled opcode information,
    // including reference back to the original PatternTerm/PatternAlternatives,
    // and JIT compilation data structures.
    struct YarrOp {
        explicit YarrOp(PatternTerm* term)
            : m_term(term)
            , m_op(YarrOpCode::Term)
        {
        }

        explicit YarrOp(YarrOpCode op)
            : m_op(op)
        {
        }

        // For alternatives, this holds the PatternAlternative and doubly linked
        // references to this alternative's siblings. In the case of the
        // YarrOpCode::BodyAlternativeEnd node at the end of a section of repeating nodes,
        // m_nextOp will reference the YarrOpCode::BodyAlternativeBegin node of the first
        // repeating alternative.
        PatternAlternative* m_alternative;
        size_t m_previousOp;
        size_t m_nextOp;
        
        // The operation, as a YarrOpCode, and also a reference to the PatternTerm.
        PatternTerm* m_term;
        YarrOpCode m_op;

        // Used to record a set of Jumps out of the generated code, typically
        // used for jumps out to backtracking code, and a single reentry back
        // into the code for a node (likely where a backtrack will trigger
        // rematching).
        MacroAssembler::Label m_reentry;
        MacroAssembler::JumpList m_jumps;

        // Used for backtracking when the prior alternative did not consume any
        // characters but matched.
        MacroAssembler::Jump m_zeroLengthMatch;

        // This flag is used to null out the second pattern character, when
        // two are fused to match a pair together.
        bool m_isDeadCode { false };

        // Currently used in the case of some of the more complex management of
        // 'm_checkedOffset', to cache the offset used in this alternative, to avoid
        // recalculating it.
        Checked<unsigned> m_checkAdjust;

        // This records the current input offset being applied due to the current
        // set of alternatives we are nested within. E.g. when matching the
        // character 'b' within the regular expression /abc/, we will know that
        // the minimum size for the alternative is 3, checked upon entry to the
        // alternative, and that 'b' is at offset 1 from the start, and as such
        // when matching 'b' we need to apply an offset of -2 to the load.
        Checked<unsigned> m_checkedOffset { };

        // Used by YarrOpCode::NestedAlternativeNext/End to hold the pointer to the
        // value that will be pushed into the pattern's frame to return to,
        // upon backtracking back into the disjunction.
        MacroAssembler::DataLabelPtr m_returnAddress;

        BoyerMooreInfo* m_bmInfo { nullptr };
    };

    // BacktrackingState
    // This class encapsulates information about the state of code generation
    // whilst generating the code for backtracking, when a term fails to match.
    // Upon entry to code generation of the backtracking code for a given node,
    // the Backtracking state will hold references to all control flow sources
    // that are outputs in need of further backtracking from the prior node
    // generated (which is the subsequent operation in the regular expression,
    // and in the m_ops Vector, since we generated backtracking backwards).
    // These references to control flow take the form of:
    //  - A jump list of jumps, to be linked to code that will backtrack them
    //    further.
    //  - A set of DataLabelPtr values, to be populated with values to be
    //    treated effectively as return addresses backtracking into complex
    //    subpatterns.
    //  - A flag indicating that the current sequence of generated code up to
    //    this point requires backtracking.
    class BacktrackingState {
    private:
        struct ReturnAddressRecord {
            ReturnAddressRecord(MacroAssembler::DataLabelPtr dataLabel, MacroAssembler::Label backtrackLocation)
                : m_dataLabel(dataLabel)
                , m_backtrackLocation(backtrackLocation)
            {
            }

            MacroAssembler::DataLabelPtr m_dataLabel;
            MacroAssembler::Label m_backtrackLocation;
        };

    public:
        typedef Vector<ReturnAddressRecord, 4> BacktrackRecords;

        BacktrackingState()
            : m_pendingFallthrough(false)
        {
        }

        // Add a jump or jumps, a return address, or set the flag indicating
        // that the current 'fallthrough' control flow requires backtracking.
        void append(const MacroAssembler::Jump& jump)
        {
            m_laterFailures.append(jump);
        }
        void append(MacroAssembler::JumpList& jumpList)
        {
            m_laterFailures.append(jumpList);
        }
        void append(const MacroAssembler::DataLabelPtr& returnAddress)
        {
            m_pendingReturns.append(returnAddress);
        }
        void fallthrough()
        {
            ASSERT(!m_pendingFallthrough);
            m_pendingFallthrough = true;
        }

        // These methods clear the backtracking state, either linking to the
        // current location, a provided label, or copying the backtracking out
        // to a JumpList. All actions may require code generation to take place,
        // and as such are passed a pointer to the assembler.
        void link(MacroAssembler* assembler)
        {
            if (m_pendingReturns.size()) {
                MacroAssembler::Label here(assembler);
                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
                m_pendingReturns.clear();
            }
            m_laterFailures.link(assembler);
            m_laterFailures.clear();
            m_pendingFallthrough = false;
        }
        void linkTo(MacroAssembler::Label label, MacroAssembler* assembler)
        {
            if (m_pendingReturns.size()) {
                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], label));
                m_pendingReturns.clear();
            }
            if (m_pendingFallthrough)
                assembler->jump(label);
            m_laterFailures.linkTo(label, assembler);
            m_laterFailures.clear();
            m_pendingFallthrough = false;
        }
        void takeBacktracksToJumpList(MacroAssembler::JumpList& jumpList, MacroAssembler* assembler)
        {
            if (m_pendingReturns.size()) {
                MacroAssembler::Label here(assembler);
                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
                m_pendingReturns.clear();
                m_pendingFallthrough = true;
            }
            if (m_pendingFallthrough)
                jumpList.append(assembler->jump());
            jumpList.append(m_laterFailures);
            m_laterFailures.clear();
            m_pendingFallthrough = false;
        }

        bool isEmpty()
        {
            return m_laterFailures.empty() && m_pendingReturns.isEmpty() && !m_pendingFallthrough;
        }

        BacktrackRecords& backtrackRecords()
        {
            return m_backtrackRecords;
        }

        static void linkBacktrackRecords(LinkBuffer& linkBuffer, const BacktrackRecords& backtrackRecords)
        {
            for (unsigned i = 0; i < backtrackRecords.size(); ++i)
                linkBuffer.patch(backtrackRecords[i].m_dataLabel, linkBuffer.locationOf<YarrBacktrackPtrTag>(backtrackRecords[i].m_backtrackLocation));
        }

        // Called at the end of code generation to link all return addresses.
        void linkDataLabels(LinkBuffer& linkBuffer)
        {
            ASSERT(isEmpty());
            for (unsigned i = 0; i < m_backtrackRecords.size(); ++i)
                linkBuffer.patch(m_backtrackRecords[i].m_dataLabel, linkBuffer.locationOf<YarrBacktrackPtrTag>(m_backtrackRecords[i].m_backtrackLocation));
        }

    private:
        MacroAssembler::JumpList m_laterFailures;
        bool m_pendingFallthrough;
        Vector<MacroAssembler::DataLabelPtr, 4> m_pendingReturns;
        Vector<ReturnAddressRecord, 4> m_backtrackRecords;
    };

    unsigned offsetForDuplicateNamedGroupId(unsigned duplicateNamedGroupId)
    {
        ASSERT(duplicateNamedGroupId);
        return ((m_pattern.m_numSubpatterns + 1) << 1) + duplicateNamedGroupId - 1;
    }

    // Generation methods:
    // ===================

    // This method provides a default implementation of backtracking common
    // to many terms; terms commonly jump out of the forwards  matching path
    // on any failed conditions, and add these jumps to the m_jumps list. If
    // no special handling is required we can often just backtrack to m_jumps.
    void backtrackTermDefault(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        m_backtrackingState.append(op.m_jumps);
    }

    void generateAssertionBOL(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        if (term->multiline()) {
            const MacroAssembler::RegisterID character = m_regs.regT0;
            const MacroAssembler::RegisterID scratch = m_regs.regT1;

            MacroAssembler::JumpList matchDest;
            if (!term->inputPosition)
                matchDest.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Imm32(op.m_checkedOffset)));

            readCharacter(op.m_checkedOffset - term->inputPosition + 1, character);
            matchCharacterClass(character, scratch, matchDest, m_pattern.newlineCharacterClass());
            op.m_jumps.append(m_jit.jump());

            matchDest.link(&m_jit);
        } else {
            // Erk, really should poison out these alternatives early. :-/
            if (term->inputPosition)
                op.m_jumps.append(m_jit.jump());
            else
                op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, m_regs.index, MacroAssembler::Imm32(op.m_checkedOffset)));
        }
    }
    void backtrackAssertionBOL(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generateAssertionEOL(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        if (term->multiline()) {
            const MacroAssembler::RegisterID character = m_regs.regT0;
            const MacroAssembler::RegisterID scratch = m_regs.regT1;

            MacroAssembler::JumpList matchDest;
            if (term->inputPosition == op.m_checkedOffset)
                matchDest.append(atEndOfInput());

            readCharacter(op.m_checkedOffset - term->inputPosition, character);
            matchCharacterClass(character, scratch, matchDest, m_pattern.newlineCharacterClass());
            op.m_jumps.append(m_jit.jump());

            matchDest.link(&m_jit);
        } else {
            if (term->inputPosition == op.m_checkedOffset)
                op.m_jumps.append(notAtEndOfInput());
            // Erk, really should poison out these alternatives early. :-/
            else
                op.m_jumps.append(m_jit.jump());
        }
    }
    void backtrackAssertionEOL(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    // Also falls though on nextIsNotWordChar.
    void matchAssertionWordchar(size_t opIndex, MacroAssembler::JumpList& nextIsWordChar, MacroAssembler::JumpList& nextIsNotWordChar)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID scratch = m_regs.regT1;

        if (term->inputPosition == op.m_checkedOffset)
            nextIsNotWordChar.append(atEndOfInput());

        readCharacter(op.m_checkedOffset - term->inputPosition, character);

        CharacterClass* wordcharCharacterClass;

        if (m_pattern.eitherUnicode() && term->ignoreCase())
            wordcharCharacterClass = m_pattern.wordUnicodeIgnoreCaseCharCharacterClass();
        else
            wordcharCharacterClass = m_pattern.wordcharCharacterClass();

        matchCharacterClass(character, scratch, nextIsWordChar, wordcharCharacterClass);
    }

    void generateAssertionWordBoundary(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID scratch = m_regs.regT1;

        MacroAssembler::Jump atBegin;
        MacroAssembler::JumpList matchDest;
        if (!term->inputPosition)
            atBegin = m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Imm32(op.m_checkedOffset));
        readCharacter(op.m_checkedOffset - term->inputPosition + 1, character);

        CharacterClass* wordcharCharacterClass;

        if (m_pattern.eitherUnicode() && term->ignoreCase())
            wordcharCharacterClass = m_pattern.wordUnicodeIgnoreCaseCharCharacterClass();
        else
            wordcharCharacterClass = m_pattern.wordcharCharacterClass();

        matchCharacterClass(character, scratch, matchDest, wordcharCharacterClass);
        if (!term->inputPosition)
            atBegin.link(&m_jit);

        // We fall through to here if the last character was not a wordchar.
        MacroAssembler::JumpList nonWordCharThenWordChar;
        MacroAssembler::JumpList nonWordCharThenNonWordChar;
        if (term->invert()) {
            matchAssertionWordchar(opIndex, nonWordCharThenNonWordChar, nonWordCharThenWordChar);
            nonWordCharThenWordChar.append(m_jit.jump());
        } else {
            matchAssertionWordchar(opIndex, nonWordCharThenWordChar, nonWordCharThenNonWordChar);
            nonWordCharThenNonWordChar.append(m_jit.jump());
        }
        op.m_jumps.append(nonWordCharThenNonWordChar);

        // We jump here if the last character was a wordchar.
        matchDest.link(&m_jit);
        MacroAssembler::JumpList wordCharThenWordChar;
        MacroAssembler::JumpList wordCharThenNonWordChar;
        if (term->invert()) {
            matchAssertionWordchar(opIndex, wordCharThenNonWordChar, wordCharThenWordChar);
            wordCharThenWordChar.append(m_jit.jump());
        } else {
            matchAssertionWordchar(opIndex, wordCharThenWordChar, wordCharThenNonWordChar);
            // This can fall-though!
        }

        op.m_jumps.append(wordCharThenWordChar);

        nonWordCharThenWordChar.link(&m_jit);
        wordCharThenNonWordChar.link(&m_jit);
    }

    void backtrackAssertionWordBoundary(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

#if ENABLE(YARR_JIT_BACKREFERENCES)
    void matchBackreference(size_t opIndex, MacroAssembler::JumpList& characterMatchFails, MacroAssembler::RegisterID character, MacroAssembler::RegisterID patternIndex, MacroAssembler::RegisterID patternCharacter, MacroAssembler::RegisterID subpatternIdReg)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        unsigned subpatternId = term->backReferenceSubpatternId;
        unsigned duplicateNamedGroupId = m_pattern.hasDuplicateNamedCaptureGroups() ? m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId] : 0;

        MacroAssembler::Label loop(&m_jit);

#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
        if (!m_decodeSurrogatePairs)
            readCharacter(0, patternCharacter, patternIndex);
        else {
            // For reading Unicode characters, use the standard resultReg so we can call the standard tryReadUnicodeChar()
            // helper instead of emitting an inlined version.
            readCharacter(op.m_checkedOffset - term->inputPosition, character, patternIndex);
            m_jit.move(character, patternCharacter);
        }
#else
        readCharacter(0, patternCharacter, patternIndex);
#endif
        readCharacter(op.m_checkedOffset - term->inputPosition, character);
    
        if (!term->ignoreCase()) {
            characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(errorCodePoint)));
            characterMatchFails.append(m_jit.branch32(MacroAssembler::NotEqual, character, patternCharacter));
        } else if (m_charSize == CharSize::Char8) {
            MacroAssembler::Jump charactersMatch = m_jit.branch32(MacroAssembler::Equal, character, patternCharacter);
            MacroAssembler::ExtendedAddress characterTableEntry(character, reinterpret_cast<intptr_t>(&canonicalTableLChar));
            m_jit.load16(characterTableEntry, character);
            MacroAssembler::ExtendedAddress patternTableEntry(patternCharacter, reinterpret_cast<intptr_t>(&canonicalTableLChar));
            m_jit.load16(patternTableEntry, patternCharacter);
            characterMatchFails.append(m_jit.branch32(MacroAssembler::NotEqual, character, patternCharacter));
            charactersMatch.link(&m_jit);
        }
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
        else {
            // 16 Bit ignore case matching.
            RELEASE_ASSERT(character == areCanonicallyEquivalentCharArgReg);
            RELEASE_ASSERT(patternCharacter == areCanonicallyEquivalentPattCharArgReg);
            RELEASE_ASSERT(m_regs.regUnicodeInputAndTrail == areCanonicallyEquivalentCanonicalModeArgReg);
            ASSERT(m_decode16BitForBackreferencesWithCalls);

            // Fail matching for dangling surrogates.
            characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(errorCodePoint)));
            characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, patternCharacter, MacroAssembler::TrustedImm32(errorCodePoint)));

            MacroAssembler::JumpList charactersMatch;
            charactersMatch.append(m_jit.branch32(MacroAssembler::Equal, character, patternCharacter));
            MacroAssembler::Jump notASCII = m_jit.branch32(MacroAssembler::GreaterThan, character, MacroAssembler::TrustedImm32(127));
            // The ASCII part of canonicalTableLChar works for UCS2 and Unicode patterns.
            MacroAssembler::ExtendedAddress characterTableEntry(character, reinterpret_cast<intptr_t>(&canonicalTableLChar));
            m_jit.load16(characterTableEntry, character);
            MacroAssembler::ExtendedAddress patternTableEntry(patternCharacter, reinterpret_cast<intptr_t>(&canonicalTableLChar));
            m_jit.load16(patternTableEntry, patternCharacter);
            characterMatchFails.append(m_jit.branch32(MacroAssembler::NotEqual, character, patternCharacter));
            charactersMatch.append(m_jit.jump());

            notASCII.link(&m_jit);
            // We are safe to use the regUnicodeInputAndTrail register as an argument since it
            // is only used when reading unicode characters.
            int32_t canonicalMode = static_cast<int32_t>(m_decodeSurrogatePairs ? CanonicalMode::Unicode : CanonicalMode::UCS2);
            m_jit.move(MacroAssembler::TrustedImm32(canonicalMode), areCanonicallyEquivalentCanonicalModeArgReg);

            m_jit.nearCallThunk(CodeLocationLabel { m_vm->getCTIStub(CommonJITThunkID::AreCanonicallyEquivalent).retaggedCode<NoPtrTag>() });

            // Match return as a bool in character reg.
            characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(0)));
            // Add code to compare non-ASCII Unicode codepoints.
            charactersMatch.link(&m_jit);
        }
#endif

        m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
        m_jit.add32(MacroAssembler::TrustedImm32(1), patternIndex);

        if (m_decodeSurrogatePairs) {
            auto isBMPChar = m_jit.branch32(MacroAssembler::LessThan, patternCharacter, m_regs.supplementaryPlanesBase);
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
            m_jit.add32(MacroAssembler::TrustedImm32(1), patternIndex);
            isBMPChar.link(&m_jit);
        }

        if (!!duplicateNamedGroupId) {
            MacroAssembler::RegisterID endIndex = character; // We can reuse the character register here as we already matched.

            if (subpatternIdReg == InvalidGPRReg) {
                subpatternIdReg = m_regs.unicodeAndSubpatternIdTemp;
                m_jit.load32(MacroAssembler::Address(m_regs.output, offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned)), subpatternIdReg);
            }
            loadSubPatternEnd(m_regs.output, subpatternIdReg, endIndex);
            m_jit.branch32(MacroAssembler::NotEqual, patternIndex, endIndex).linkTo(loop, &m_jit);
        } else
            m_jit.branch32(MacroAssembler::NotEqual, patternIndex, MacroAssembler::Address(m_regs.output, ((subpatternId << 1) + 1) * sizeof(int))).linkTo(loop, &m_jit);
    }

    void generateBackReference(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

#if !ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
        if (term->ignoreCase() && m_charSize != CharSize::Char8) {
            m_failureReason = JITFailureReason::BackReference;
            return;
        }
#endif

        unsigned subpatternId = term->backReferenceSubpatternId;
        unsigned duplicateNamedGroupId = m_pattern.hasDuplicateNamedCaptureGroups() ? m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId] : 0;
        unsigned parenthesesFrameLocation = term->frameLocation;

        const MacroAssembler::RegisterID characterOrTemp = m_regs.regT0;
        const MacroAssembler::RegisterID patternTemp = m_regs.regT1;
        const MacroAssembler::RegisterID patternIndex = m_regs.regT2;

        MacroAssembler::RegisterID subpatternIdReg = InvalidGPRReg;

        storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex());
        if (term->quantityType != QuantifierType::FixedCount || term->quantityMaxCount != 1)
            storeToFrame(MacroAssembler::TrustedImm32(0), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());

        MacroAssembler::JumpList matches;

        if (term->quantityType != QuantifierType::NonGreedy) {
            MacroAssembler::JumpList zeroLengthMatches;

            if (duplicateNamedGroupId) {
                if (!m_decodeSurrogatePairs)
                    subpatternIdReg  = m_regs.unicodeAndSubpatternIdTemp;
                else
                    subpatternIdReg  = patternTemp;

                loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
                MacroAssembler::Jump emptySubpattern = m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(0), subpatternIdReg);
                if (term->quantityType != QuantifierType::FixedCount || term->quantityMaxCount != 1) {
                    // This is an empty match, which is successful.
                    matches.append(emptySubpattern);
                } else
                    zeroLengthMatches.append(emptySubpattern);

                loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
            } else
                loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);

            // An empty match is successful without consuming characters
            if (term->quantityType != QuantifierType::FixedCount || term->quantityMaxCount != 1) {
                matches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(-1), patternIndex));
                matches.append(m_jit.branch32(MacroAssembler::Equal, patternIndex, patternTemp));
            } else {
                zeroLengthMatches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(-1), patternIndex));
                MacroAssembler::Jump tryNonZeroMatch = m_jit.branch32(MacroAssembler::NotEqual, patternIndex, patternTemp);
                zeroLengthMatches.link(&m_jit);
                storeToFrame(MacroAssembler::TrustedImm32(1), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
                if (term->quantityType == QuantifierType::Greedy)
                    storeToFrame(MacroAssembler::TrustedImm32(0), parenthesesFrameLocation + BackTrackInfoBackReference::backReferenceSizeIndex());
                matches.append(m_jit.jump());
                tryNonZeroMatch.link(&m_jit);
            }
        }

        switch (term->quantityType) {
        case QuantifierType::FixedCount: {
            MacroAssembler::Label outerLoop(&m_jit);

            // PatternTemp should contain pattern end index at this point. Compute pattern size.
            m_jit.sub32(patternIndex, patternTemp);
            op.m_jumps.append(checkNotEnoughInput(patternTemp));

            matchBackreference(opIndex, op.m_jumps, characterOrTemp, patternIndex, patternTemp, subpatternIdReg == m_regs.unicodeAndSubpatternIdTemp ? subpatternIdReg : InvalidGPRReg);

            if (term->quantityMaxCount != 1) {
                loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), characterOrTemp);
                m_jit.add32(MacroAssembler::TrustedImm32(1), characterOrTemp);
                storeToFrame(characterOrTemp, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
                matches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::Imm32(term->quantityMaxCount), characterOrTemp));
                if (duplicateNamedGroupId) {
                    if (m_decodeSurrogatePairs)
                        loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
                    // At this point, we have already checked that subpatternIdReg has a valid subpatternId.
                    loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
                } else
                    loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);
                m_jit.jump(outerLoop);
            }
            matches.link(&m_jit);

            storeToFrame(MacroAssembler::TrustedImm32(1), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
            break;
        }

        case QuantifierType::Greedy: {
            MacroAssembler::JumpList incompleteMatches;

            MacroAssembler::Label outerLoop(&m_jit);

            // PatternTemp should contain pattern end index at this point. Compute pattern size.
            m_jit.sub32(patternIndex, patternTemp);
            storeToFrame(patternTemp, parenthesesFrameLocation + BackTrackInfoBackReference::backReferenceSizeIndex());

            matches.append(checkNotEnoughInput(patternTemp));

            matchBackreference(opIndex, incompleteMatches, characterOrTemp, patternIndex, patternTemp, subpatternIdReg == m_regs.unicodeAndSubpatternIdTemp ? subpatternIdReg : InvalidGPRReg);

            loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), characterOrTemp);
            m_jit.add32(MacroAssembler::TrustedImm32(1), characterOrTemp);
            storeToFrame(characterOrTemp, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
            if (term->quantityMaxCount != quantifyInfinite)
                matches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::Imm32(term->quantityMaxCount), characterOrTemp));
            if (duplicateNamedGroupId) {
                if (m_decodeSurrogatePairs)
                    loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
                // At this point, we have already checked that subpatternIdReg has a valid subpatternId.
                loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
            } else
                loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);

            // Store current index in frame for restoring after a partial match
            storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex());
            m_jit.jump(outerLoop);

            incompleteMatches.link(&m_jit);
            loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex(), m_regs.index);

            matches.link(&m_jit);
            op.m_reentry = m_jit.label();
            break;
        }

        case QuantifierType::NonGreedy: {
            MacroAssembler::JumpList incompleteMatches;
            MacroAssembler::JumpList zeroLengthMatches;

            matches.append(m_jit.jump());

            op.m_reentry = m_jit.label();

            if (duplicateNamedGroupId) {
                if (!m_decodeSurrogatePairs)
                    subpatternIdReg  = m_regs.unicodeAndSubpatternIdTemp;
                else
                    subpatternIdReg  = patternTemp;

                loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
                zeroLengthMatches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(0), subpatternIdReg));

                loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
            } else
                loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);

            // An empty match is successful without consuming characters
            zeroLengthMatches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(-1), patternIndex));
            MacroAssembler::Jump tryNonZeroMatch = m_jit.branch32(MacroAssembler::NotEqual, patternIndex, patternTemp);
            zeroLengthMatches.link(&m_jit);
            storeToFrame(MacroAssembler::TrustedImm32(1), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
            matches.append(m_jit.jump());
            tryNonZeroMatch.link(&m_jit);

            // Check if we have input remaining to match
            m_jit.sub32(patternIndex, patternTemp);
            matches.append(checkNotEnoughInput(patternTemp));

            storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex());

            matchBackreference(opIndex, incompleteMatches, characterOrTemp, patternIndex, patternTemp, subpatternIdReg == m_regs.unicodeAndSubpatternIdTemp ? subpatternIdReg : InvalidGPRReg);

            matches.append(m_jit.jump());

            incompleteMatches.link(&m_jit);
            loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex(), m_regs.index);

            matches.link(&m_jit);
            break;
        }
        }
    }
    void backtrackBackReference(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        m_backtrackingState.link(&m_jit);
        op.m_jumps.link(&m_jit);

        MacroAssembler::JumpList failures;

        unsigned parenthesesFrameLocation = term->frameLocation;
        switch (term->quantityType) {
        case QuantifierType::FixedCount:
            loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex(), m_regs.index);
            break;

        case QuantifierType::Greedy: {
            const MacroAssembler::RegisterID matchAmount = m_regs.regT0;
            const MacroAssembler::RegisterID matchSize = m_regs.regT1;

            loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), matchAmount);
            failures.append(m_jit.branchTest32(MacroAssembler::Zero, matchAmount));

            loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::backReferenceSizeIndex(), matchSize);
            m_jit.sub32(matchSize, m_regs.index);

            m_jit.sub32(MacroAssembler::TrustedImm32(1), matchAmount);
            storeToFrame(matchAmount, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
            m_jit.jump(op.m_reentry);
            break;
        }

        case QuantifierType::NonGreedy: {
            const MacroAssembler::RegisterID matchAmount = m_regs.regT0;

            failures.append(atEndOfInput());
            loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), matchAmount);
            if (term->quantityMaxCount != quantifyInfinite)
                failures.append(m_jit.branch32(MacroAssembler::AboveOrEqual, MacroAssembler::Imm32(term->quantityMaxCount), matchAmount));
            m_jit.add32(MacroAssembler::TrustedImm32(1), matchAmount);
            storeToFrame(matchAmount, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
            m_jit.jump(op.m_reentry);
            break;
        }
        }
        failures.link(&m_jit);
        m_backtrackingState.fallthrough();
    }
#endif

    void generatePatternCharacterOnce(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];

        if (op.m_isDeadCode)
            return;
        
        // m_ops always ends with a YarrOpCode::BodyAlternativeEnd or YarrOpCode::MatchFailed
        // node, so there must always be at least one more node.
        ASSERT(opIndex + 1 < m_ops.size());
        YarrOp* nextOp = &m_ops[opIndex + 1];

        PatternTerm* term = op.m_term;
        char32_t ch = term->patternCharacter;

        if (!isLatin1(ch) && (m_charSize == CharSize::Char8)) {
            // Have a 16 bit pattern character and an 8 bit string - short circuit
            op.m_jumps.append(m_jit.jump());
            return;
        }

        const MacroAssembler::RegisterID character = m_regs.regT0;
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
        unsigned maxCharactersAtOnce = m_charSize == CharSize::Char8 ? 8 : 4;
#else
        unsigned maxCharactersAtOnce = m_charSize == CharSize::Char8 ? 4 : 2;
#endif
        uint64_t ignoreCaseMask = 0;
#if CPU(BIG_ENDIAN)
        uint64_t allCharacters = ch << (m_charSize == CharSize::Char8 ? 24 : 16);
#else
        uint64_t allCharacters = ch;
#endif
        unsigned numberCharacters;
        unsigned startTermPosition = term->inputPosition;

        // For case-insesitive compares, non-ascii characters that have different
        // upper & lower case representations are converted to a character class.
        ASSERT(!op.m_term->ignoreCase() || isASCIIAlpha(ch) || isCanonicallyUnique(ch, m_canonicalMode));

        if (op.m_term->ignoreCase() && isASCIIAlpha(ch)) {
#if CPU(BIG_ENDIAN)
            ignoreCaseMask |= 32 << (m_charSize == CharSize::Char8 ? 24 : 16);
#else
            ignoreCaseMask |= 32;
#endif
        }

        for (numberCharacters = 1; numberCharacters < maxCharactersAtOnce && nextOp->m_op == YarrOpCode::Term; ++numberCharacters, nextOp = &m_ops[opIndex + numberCharacters]) {
            PatternTerm* nextTerm = nextOp->m_term;

            // YarrJIT handles decoded surrogate pair as one character if unicode flag is enabled.
            // Note that the numberCharacters become 1 while the width of the pattern character becomes 32bit in this case.
            if (nextTerm->type != PatternTerm::Type::PatternCharacter
                || nextTerm->quantityType != QuantifierType::FixedCount
                || nextTerm->quantityMaxCount != 1
                || nextTerm->inputPosition != (startTermPosition + numberCharacters)
                || (U16_LENGTH(nextTerm->patternCharacter) != 1 && m_decodeSurrogatePairs))
                break;

            nextOp->m_isDeadCode = true;

#if CPU(BIG_ENDIAN)
            int shiftAmount = (m_charSize == CharSize::Char8 ? 24 : 16) - ((m_charSize == CharSize::Char8 ? 8 : 16) * numberCharacters);
#else
            int shiftAmount = (m_charSize == CharSize::Char8 ? 8 : 16) * numberCharacters;
#endif

            char32_t currentCharacter = nextTerm->patternCharacter;

            if (!isLatin1(currentCharacter) && (m_charSize == CharSize::Char8)) {
                // Have a 16 bit pattern character and an 8 bit string - short circuit
                op.m_jumps.append(m_jit.jump());
                return;
            }

            // For case-insesitive compares, non-ascii characters that have different
            // upper & lower case representations are converted to a character class.
            ASSERT(!op.m_term->ignoreCase() || isASCIIAlpha(currentCharacter) || isCanonicallyUnique(currentCharacter, m_canonicalMode));

            allCharacters |= (static_cast<uint64_t>(currentCharacter) << shiftAmount);

            if (op.m_term->ignoreCase() && isASCIIAlpha(currentCharacter))
                ignoreCaseMask |= 32ULL << shiftAmount;
        }

#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
        if (m_useFirstNonBMPCharacterOptimization && numberCharacters > 1) {
            // If we are going to try matching more than one character at a time,
            // we advance one character at a time as normal.
            m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.firstCharacterAdditionalReadSize);
        }
#endif

        if (m_decodeSurrogatePairs)
            op.m_jumps.append(jumpIfNoAvailableInput());

        if (m_charSize == CharSize::Char8) {
            auto check1 = [&] (Checked<unsigned> offset, char32_t characters) {
                op.m_jumps.append(jumpIfCharNotEquals(characters, offset, character, term->ignoreCase()));
            };

            auto check2 = [&] (Checked<unsigned> offset, uint16_t characters, uint16_t mask) {
                m_jit.load16Unaligned(negativeOffsetIndexedAddress(offset, character), character);
                if (mask)
                    m_jit.or32(MacroAssembler::Imm32(mask), character);
                op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(characters | mask)));
            };

            auto check4 = [&] (Checked<unsigned> offset, unsigned characters, unsigned mask) {
                if (mask) {
                    m_jit.load32WithUnalignedHalfWords(negativeOffsetIndexedAddress(offset, character), character);
                    if (mask)
                        m_jit.or32(MacroAssembler::Imm32(mask), character);
                    op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(characters | mask)));
                    return;
                }
                op.m_jumps.append(m_jit.branch32WithUnalignedHalfWords(MacroAssembler::NotEqual, negativeOffsetIndexedAddress(offset, character), MacroAssembler::TrustedImm32(characters)));
            };

#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
            auto check8 = [&] (Checked<unsigned> offset, uint64_t characters, uint64_t mask) {
                m_jit.load64(negativeOffsetIndexedAddress(offset, character), character);
                if (mask)
                    m_jit.or64(MacroAssembler::TrustedImm64(mask), character);
                op.m_jumps.append(m_jit.branch64(MacroAssembler::NotEqual, character, MacroAssembler::TrustedImm64(characters | mask)));
            };
#endif

            switch (numberCharacters) {
            case 1:
                // Use 32bit width of allCharacters since Yarr counts surrogate pairs as one character with unicode flag.
                check1(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff);
                return;
            case 2: {
                check2(op.m_checkedOffset - startTermPosition, allCharacters & 0xffff, ignoreCaseMask & 0xffff);
                return;
            }
            case 3: {
                check2(op.m_checkedOffset - startTermPosition, allCharacters & 0xffff, ignoreCaseMask & 0xffff);
                check1(op.m_checkedOffset - startTermPosition - 2, (allCharacters >> 16) & 0xff);
                return;
            }
            case 4: {
                check4(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff, ignoreCaseMask & 0xffffffff);
                return;
            }
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
            case 5: {
                check4(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff, ignoreCaseMask & 0xffffffff);
                check1(op.m_checkedOffset - startTermPosition - 4, (allCharacters >> 32) & 0xff);
                return;
            }
            case 6: {
                check4(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff, ignoreCaseMask & 0xffffffff);
                check2(op.m_checkedOffset - startTermPosition - 4, (allCharacters >> 32) & 0xffff, (ignoreCaseMask >> 32) & 0xffff);
                return;
            }
            case 7: {
                check4(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff, ignoreCaseMask & 0xffffffff);
                check2(op.m_checkedOffset - startTermPosition - 4, (allCharacters >> 32) & 0xffff, (ignoreCaseMask >> 32) & 0xffff);
                check1(op.m_checkedOffset - startTermPosition - 6, (allCharacters >> 48) & 0xff);
                return;
            }
            case 8: {
                check8(op.m_checkedOffset - startTermPosition, allCharacters, ignoreCaseMask);
                return;
            }
#endif
            }
        } else {
            auto check1 = [&] (Checked<unsigned> offset, char32_t characters) {
                op.m_jumps.append(jumpIfCharNotEquals(characters, offset, character, term->ignoreCase()));
            };

            auto check2 = [&] (Checked<unsigned> offset, unsigned characters, unsigned mask) {
                if (mask) {
                    m_jit.load32WithUnalignedHalfWords(negativeOffsetIndexedAddress(offset, character), character);
                    if (mask)
                        m_jit.or32(MacroAssembler::Imm32(mask), character);
                    op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(characters | mask)));
                    return;
                }
                op.m_jumps.append(m_jit.branch32WithUnalignedHalfWords(MacroAssembler::NotEqual, negativeOffsetIndexedAddress(offset, character), MacroAssembler::TrustedImm32(characters)));
            };

#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
            auto check4 = [&] (Checked<unsigned> offset, uint64_t characters, uint64_t mask) {
                m_jit.load64(negativeOffsetIndexedAddress(offset, character), character);
                if (mask)
                    m_jit.or64(MacroAssembler::TrustedImm64(mask), character);
                op.m_jumps.append(m_jit.branch64(MacroAssembler::NotEqual, character, MacroAssembler::TrustedImm64(characters | mask)));
            };
#endif

            switch (numberCharacters) {
            case 1:
                // Use 32bit width of allCharacters since Yarr counts surrogate pairs as one character with unicode flag.
                check1(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff);
                return;
            case 2:
                check2(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff, ignoreCaseMask & 0xffffffff);
                return;
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
            case 3:
                check2(op.m_checkedOffset - startTermPosition, allCharacters & 0xffffffff, ignoreCaseMask & 0xffffffff);
                check1(op.m_checkedOffset - startTermPosition - 2, (allCharacters >> 32) & 0xffff);
                return;
            case 4:
                check4(op.m_checkedOffset - startTermPosition, allCharacters, ignoreCaseMask);
                return;
#endif
            }
        }
    }
    void backtrackPatternCharacterOnce(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generatePatternCharacterFixed(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        char32_t ch = term->patternCharacter;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID countRegister = m_regs.regT1;

        if (m_decodeSurrogatePairs)
            op.m_jumps.append(jumpIfNoAvailableInput());

        Checked<unsigned> scaledMaxCount = term->quantityMaxCount;
        scaledMaxCount *= U_IS_BMP(ch) ? 1 : 2;
        m_jit.sub32(m_regs.index, MacroAssembler::Imm32(scaledMaxCount), countRegister);

        MacroAssembler::Label loop(&m_jit);
        readCharacter(op.m_checkedOffset - term->inputPosition - scaledMaxCount, character, countRegister);
        // For case-insesitive compares, non-ascii characters that have different
        // upper & lower case representations are converted to a character class.
        ASSERT(!term->ignoreCase() || isASCIIAlpha(ch) || isCanonicallyUnique(ch, m_canonicalMode));
        if (term->ignoreCase() && isASCIIAlpha(ch)) {
            m_jit.or32(MacroAssembler::TrustedImm32(0x20), character);
            ch |= 0x20;
        }

        op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(ch)));
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs && !U_IS_BMP(ch))
            m_jit.add32(MacroAssembler::TrustedImm32(2), countRegister);
        else
#endif
            m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
        m_jit.branch32(MacroAssembler::NotEqual, countRegister, m_regs.index).linkTo(loop, &m_jit);
    }
    void backtrackPatternCharacterFixed(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generatePatternCharacterGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        char32_t ch = term->patternCharacter;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID countRegister = m_regs.regT1;

        m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);

        // Unless have a 16 bit pattern character and an 8 bit string - short circuit
        if (!(!isLatin1(ch) && (m_charSize == CharSize::Char8))) {
            MacroAssembler::JumpList failures;
            MacroAssembler::Label loop(&m_jit);
            failures.append(atEndOfInput());
            failures.append(jumpIfCharNotEquals(ch, op.m_checkedOffset - term->inputPosition, character, term->ignoreCase()));

            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
            if (m_decodeSurrogatePairs && !U_IS_BMP(ch)) {
                MacroAssembler::Jump surrogatePairOk = notAtEndOfInput();
                m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
                failures.append(m_jit.jump());
                surrogatePairOk.link(&m_jit);
                m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
            }
#endif
            m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);

            if (term->quantityMaxCount == quantifyInfinite)
                m_jit.jump(loop);
            else
                m_jit.branch32(MacroAssembler::NotEqual, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)).linkTo(loop, &m_jit);

            failures.link(&m_jit);
        }
        op.m_reentry = m_jit.label();

        storeToFrame(countRegister, term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex());
    }
    void backtrackPatternCharacterGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID countRegister = m_regs.regT1;

        m_backtrackingState.link(&m_jit);

        loadFromFrame(term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex(), countRegister);
        m_backtrackingState.append(m_jit.branchTest32(MacroAssembler::Zero, countRegister));
        m_jit.sub32(MacroAssembler::TrustedImm32(1), countRegister);
        if (!m_decodeSurrogatePairs || U_IS_BMP(term->patternCharacter))
            m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
        else
            m_jit.sub32(MacroAssembler::TrustedImm32(2), m_regs.index);
        m_jit.jump(op.m_reentry);
    }

    void generatePatternCharacterNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID countRegister = m_regs.regT1;

        m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);
        op.m_reentry = m_jit.label();
        storeToFrame(countRegister, term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex());
    }
    void backtrackPatternCharacterNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        char32_t ch = term->patternCharacter;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID countRegister = m_regs.regT1;

        m_backtrackingState.link(&m_jit);

        loadFromFrame(term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex(), countRegister);

        // Unless have a 16 bit pattern character and an 8 bit string - short circuit
        if (!(!isLatin1(ch) && (m_charSize == CharSize::Char8))) {
            MacroAssembler::JumpList nonGreedyFailures;
            nonGreedyFailures.append(atEndOfInput());
            if (term->quantityMaxCount != quantifyInfinite)
                nonGreedyFailures.append(m_jit.branch32(MacroAssembler::Equal, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)));
            nonGreedyFailures.append(jumpIfCharNotEquals(ch, op.m_checkedOffset - term->inputPosition, character, term->ignoreCase()));

            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
            if (m_decodeSurrogatePairs && !U_IS_BMP(ch)) {
                MacroAssembler::Jump surrogatePairOk = notAtEndOfInput();
                m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
                nonGreedyFailures.append(m_jit.jump());
                surrogatePairOk.link(&m_jit);
                m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
            }
#endif
            m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);

            m_jit.jump(op.m_reentry);
            nonGreedyFailures.link(&m_jit);
        }

        if (m_decodeSurrogatePairs && !U_IS_BMP(ch)) {
            // subtract countRegister*2 for non-BMP characters
            m_jit.lshift32(MacroAssembler::TrustedImm32(1), countRegister);
        }

        m_jit.sub32(countRegister, m_regs.index);
        m_backtrackingState.fallthrough();
    }

    void generateCharacterClassOnce(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID scratch = m_regs.regT1;

        if (m_decodeSurrogatePairs) {
            op.m_jumps.append(jumpIfNoAvailableInput());
            storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoCharacterClass::beginIndex());
        }

        readCharacter(op.m_checkedOffset - term->inputPosition, character);

        matchCharacterClassTermInner(term, op.m_jumps, character, scratch);

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs && (!term->characterClass->hasOneCharacterSize() || term->invert())) {
            MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, m_regs.supplementaryPlanesBase);
            op.m_jumps.append(atEndOfInput());
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
            isBMPChar.link(&m_jit);
        }
#endif
    }

    void backtrackCharacterClassOnce(size_t opIndex, bool fallThroughToCharacterClassFixedCount)
    {
        UNUSED_PARAM(fallThroughToCharacterClassFixedCount);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs) {
            YarrOp& op = m_ops[opIndex];
            PatternTerm* term = op.m_term;

            m_backtrackingState.link(&m_jit);
            // If we fallthough to the same CharacterClassOnce, we will override this index register, so we do not need to load here.
            if (!fallThroughToCharacterClassFixedCount)
                loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::beginIndex(), m_regs.index);
            m_backtrackingState.fallthrough();
        }
#endif
        backtrackTermDefault(opIndex);
    }

    void generateCharacterClassFixed(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID countRegister = m_regs.regT1;
        const MacroAssembler::RegisterID scratch = m_regs.regT2;
        m_usesT2 = true;

        if (m_decodeSurrogatePairs)
            op.m_jumps.append(jumpIfNoAvailableInput());

        Checked<unsigned> scaledMaxCount = term->quantityMaxCount;
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs && term->characterClass->hasOnlyNonBMPCharacters() && !term->invert())
            scaledMaxCount *= 2;
#endif
        m_jit.sub32(m_regs.index, MacroAssembler::Imm32(scaledMaxCount), countRegister);

        MacroAssembler::Label loop(&m_jit);
        readCharacter(op.m_checkedOffset - term->inputPosition - scaledMaxCount, character, countRegister);

        matchCharacterClassTermInner(term, op.m_jumps, character, scratch);

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs) {
            if (term->isFixedWidthCharacterClass())
                m_jit.add32(MacroAssembler::TrustedImm32(term->characterClass->hasNonBMPCharacters() ? 2 : 1), countRegister);
            else {
                m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
                MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, m_regs.supplementaryPlanesBase);
                op.m_jumps.append(atEndOfInput());
                m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
                m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
                isBMPChar.link(&m_jit);
            }
        } else
#endif
            m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
        m_jit.branch32(MacroAssembler::NotEqual, countRegister, m_regs.index).linkTo(loop, &m_jit);
    }
    void backtrackCharacterClassFixed(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generateCharacterClassGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID countRegister = m_regs.regT1;
        const MacroAssembler::RegisterID scratch = m_regs.regT2;
        m_usesT2 = true;

        if (m_decodeSurrogatePairs && (!term->characterClass->hasOneCharacterSize() || term->invert()))
            storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoCharacterClass::beginIndex());
        m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);

        MacroAssembler::JumpList failures;
        MacroAssembler::JumpList failuresDecrementIndex;
        MacroAssembler::Label loop(&m_jit);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (term->isFixedWidthCharacterClass() && term->characterClass->hasNonBMPCharacters()) {
            m_jit.move(MacroAssembler::TrustedImm32(1), character);
            failures.append(checkNotEnoughInput(character));
        } else
#endif
            failures.append(atEndOfInput());

        readCharacter(op.m_checkedOffset - term->inputPosition, character);

        matchCharacterClassTermInner(term, failures, character, scratch);

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs)
            advanceIndexAfterCharacterClassTermMatch(term, failuresDecrementIndex, character);
        else
#endif
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
        m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);

        if (term->quantityMaxCount != quantifyInfinite) {
            m_jit.branch32(MacroAssembler::NotEqual, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)).linkTo(loop, &m_jit);
            failures.append(m_jit.jump());
        } else
            m_jit.jump(loop);

        if (!failuresDecrementIndex.empty()) {
            failuresDecrementIndex.link(&m_jit);
            m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
        }

        failures.link(&m_jit);
        op.m_reentry = m_jit.label();

        storeToFrame(countRegister, term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex());
    }
    void backtrackCharacterClassGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID countRegister = m_regs.regT1;

        m_backtrackingState.link(&m_jit);

        loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex(), countRegister);
        m_backtrackingState.append(m_jit.branchTest32(MacroAssembler::Zero, countRegister));
        m_jit.sub32(MacroAssembler::TrustedImm32(1), countRegister);
        storeToFrame(countRegister, term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex());

        if (!m_decodeSurrogatePairs)
            m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
        else if (term->isFixedWidthCharacterClass())
            m_jit.sub32(MacroAssembler::TrustedImm32(term->characterClass->hasNonBMPCharacters() ? 2 : 1), m_regs.index);
        else {
            // Rematch one less
            const MacroAssembler::RegisterID character = m_regs.regT0;

            loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::beginIndex(), m_regs.index);

            MacroAssembler::Label rematchLoop(&m_jit);
            MacroAssembler::Jump doneRematching = m_jit.branchTest32(MacroAssembler::Zero, countRegister);

            readCharacter(op.m_checkedOffset - term->inputPosition, character);

            m_jit.sub32(MacroAssembler::TrustedImm32(1), countRegister);
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
            MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, m_regs.supplementaryPlanesBase);
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
            isBMPChar.link(&m_jit);
#endif

            m_jit.jump(rematchLoop);
            doneRematching.link(&m_jit);

            loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex(), countRegister);
        }
        m_jit.jump(op.m_reentry);
    }

    void generateCharacterClassNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID countRegister = m_regs.regT1;

        m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs)
            storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoCharacterClass::beginIndex());
#endif

        op.m_reentry = m_jit.label();

        storeToFrame(countRegister, term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex());
    }

    void backtrackCharacterClassNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID countRegister = m_regs.regT1;
        const MacroAssembler::RegisterID scratch = m_regs.regT2;
        m_usesT2 = true;

        MacroAssembler::JumpList nonGreedyFailures;
        MacroAssembler::JumpList nonGreedyFailuresDecrementIndex;

        m_backtrackingState.link(&m_jit);

        loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex(), countRegister);

        nonGreedyFailures.append(atEndOfInput());
        nonGreedyFailures.append(m_jit.branch32(MacroAssembler::Equal, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)));

        readCharacter(op.m_checkedOffset - term->inputPosition, character);

        matchCharacterClassTermInner(term, nonGreedyFailures, character, scratch);

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs)
            advanceIndexAfterCharacterClassTermMatch(term, nonGreedyFailuresDecrementIndex, character);
        else
#endif
            m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
        m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);

        m_jit.jump(op.m_reentry);

        if (!nonGreedyFailuresDecrementIndex.empty()) {
            nonGreedyFailuresDecrementIndex.link(&m_jit);
            m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
        }
        nonGreedyFailures.link(&m_jit);

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs)
            loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::beginIndex(), m_regs.index);
        else
#endif
            m_jit.sub32(countRegister, m_regs.index);
        m_backtrackingState.fallthrough();
    }

    void generateDotStarEnclosure(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const MacroAssembler::RegisterID character = m_regs.regT0;
        const MacroAssembler::RegisterID matchPos = m_regs.regT1;
        const MacroAssembler::RegisterID scratch = m_regs.regT2;
        m_usesT2 = true;

        MacroAssembler::JumpList foundBeginningNewLine;
        MacroAssembler::JumpList saveStartIndex;
        MacroAssembler::JumpList foundEndingNewLine;

        if (term->dotAll()) {
            m_jit.move(MacroAssembler::TrustedImm32(0), matchPos);
            setMatchStart(matchPos);
            m_jit.move(m_regs.length, m_regs.index);
            return;
        }

        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        getMatchStart(matchPos);

        saveStartIndex.append(m_jit.branch32(MacroAssembler::BelowOrEqual, matchPos, m_regs.initialStart));
        MacroAssembler::Label findBOLLoop(&m_jit);
        m_jit.sub32(MacroAssembler::TrustedImm32(1), matchPos);
        if (m_charSize == CharSize::Char8)
            m_jit.load8(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesOne, 0), character);
        else
            m_jit.load16(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesTwo, 0), character);
        matchCharacterClass(character, scratch, foundBeginningNewLine, m_pattern.newlineCharacterClass());

        m_jit.branch32(MacroAssembler::Above, matchPos, m_regs.initialStart).linkTo(findBOLLoop, &m_jit);
        saveStartIndex.append(m_jit.jump());

        foundBeginningNewLine.link(&m_jit);
        m_jit.add32(MacroAssembler::TrustedImm32(1), matchPos); // Advance past newline
        saveStartIndex.link(&m_jit);

        if (!term->multiline() && term->anchors.bolAnchor)
            op.m_jumps.append(m_jit.branchTest32(MacroAssembler::NonZero, matchPos));

        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        setMatchStart(matchPos);

        m_jit.move(m_regs.index, matchPos);

        MacroAssembler::Label findEOLLoop(&m_jit);
        foundEndingNewLine.append(m_jit.branch32(MacroAssembler::Equal, matchPos, m_regs.length));
        if (m_charSize == CharSize::Char8)
            m_jit.load8(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesOne, 0), character);
        else
            m_jit.load16(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesTwo, 0), character);
        matchCharacterClass(character, scratch, foundEndingNewLine, m_pattern.newlineCharacterClass());
        m_jit.add32(MacroAssembler::TrustedImm32(1), matchPos);
        m_jit.jump(findEOLLoop);

        foundEndingNewLine.link(&m_jit);

        if (!term->multiline() && term->anchors.eolAnchor)
            op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, matchPos, m_regs.length));

        m_jit.move(matchPos, m_regs.index);
    }

    void backtrackDotStarEnclosure(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }
    
    // Code generation/backtracking for simple terms
    // (pattern characters, character classes, and assertions).
    // These methods farm out work to the set of functions above.
    void generateTerm(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        switch (term->type) {
        case PatternTerm::Type::PatternCharacter:
            switch (term->quantityType) {
            case QuantifierType::FixedCount:
                if (term->quantityMaxCount == 1)
                    generatePatternCharacterOnce(opIndex);
                else
                    generatePatternCharacterFixed(opIndex);
                break;
            case QuantifierType::Greedy:
                generatePatternCharacterGreedy(opIndex);
                break;
            case QuantifierType::NonGreedy:
                generatePatternCharacterNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::Type::CharacterClass:
            switch (term->quantityType) {
            case QuantifierType::FixedCount:
                if (term->quantityMaxCount == 1)
                    generateCharacterClassOnce(opIndex);
                else
                    generateCharacterClassFixed(opIndex);
                break;
            case QuantifierType::Greedy:
                generateCharacterClassGreedy(opIndex);
                break;
            case QuantifierType::NonGreedy:
                generateCharacterClassNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::Type::AssertionBOL:
            generateAssertionBOL(opIndex);
            break;

        case PatternTerm::Type::AssertionEOL:
            generateAssertionEOL(opIndex);
            break;

        case PatternTerm::Type::AssertionWordBoundary:
            generateAssertionWordBoundary(opIndex);
            break;

        case PatternTerm::Type::ForwardReference:
            m_failureReason = JITFailureReason::ForwardReference;
            break;

        case PatternTerm::Type::ParenthesesSubpattern:
        case PatternTerm::Type::ParentheticalAssertion:
            RELEASE_ASSERT_NOT_REACHED();

        case PatternTerm::Type::BackReference:
#if ENABLE(YARR_JIT_BACKREFERENCES)
            generateBackReference(opIndex);
#else
            m_failureReason = JITFailureReason::BackReference;
#endif
            break;
        case PatternTerm::Type::DotStarEnclosure:
            generateDotStarEnclosure(opIndex);
            break;
        }
    }
    void backtrackTerm(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        switch (term->type) {
        case PatternTerm::Type::PatternCharacter:
            switch (term->quantityType) {
            case QuantifierType::FixedCount:
                if (term->quantityMaxCount == 1)
                    backtrackPatternCharacterOnce(opIndex);
                else
                    backtrackPatternCharacterFixed(opIndex);
                break;
            case QuantifierType::Greedy:
                backtrackPatternCharacterGreedy(opIndex);
                break;
            case QuantifierType::NonGreedy:
                backtrackPatternCharacterNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::Type::CharacterClass:
            switch (term->quantityType) {
            case QuantifierType::FixedCount:
                if (term->quantityMaxCount == 1) {
                    bool fallThroughToCharacterClassFixedCount = false;
                    if (opIndex != 0) {
                        auto& previousOp = m_ops[opIndex - 1];
                        if (previousOp.m_op == YarrOpCode::Term) {
                            auto* term = previousOp.m_term;
                            if (term->type == PatternTerm::Type::CharacterClass && term->quantityType == QuantifierType::FixedCount)
                                fallThroughToCharacterClassFixedCount = true;
                        }
                    }
                    backtrackCharacterClassOnce(opIndex, fallThroughToCharacterClassFixedCount);
                } else
                    backtrackCharacterClassFixed(opIndex);
                break;
            case QuantifierType::Greedy:
                backtrackCharacterClassGreedy(opIndex);
                break;
            case QuantifierType::NonGreedy:
                backtrackCharacterClassNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::Type::AssertionBOL:
            backtrackAssertionBOL(opIndex);
            break;

        case PatternTerm::Type::AssertionEOL:
            backtrackAssertionEOL(opIndex);
            break;

        case PatternTerm::Type::AssertionWordBoundary:
            backtrackAssertionWordBoundary(opIndex);
            break;

        case PatternTerm::Type::ForwardReference:
            m_failureReason = JITFailureReason::ForwardReference;
            break;

        case PatternTerm::Type::ParenthesesSubpattern:
        case PatternTerm::Type::ParentheticalAssertion:
            RELEASE_ASSERT_NOT_REACHED();

        case PatternTerm::Type::BackReference:
#if ENABLE(YARR_JIT_BACKREFERENCES)
            backtrackBackReference(opIndex);
#else
            m_failureReason = JITFailureReason::BackReference;
#endif
            break;

        case PatternTerm::Type::DotStarEnclosure:
            backtrackDotStarEnclosure(opIndex);
            break;
        }
    }

    void generate()
    {
        // Forwards generate the matching code.
        ASSERT(m_ops.size());
        size_t opIndex = 0;

        do {
            if (m_disassembler)
                m_disassembler->setForGenerate(opIndex, m_jit.label());

            YarrOp& op = m_ops[opIndex];
            switch (op.m_op) {

            case YarrOpCode::Term:
                generateTerm(opIndex);
                break;

            // YarrOpCode::BodyAlternativeBegin/Next/End
            //
            // These nodes wrap the set of alternatives in the body of the regular expression.
            // There may be either one or two chains of OpBodyAlternative nodes, one representing
            // the 'once through' sequence of alternatives (if any exist), and one representing
            // the repeating alternatives (again, if any exist).
            //
            // Upon normal entry to the Begin alternative, we will check that input is available.
            // Reentry to the Begin alternative will take place after the check has taken place,
            // and will assume that the input position has already been progressed as appropriate.
            //
            // Entry to subsequent Next/End alternatives occurs when the prior alternative has
            // successfully completed a match - return a success state from JIT code.
            //
            // Next alternatives allow for reentry optimized to suit backtracking from its
            // preceding alternative. It expects the input position to still be set to a position
            // appropriate to its predecessor, and it will only perform an input check if the
            // predecessor had a minimum size less than its own.
            //
            // In the case 'once through' expressions, the End node will also have a reentry
            // point to jump to when the last alternative fails. Again, this expects the input
            // position to still reflect that expected by the prior alternative.
            case YarrOpCode::BodyAlternativeBegin: {
                PatternAlternative* alternative = op.m_alternative;

                // Upon entry at the head of the set of alternatives, check if input is available
                // to run the first alternative. (This progresses the input position).
                op.m_jumps.append(jumpIfNoAvailableInput(alternative->m_minimumSize));

                // We will reenter after the check, and assume the input position to have been
                // set as appropriate to this alternative.
                op.m_reentry = m_jit.label();

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
                // Clear first character read size so it can be set on the first read.
                if (m_useFirstNonBMPCharacterOptimization)
                    m_jit.move(MacroAssembler::TrustedImm32(additionalReadSizeSentinel), m_regs.firstCharacterAdditionalReadSize);
#endif

                // Emit fast skip path with stride if we have BoyerMooreInfo.
                if (op.m_bmInfo) {
                    auto range = op.m_bmInfo->findWorthwhileCharacterSequenceForLookahead(m_sampler);
                    if (range) {
                        auto [beginIndex, endIndex] = *range;
                        ASSERT(endIndex <= alternative->m_minimumSize);

                        auto [map, charactersFastPath] = op.m_bmInfo->createCandidateBitmap(beginIndex, endIndex);
                        unsigned mapCount = map.count();
                        // If candiate characters are <= 2, checking each is better than using vector.
                        MacroAssembler::JumpList matched;
                        dataLogLnIf(YarrJITInternal::verbose, "BM Bitmap is ", map);
                        // Patterns like /[]/ have zero candidates. Since it is rare, we do not do nothing for now.
                        if (!mapCount)
                            break;
                        if (charactersFastPath.isValid() && !charactersFastPath.isEmpty()) {
                            static_assert(BoyerMooreFastCandidates::maxSize == 2);
                            dataLogLnIf(Options::verboseRegExpCompilation(), "Found characters fastpath lookahead ", charactersFastPath, " range:[", beginIndex, ", ", endIndex, ")");

                            JIT_COMMENT(m_jit, "BMSearch characters fastpath lookahead ", charactersFastPath, " range:[", beginIndex, ", ", endIndex, ")");
                            auto loopHead = m_jit.label();
                            readCharacter(op.m_checkedOffset - endIndex + 1, m_regs.regT0);
                            matched.append(m_jit.branch32(MacroAssembler::Equal, m_regs.regT0, MacroAssembler::TrustedImm32(charactersFastPath.at(0))));
                            if (charactersFastPath.size() > 1)
                                matched.append(m_jit.branch32(MacroAssembler::Equal, m_regs.regT0, MacroAssembler::TrustedImm32(charactersFastPath.at(1))));
                            jumpIfAvailableInput(endIndex - beginIndex).linkTo(loopHead, &m_jit);
                        } else {
                            auto span = getBoyerMooreBitmap(map);
                            dataLogLnIf(Options::verboseRegExpCompilation(), "Found bitmap lookahead count:(", mapCount, "),range:[", beginIndex, ", ", endIndex, ")");

                            JIT_COMMENT(m_jit, "BMSearch bitmap lookahead count:(", mapCount, "),range:[", beginIndex, ", ", endIndex, ")");
                            ASSERT(span.size());
                            m_jit.move(MacroAssembler::TrustedImmPtr(span.data()), m_regs.regT1);
                            auto loopHead = m_jit.label();
                            readCharacter(op.m_checkedOffset - endIndex + 1, m_regs.regT0);
#if CPU(ARM64) || CPU(RISCV64)
                            static_assert(sizeof(BoyerMooreBitmap::Map::WordType) == sizeof(uint64_t));
                            static_assert(1 << 6 == 64);
                            static_assert(1 << (6 + 1) == BoyerMooreBitmap::Map::size());
                            m_jit.extractUnsignedBitfield32(m_regs.regT0, MacroAssembler::TrustedImm32(6), MacroAssembler::TrustedImm32(1), m_regs.regT2); // Extract 1 bit for index.
                            m_jit.load64(MacroAssembler::BaseIndex(m_regs.regT1, m_regs.regT2, MacroAssembler::TimesEight), m_regs.regT2);
                            m_jit.urshift64(m_regs.regT0, m_regs.regT2); // We can ignore upper bits and only lower 6bits are effective.
                            matched.append(m_jit.branchTest64(MacroAssembler::NonZero, m_regs.regT2, MacroAssembler::TrustedImm32(1)));
#elif CPU(X86_64)
                            static_assert(sizeof(BoyerMooreBitmap::Map::WordType) == sizeof(uint64_t));
                            static_assert(1 << 6 == 64);
                            static_assert(1 << (6 + 1) == BoyerMooreBitmap::Map::size());
                            m_jit.move(m_regs.regT0, m_regs.regT2);
                            m_jit.urshift32(MacroAssembler::TrustedImm32(6), m_regs.regT2);
                            m_jit.and32(MacroAssembler::TrustedImm32(1), m_regs.regT2);
                            m_jit.load64(MacroAssembler::BaseIndex(m_regs.regT1, m_regs.regT2, MacroAssembler::TimesEight), m_regs.regT2);
                            matched.append(m_jit.branchTestBit64(MacroAssembler::NonZero, m_regs.regT2, m_regs.regT0)); // We can ignore upper bits since modulo-64 is performed.
#else
                            static_assert(sizeof(BoyerMooreBitmap::Map::WordType) == sizeof(uint32_t));
                            static_assert(1 << 5 == 32);
                            static_assert(1 << (5 + 2) == BoyerMooreBitmap::Map::size());
                            m_jit.move(m_regs.regT0, m_regs.regT2);
                            m_jit.urshift32(MacroAssembler::TrustedImm32(5), m_regs.regT2);
                            m_jit.and32(MacroAssembler::TrustedImm32(0b11), m_regs.regT2);
                            m_jit.load32(MacroAssembler::BaseIndex(m_regs.regT1, m_regs.regT2, MacroAssembler::TimesFour), m_regs.regT2);
                            m_jit.urshift32(m_regs.regT0, m_regs.regT2); // We can ignore upper bits and only lower 5bits are effective.
                            matched.append(m_jit.branchTest32(MacroAssembler::NonZero, m_regs.regT2, MacroAssembler::TrustedImm32(1)));
#endif
                            jumpIfAvailableInput(endIndex - beginIndex).linkTo(loopHead, &m_jit);
                        }
                        // Fallthrough if out-of-length failure happens.

                        // If the pattern size is not fixed, then store the start index for use if we match.
                        // This is used for adjusting match-start when we failed to find the start with BoyerMoore search.
                        if (!m_pattern.m_body->m_hasFixedSize) {
                            if (alternative->m_minimumSize) {
                                m_jit.sub32(m_regs.index, MacroAssembler::Imm32(alternative->m_minimumSize), m_regs.regT0);
                                setMatchStart(m_regs.regT0);
                            } else
                                setMatchStart(m_regs.index);
                            op.m_jumps.append(m_jit.jump());
                        } else
                            op.m_jumps.append(m_jit.jump());

                        matched.link(&m_jit);
                        // If the pattern size is not fixed, then store the start index for use if we match.
                        // This is used for adjusting match-start when we start pattern matching with the updated index
                        // by BoyerMoore search.
                        if (!m_pattern.m_body->m_hasFixedSize) {
                            if (alternative->m_minimumSize) {
                                m_jit.sub32(m_regs.index, MacroAssembler::Imm32(alternative->m_minimumSize), m_regs.regT0);
                                setMatchStart(m_regs.regT0);
                            } else
                                setMatchStart(m_regs.index);
                        }
                    } else
                        dataLogLnIf(Options::verboseRegExpCompilation(), "BM search candidates were not efficient enough. Not using BM search");
                }
                break;
            }
            case YarrOpCode::BodyAlternativeNext:
            case YarrOpCode::BodyAlternativeEnd: {
                PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
                PatternAlternative* alternative = op.m_alternative;

                // If we get here, the prior alternative matched - return success.
                
                // Adjust the stack pointer to remove the pattern's frame.
                removeCallFrame();

                // Load appropriate values into the return register and the first output
                // slot, and return. In the case of pattern with a fixed size, we will
                // not have yet set the value in the first 
                ASSERT(m_regs.index != m_regs.returnRegister);
                ASSERT(m_regs.output != m_regs.returnRegister);
                if (m_pattern.m_body->m_hasFixedSize) {
                    if (priorAlternative->m_minimumSize)
                        m_jit.sub32(m_regs.index, MacroAssembler::Imm32(priorAlternative->m_minimumSize), m_regs.returnRegister);
                    else
                        m_jit.move(m_regs.index, m_regs.returnRegister);
                    if (m_compileMode == JITCompileMode::IncludeSubpatterns)
                        m_jit.storePair32(m_regs.returnRegister, m_regs.index, m_regs.output, MacroAssembler::TrustedImm32(0));
                } else {
                    getMatchStart(m_regs.returnRegister);
                    if (m_compileMode == JITCompileMode::IncludeSubpatterns)
                        m_jit.store32(m_regs.index, MacroAssembler::Address(m_regs.output, 4));
                }
                m_jit.move(m_regs.index, m_regs.returnRegister2);
                generateReturn();

                // This is the divide between the tail of the prior alternative, above, and
                // the head of the subsequent alternative, below.

                if (op.m_op == YarrOpCode::BodyAlternativeNext) {
                    // This is the reentry point for the Next alternative. We expect any code
                    // that jumps here to do so with the input position matching that of the
                    // PRIOR alteranative, and we will only check input availability if we
                    // need to progress it forwards.
                    op.m_reentry = m_jit.label();
                    if (m_compileMode == JITCompileMode::IncludeSubpatterns
                        && priorAlternative->needToCleanupCaptures()) {
                            for (unsigned subpattern = priorAlternative->firstCleanupSubpatternId(); subpattern <= priorAlternative->m_lastSubpatternId; subpattern++)
                                clearSubpatternStart(subpattern);
                    }
                    if (alternative->m_minimumSize > priorAlternative->m_minimumSize) {
                        m_jit.add32(MacroAssembler::Imm32(alternative->m_minimumSize - priorAlternative->m_minimumSize), m_regs.index);
                        op.m_jumps.append(jumpIfNoAvailableInput());
                    } else if (priorAlternative->m_minimumSize > alternative->m_minimumSize)
                        m_jit.sub32(MacroAssembler::Imm32(priorAlternative->m_minimumSize - alternative->m_minimumSize), m_regs.index);
                } else if (op.m_nextOp == notFound) {
                    // This is the reentry point for the End of 'once through' alternatives,
                    // jumped to when the last alternative fails to match.
                    op.m_reentry = m_jit.label();
                    m_jit.sub32(MacroAssembler::Imm32(priorAlternative->m_minimumSize), m_regs.index);
                }
                break;
            }

            // YarrOpCode::SimpleNestedAlternativeBegin/Next/End
            // YarrOpCode::NestedAlternativeBegin/Next/End
            //
            // These nodes are used to handle sets of alternatives that are nested within
            // subpatterns and parenthetical assertions. The 'simple' forms are used where
            // we do not need to be able to backtrack back into any alternative other than
            // the last, the normal forms allow backtracking into any alternative.
            //
            // Each Begin/Next node is responsible for planting an input check to ensure
            // sufficient input is available on entry. Next nodes additionally need to
            // jump to the end - Next nodes use the End node's m_jumps list to hold this
            // set of jumps.
            //
            // In the non-simple forms, successful alternative matches must store a
            // 'return address' using a DataLabelPtr, used to store the address to jump
            // to when backtracking, to get to the code for the appropriate alternative.
            case YarrOpCode::SimpleNestedAlternativeBegin:
            case YarrOpCode::NestedAlternativeBegin: {
                PatternTerm* term = op.m_term;
                PatternAlternative* alternative = op.m_alternative;
                PatternDisjunction* disjunction = term->parentheses.disjunction;

                // Calculate how much input we need to check for, and if non-zero check.
                op.m_checkAdjust = Checked<unsigned>(alternative->m_minimumSize);
                if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
                    op.m_checkAdjust -= disjunction->m_minimumSize;
                if (op.m_checkAdjust)
                    op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));
                break;
            }
            case YarrOpCode::SimpleNestedAlternativeNext:
            case YarrOpCode::NestedAlternativeNext: {
                PatternTerm* term = op.m_term;
                PatternAlternative* alternative = op.m_alternative;
                PatternDisjunction* disjunction = term->parentheses.disjunction;

                // In the non-simple case, store a 'return address' so we can backtrack correctly.
                if (op.m_op == YarrOpCode::NestedAlternativeNext) {
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    op.m_returnAddress = storeToFrameWithPatch(parenthesesFrameLocation + BackTrackInfoParentheses::returnAddressIndex());
                }

                if (term->quantityType != QuantifierType::FixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) {
                    // If the previous alternative matched without consuming characters then
                    // backtrack to try to match while consumming some input.
                    op.m_zeroLengthMatch = m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Address(MacroAssembler::stackPointerRegister, term->frameLocation * sizeof(void*)));
                }

                // If we reach here then the last alternative has matched - jump to the
                // End node, to skip over any further alternatives.
                //
                // FIXME: this is logically O(N^2) (though N can be expected to be very
                // small). We could avoid this either by adding an extra jump to the JIT
                // data structures, or by making backtracking code that jumps to Next
                // alternatives are responsible for checking that input is available (if
                // we didn't need to plant the input checks, then m_jumps would be free).
                YarrOp* endOp = &m_ops[op.m_nextOp];
                while (endOp->m_nextOp != notFound) {
                    ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeNext || endOp->m_op == YarrOpCode::NestedAlternativeNext);
                    endOp = &m_ops[endOp->m_nextOp];
                }
                ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeEnd || endOp->m_op == YarrOpCode::NestedAlternativeEnd);
                endOp->m_jumps.append(m_jit.jump());

                // This is the entry point for the next alternative.
                op.m_reentry = m_jit.label();

                // Calculate how much input we need to check for, and if non-zero check.
                op.m_checkAdjust = alternative->m_minimumSize;
                if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
                    op.m_checkAdjust -= disjunction->m_minimumSize;
                if (op.m_checkAdjust)
                    op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));
                break;
            }
            case YarrOpCode::SimpleNestedAlternativeEnd:
            case YarrOpCode::NestedAlternativeEnd: {
                PatternTerm* term = op.m_term;

                // In the non-simple case, store a 'return address' so we can backtrack correctly.
                if (op.m_op == YarrOpCode::NestedAlternativeEnd) {
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    op.m_returnAddress = storeToFrameWithPatch(parenthesesFrameLocation + BackTrackInfoParentheses::returnAddressIndex());
                }

                if (term->quantityType != QuantifierType::FixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) {
                    // If the previous alternative matched without consuming characters then
                    // backtrack to try to match while consumming some input.
                    op.m_zeroLengthMatch = m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Address(MacroAssembler::stackPointerRegister, term->frameLocation * sizeof(void*)));
                }

                // If this set of alternatives contains more than one alternative,
                // then the Next nodes will have planted jumps to the End, and added
                // them to this node's m_jumps list.
                op.m_jumps.link(&m_jit);
                op.m_jumps.clear();
                break;
            }

            // YarrOpCode::ParenthesesSubpatternOnceBegin/End
            //
            // These nodes support (optionally) capturing subpatterns, that have a
            // quantity count of 1 (this covers fixed once, and ?/?? quantifiers). 
            case YarrOpCode::ParenthesesSubpatternOnceBegin: {
                PatternTerm* term = op.m_term;
                unsigned parenthesesFrameLocation = term->frameLocation;
                const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
                ASSERT(term->quantityMaxCount == 1);

                // Upon entry to a Greedy quantified set of parenthese store the index.
                // We'll use this for two purposes:
                //  - To indicate which iteration we are on of mathing the remainder of
                //    the expression after the parentheses - the first, including the
                //    match within the parentheses, or the second having skipped over them.
                //  - To check for empty matches, which must be rejected.
                //
                // At the head of a NonGreedy set of parentheses we'll immediately set the
                // value on the stack to -1 (indicating a match skipping the subpattern),
                // and plant a jump to the end. We'll also plant a label to backtrack to
                // to reenter the subpattern later, with a store to set up index on the
                // second iteration.
                //
                // FIXME: for capturing parens, could use the index in the capture array?
                if (term->quantityType == QuantifierType::Greedy)
                    storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());
                else if (term->quantityType == QuantifierType::NonGreedy) {
                    storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());
                    op.m_jumps.append(m_jit.jump());
                    op.m_reentry = m_jit.label();
                    storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());
                }

                // If the parenthese are capturing, store the starting index value to the
                // captures array, offsetting as necessary.
                //
                // FIXME: could avoid offsetting this value in JIT code, apply
                // offsets only afterwards, at the point the results array is
                // being accessed.
                if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
                    unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
                    if (term->quantityType == QuantifierType::FixedCount)
                        inputOffset += term->parentheses.disjunction->m_minimumSize;
                    if (inputOffset) {
                        m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
                        setSubpatternStart(indexTemporary, term->parentheses.subpatternId);
                    } else
                        setSubpatternStart(m_regs.index, term->parentheses.subpatternId);
                }
                break;
            }
            case YarrOpCode::ParenthesesSubpatternOnceEnd: {
                PatternTerm* term = op.m_term;
                const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
                ASSERT(term->quantityMaxCount == 1);

                // If the nested alternative matched without consuming any characters, punt this back to the interpreter.
                // FIXME: <https://bugs.webkit.org/show_bug.cgi?id=200786> Add ability for the YARR JIT to properly
                // handle nested expressions that can match without consuming characters
                if (term->quantityType != QuantifierType::FixedCount && !term->parentheses.disjunction->m_minimumSize)
                    m_abortExecution.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Address(MacroAssembler::stackPointerRegister, term->frameLocation * sizeof(void*))));

                // If the parenthese are capturing, store the ending index value to the
                // captures array, offsetting as necessary.
                //
                // FIXME: could avoid offsetting this value in JIT code, apply
                // offsets only afterwards, at the point the results array is
                // being accessed.
                if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
                    auto subpatternId = term->parentheses.subpatternId;
                    unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
                    if (inputOffset) {
                        m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
                        setSubpatternEnd(indexTemporary, subpatternId);
                    } else
                        setSubpatternEnd(m_regs.index, subpatternId);
                    if (m_pattern.m_numDuplicateNamedCaptureGroups) {
                        if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId])
                            m_jit.store32(MacroAssembler::TrustedImm32(subpatternId), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
                    }
                }

                // If the parentheses are quantified Greedy then add a label to jump back
                // to if we get a failed match from after the parentheses. For NonGreedy
                // parentheses, link the jump from before the subpattern to here.
                if (term->quantityType == QuantifierType::Greedy)
                    op.m_reentry = m_jit.label();
                else if (term->quantityType == QuantifierType::NonGreedy) {
                    YarrOp& beginOp = m_ops[op.m_previousOp];
                    beginOp.m_jumps.link(&m_jit);
                }
                break;
            }

            // YarrOpCode::ParenthesesSubpatternTerminalBegin/End
            case YarrOpCode::ParenthesesSubpatternTerminalBegin: {
                PatternTerm* term = op.m_term;
                ASSERT(term->quantityType == QuantifierType::Greedy);
                ASSERT(term->quantityMaxCount == quantifyInfinite);
                ASSERT(!term->capture());

                // Upon entry set a label to loop back to.
                op.m_reentry = m_jit.label();

                // Store the start index of the current match; we need to reject zero
                // length matches.
                storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoParenthesesTerminal::beginIndex());
                break;
            }
            case YarrOpCode::ParenthesesSubpatternTerminalEnd: {
                YarrOp& beginOp = m_ops[op.m_previousOp];
                PatternTerm* term = op.m_term;

                // If the nested alternative matched without consuming any characters, punt this back to the interpreter.
                // FIXME: <https://bugs.webkit.org/show_bug.cgi?id=200786> Add ability for the YARR JIT to properly
                // handle nested expressions that can match without consuming characters
                if (term->quantityType != QuantifierType::FixedCount && !term->parentheses.disjunction->m_minimumSize)
                    m_abortExecution.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Address(MacroAssembler::stackPointerRegister, term->frameLocation * sizeof(void*))));

                // We know that the match is non-zero, we can accept it and
                // loop back up to the head of the subpattern.
                m_jit.jump(beginOp.m_reentry);

                // This is the entry point to jump to when we stop matching - we will
                // do so once the subpattern cannot match any more.
                op.m_reentry = m_jit.label();
                break;
            }

            // YarrOpCode::ParenthesesSubpatternBegin/End
            //
            // These nodes support generic subpatterns.
            case YarrOpCode::ParenthesesSubpatternBegin: {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
                PatternTerm* term = op.m_term;
                unsigned parenthesesFrameLocation = term->frameLocation;

                // Upon entry to a Greedy quantified set of parenthese store the index.
                // We'll use this for two purposes:
                //  - To indicate which iteration we are on of mathing the remainder of
                //    the expression after the parentheses - the first, including the
                //    match within the parentheses, or the second having skipped over them.
                //  - To check for empty matches, which must be rejected.
                //
                // At the head of a NonGreedy set of parentheses we'll immediately set 'begin'
                // in the backtrack info to -1 (indicating a match skipping the subpattern),
                // and plant a jump to the end. We'll also plant a label to backtrack to
                // to reenter the subpattern later, with a store to set 'begin' to current index
                // on the second iteration.
                //
                // FIXME: for capturing parens, could use the index in the capture array?
                if (term->quantityType == QuantifierType::Greedy || term->quantityType == QuantifierType::NonGreedy) {
                    storeToFrame(MacroAssembler::TrustedImm32(0), parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex());
                    storeToFrame(MacroAssembler::TrustedImmPtr(nullptr), parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex());

                    if (term->quantityType == QuantifierType::NonGreedy) {
                        storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex());
                        op.m_jumps.append(m_jit.jump());
                    }
                    
                    op.m_reentry = m_jit.label();
                    MacroAssembler::RegisterID currParenContextReg = m_regs.regT0;
                    MacroAssembler::RegisterID newParenContextReg = m_regs.regT1;

                    loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex(), currParenContextReg);
                    allocateParenContext(newParenContextReg);
                    m_jit.storePtr(currParenContextReg, MacroAssembler::Address(newParenContextReg));
                    storeToFrame(newParenContextReg, parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex());
                    saveParenContext(newParenContextReg, m_regs.regT2, term->parentheses.subpatternId, term->parentheses.lastSubpatternId, parenthesesFrameLocation);
                    storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex());
                }

                // If the parenthese are capturing, store the starting index value to the
                // captures array, offsetting as necessary.
                //
                // FIXME: could avoid offsetting this value in JIT code, apply
                // offsets only afterwards, at the point the results array is
                // being accessed.
                if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
                    const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
                    unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
                    if (term->quantityType == QuantifierType::FixedCount)
                        inputOffset += term->parentheses.disjunction->m_minimumSize;
                    if (inputOffset) {
                        m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
                        setSubpatternStart(indexTemporary, term->parentheses.subpatternId);
                    } else
                        setSubpatternStart(m_regs.index, term->parentheses.subpatternId);
                }
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
                RELEASE_ASSERT_NOT_REACHED();
#endif
                break;
            }
            case YarrOpCode::ParenthesesSubpatternEnd: {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
                PatternTerm* term = op.m_term;
                unsigned parenthesesFrameLocation = term->frameLocation;

                // If the nested alternative matched without consuming any characters, punt this back to the interpreter.
                // FIXME: <https://bugs.webkit.org/show_bug.cgi?id=200786> Add ability for the YARR JIT to properly
                // handle nested expressions that can match without consuming characters
                if (term->quantityType != QuantifierType::FixedCount && !term->parentheses.disjunction->m_minimumSize)
                    m_abortExecution.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Address(MacroAssembler::stackPointerRegister, parenthesesFrameLocation * sizeof(void*))));

                const MacroAssembler::RegisterID countTemporary = m_regs.regT1;

                YarrOp& beginOp = m_ops[op.m_previousOp];
                loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), countTemporary);
                m_jit.add32(MacroAssembler::TrustedImm32(1), countTemporary);
                storeToFrame(countTemporary, parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex());

                // If the parenthese are capturing, store the ending index value to the
                // captures array, offsetting as necessary.
                //
                // FIXME: could avoid offsetting this value in JIT code, apply
                // offsets only afterwards, at the point the results array is
                // being accessed.
                if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
                    const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
                    
                    auto subpatternId = term->parentheses.subpatternId;
                    unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
                    if (inputOffset) {
                        m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
                        setSubpatternEnd(indexTemporary, subpatternId);
                    } else
                        setSubpatternEnd(m_regs.index, subpatternId);
                    if (m_pattern.m_numDuplicateNamedCaptureGroups) {
                        if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId])
                            m_jit.store32(MacroAssembler::TrustedImm32(subpatternId), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
                    }
                }

                // If the parentheses are quantified Greedy then add a label to jump back
                // to if we get a failed match from after the parentheses. For NonGreedy
                // parentheses, link the jump from before the subpattern to here.
                if (term->quantityType == QuantifierType::Greedy) {
                    if (term->quantityMaxCount != quantifyInfinite)
                        m_jit.branch32(MacroAssembler::Below, countTemporary, MacroAssembler::Imm32(term->quantityMaxCount)).linkTo(beginOp.m_reentry, &m_jit);
                    else
                        m_jit.jump(beginOp.m_reentry);
                    
                    op.m_reentry = m_jit.label();
                } else if (term->quantityType == QuantifierType::NonGreedy) {
                    YarrOp& beginOp = m_ops[op.m_previousOp];
                    beginOp.m_jumps.link(&m_jit);
                    op.m_reentry = m_jit.label();
                }
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
                RELEASE_ASSERT_NOT_REACHED();
#endif
                break;
            }

            // YarrOpCode::ParentheticalAssertionBegin/End
            case YarrOpCode::ParentheticalAssertionBegin: {
                PatternTerm* term = op.m_term;

                // Store the current index - assertions should not update index, so
                // we will need to restore it upon a successful match.
                unsigned parenthesesFrameLocation = term->frameLocation;
                storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParentheticalAssertion::beginIndex());

                if (op.m_checkAdjust)
                    m_jit.sub32(MacroAssembler::Imm32(op.m_checkAdjust), m_regs.index);
                break;
            }
            case YarrOpCode::ParentheticalAssertionEnd: {
                PatternTerm* term = op.m_term;

                // Restore the input index value.
                unsigned parenthesesFrameLocation = term->frameLocation;
                loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheticalAssertion::beginIndex(), m_regs.index);

                // If inverted, a successful match of the assertion must be treated
                // as a failure, clear any nested captures and jump to backtracking.
                if (term->invert()) {
                    if (m_compileMode == JITCompileMode::IncludeSubpatterns
                        && term->containsAnyCaptures()) {
                        for (unsigned subpattern = term->parentheses.subpatternId; subpattern <= term->parentheses.lastSubpatternId; subpattern++)
                            clearSubpatternStart(subpattern);
                    }
                    op.m_jumps.append(m_jit.jump());
                    op.m_reentry = m_jit.label();
                }
                break;
            }

            case YarrOpCode::MatchFailed:
                removeCallFrame();
                generateFailReturn();
                break;
            }

            ++opIndex;
        } while (opIndex < m_ops.size());
    }

    void backtrack()
    {
        // Backwards generate the backtracking code.
        size_t opIndex = m_ops.size();
        ASSERT(opIndex);

        do {
            --opIndex;

            if (m_disassembler)
                m_disassembler->setForBacktrack(opIndex, m_jit.label());

            YarrOp& op = m_ops[opIndex];
            switch (op.m_op) {

            case YarrOpCode::Term:
                backtrackTerm(opIndex);
                break;

            // YarrOpCode::BodyAlternativeBegin/Next/End
            //
            // For each Begin/Next node representing an alternative, we need to decide what to do
            // in two circumstances:
            //  - If we backtrack back into this node, from within the alternative.
            //  - If the input check at the head of the alternative fails (if this exists).
            //
            // We treat these two cases differently since in the former case we have slightly
            // more information - since we are backtracking out of a prior alternative we know
            // that at least enough input was available to run it. For example, given the regular
            // expression /a|b/, if we backtrack out of the first alternative (a failed pattern
            // character match of 'a'), then we need not perform an additional input availability
            // check before running the second alternative.
            //
            // Backtracking required differs for the last alternative, which in the case of the
            // repeating set of alternatives must loop. The code generated for the last alternative
            // will also be used to handle all input check failures from any prior alternatives -
            // these require similar functionality, in seeking the next available alternative for
            // which there is sufficient input.
            //
            // Since backtracking of all other alternatives simply requires us to link backtracks
            // to the reentry point for the subsequent alternative, we will only be generating any
            // code when backtracking the last alternative.
            case YarrOpCode::BodyAlternativeBegin:
            case YarrOpCode::BodyAlternativeNext: {
                PatternAlternative* alternative = op.m_alternative;

                // Is this the last alternative? If not, then if we backtrack to this point we just
                // need to jump to try to match the next alternative.
                if (m_ops[op.m_nextOp].m_op != YarrOpCode::BodyAlternativeEnd) {
                    m_backtrackingState.linkTo(m_ops[op.m_nextOp].m_reentry, &m_jit);
                    break;
                }
                YarrOp& endOp = m_ops[op.m_nextOp];
                ASSERT(endOp.m_op == YarrOpCode::BodyAlternativeEnd);

                YarrOp* beginOp = &op;
                while (beginOp->m_op != YarrOpCode::BodyAlternativeBegin) {
                    ASSERT(beginOp->m_op == YarrOpCode::BodyAlternativeNext);
                    beginOp = &m_ops[beginOp->m_previousOp];
                }

                bool onceThrough = endOp.m_nextOp == notFound;
                
                MacroAssembler::JumpList lastStickyAlternativeFailures;

                // First, generate code to handle cases where we backtrack out of an attempted match
                // of the last alternative. If this is a 'once through' set of alternatives then we
                // have nothing to do - link this straight through to the End.
                if (onceThrough)
                    m_backtrackingState.linkTo(endOp.m_reentry, &m_jit);
                else {
                    if (m_pattern.sticky()) {
                        // It is a sticky pattern and the last alternative failed, jump to the end.
                        m_backtrackingState.takeBacktracksToJumpList(lastStickyAlternativeFailures, &m_jit);
                    } else if (m_pattern.m_body->m_hasFixedSize
                        && (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize)
                        && (alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize == 1)) {
                        // If we don't need to move the input position, and the pattern has a fixed size
                        // (in which case we omit the store of the start index until the pattern has matched)
                        // then we can just link the backtrack out of the last alternative straight to the
                        // head of the first alternative.
                        m_backtrackingState.linkTo(beginOp->m_reentry, &m_jit);
                    } else {
                        // We need to generate a trampoline of code to execute before looping back
                        // around to the first alternative.
                        m_backtrackingState.link(&m_jit);

                        // No need to advance and retry for a sticky pattern. And it is already handled before this branch.
                        ASSERT(!m_pattern.sticky());

                        // If the pattern size is not fixed, then store the start index for use if we match.
                        if (!m_pattern.m_body->m_hasFixedSize) {
                            if (alternative->m_minimumSize == 1)
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
                                if (m_useFirstNonBMPCharacterOptimization) {
                                    m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.index, m_regs.regT0);
                                    setMatchStart(m_regs.regT0);
                                } else
#endif
                                setMatchStart(m_regs.index);
                            else {
                                if (alternative->m_minimumSize)
                                    m_jit.sub32(m_regs.index, MacroAssembler::Imm32(alternative->m_minimumSize - 1), m_regs.regT0);
                                else
                                    m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index, m_regs.regT0);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
                                if (m_useFirstNonBMPCharacterOptimization)
                                    m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.regT0);
#endif
                                setMatchStart(m_regs.regT0);
                            }
                        }

                        // Generate code to loop. Check whether the last alternative is longer than the
                        // first (e.g. /a|xy/ or /a|xyz/).
                        if (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) {
                            // We want to loop, and increment input position. If the delta is 1, it is
                            // already correctly incremented, if more than one then decrement as appropriate.
                            unsigned delta = alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize;
                            ASSERT(delta);
                            if (delta != 1)
                                m_jit.sub32(MacroAssembler::Imm32(delta - 1), m_regs.index);
                            m_jit.jump(beginOp->m_reentry);
                        } else {
                            // If the first alternative has minimum size 0xFFFFFFFFu, then there cannot
                            // be sufficent input available to handle this, so just fall through.
                            unsigned delta = beginOp->m_alternative->m_minimumSize - alternative->m_minimumSize;
                            if (delta != 0xFFFFFFFFu) {
                                // We need to check input because we are incrementing the input.
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
                                if (m_useFirstNonBMPCharacterOptimization)
                                    m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.index);
#endif
                                m_jit.add32(MacroAssembler::Imm32(delta + 1), m_regs.index);
                                checkInput().linkTo(beginOp->m_reentry, &m_jit);
                            }
                        }
                    }
                }

                // We can reach this point in the code in two ways:
                //  - Fallthrough from the code above (a repeating alternative backtracked out of its
                //    last alternative, and did not have sufficent input to run the first).
                //  - We will loop back up to the following label when a repeating alternative loops,
                //    following a failed input check.
                //
                // Either way, we have just failed the input check for the first alternative.
                MacroAssembler::Label firstInputCheckFailed(&m_jit);

                // Generate code to handle input check failures from alternatives except the last.
                // prevOp is the alternative we're handling a bail out from (initially Begin), and
                // nextOp is the alternative we will be attempting to reenter into.
                // 
                // We will link input check failures from the forwards matching path back to the code
                // that can handle them.
                YarrOp* prevOp = beginOp;
                YarrOp* nextOp = &m_ops[beginOp->m_nextOp];
                while (nextOp->m_op != YarrOpCode::BodyAlternativeEnd) {
                    prevOp->m_jumps.link(&m_jit);

                    // We only get here if an input check fails, it is only worth checking again
                    // if the next alternative has a minimum size less than the last.
                    if (prevOp->m_alternative->m_minimumSize > nextOp->m_alternative->m_minimumSize) {
                        // FIXME: if we added an extra label to YarrOp, we could avoid needing to
                        // subtract delta back out, and reduce this code. Should performance test
                        // the benefit of this.
                        unsigned delta = prevOp->m_alternative->m_minimumSize - nextOp->m_alternative->m_minimumSize;
                        m_jit.sub32(MacroAssembler::Imm32(delta), m_regs.index);
                        MacroAssembler::Jump fail = jumpIfNoAvailableInput();
                        m_jit.add32(MacroAssembler::Imm32(delta), m_regs.index);
                        m_jit.jump(nextOp->m_reentry);
                        fail.link(&m_jit);
                    } else if (prevOp->m_alternative->m_minimumSize < nextOp->m_alternative->m_minimumSize)
                        m_jit.add32(MacroAssembler::Imm32(nextOp->m_alternative->m_minimumSize - prevOp->m_alternative->m_minimumSize), m_regs.index);
                    prevOp = nextOp;
                    nextOp = &m_ops[nextOp->m_nextOp];
                }

                // We fall through to here if there is insufficient input to run the last alternative.

                // If there is insufficient input to run the last alternative, then for 'once through'
                // alternatives we are done - just jump back up into the forwards matching path at the End.
                if (onceThrough) {
                    op.m_jumps.linkTo(endOp.m_reentry, &m_jit);
                    m_jit.jump(endOp.m_reentry);
                    break;
                }

                // For repeating alternatives, link any input check failure from the last alternative to
                // this point.
                op.m_jumps.link(&m_jit);

                bool needsToUpdateMatchStart = !m_pattern.m_body->m_hasFixedSize;

                // Check for cases where input position is already incremented by 1 for the last
                // alternative (this is particularly useful where the minimum size of the body
                // disjunction is 0, e.g. /a*|b/).
                if (needsToUpdateMatchStart && alternative->m_minimumSize == 1) {
                    // index is already incremented by 1, so just store it now!
                    setMatchStart(m_regs.index);
                    needsToUpdateMatchStart = false;
                }

                if (!m_pattern.sticky()) {
                    // Check whether there is sufficient input to loop. Increment the input position by
                    // one, and check. Also add in the minimum disjunction size before checking - there
                    // is no point in looping if we're just going to fail all the input checks around
                    // the next iteration.
                    ASSERT(alternative->m_minimumSize >= m_pattern.m_body->m_minimumSize);
                    if (alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) {
                        // If the last alternative had the same minimum size as the disjunction,
                        // just simply increment input pos by 1, no adjustment based on minimum size.
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
                        if (m_useFirstNonBMPCharacterOptimization)
                            m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.index);
#endif
                        m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
                    } else {
                        // If the minumum for the last alternative was one greater than than that
                        // for the disjunction, we're already progressed by 1, nothing to do!
                        unsigned delta = (alternative->m_minimumSize - m_pattern.m_body->m_minimumSize) - 1;
                        if (delta)
                            m_jit.sub32(MacroAssembler::Imm32(delta), m_regs.index);
                    }
                    MacroAssembler::Jump matchFailed = jumpIfNoAvailableInput();

                    if (needsToUpdateMatchStart) {
                        if (!m_pattern.m_body->m_minimumSize)
                            setMatchStart(m_regs.index);
                        else {
                            m_jit.sub32(m_regs.index, MacroAssembler::Imm32(m_pattern.m_body->m_minimumSize), m_regs.regT0);
                            setMatchStart(m_regs.regT0);
                        }
                    }

                    // Calculate how much more input the first alternative requires than the minimum
                    // for the body as a whole. If no more is needed then we dont need an additional
                    // input check here - jump straight back up to the start of the first alternative.
                    if (beginOp->m_alternative->m_minimumSize == m_pattern.m_body->m_minimumSize)
                        m_jit.jump(beginOp->m_reentry);
                    else {
                        if (beginOp->m_alternative->m_minimumSize > m_pattern.m_body->m_minimumSize)
                            m_jit.add32(MacroAssembler::Imm32(beginOp->m_alternative->m_minimumSize - m_pattern.m_body->m_minimumSize), m_regs.index);
                        else
                            m_jit.sub32(MacroAssembler::Imm32(m_pattern.m_body->m_minimumSize - beginOp->m_alternative->m_minimumSize), m_regs.index);
                        checkInput().linkTo(beginOp->m_reentry, &m_jit);
                        m_jit.jump(firstInputCheckFailed);
                    }

                    // We jump to here if we iterate to the point that there is insufficient input to
                    // run any matches, and need to return a failure state from JIT code.
                    matchFailed.link(&m_jit);
                }

                lastStickyAlternativeFailures.link(&m_jit);
                removeCallFrame();
                generateFailReturn();
                break;
            }
            case YarrOpCode::BodyAlternativeEnd: {
                // We should never backtrack back into a body disjunction.
                ASSERT(m_backtrackingState.isEmpty());
                break;
            }

            // YarrOpCode::SimpleNestedAlternativeBegin/Next/End
            // YarrOpCode::NestedAlternativeBegin/Next/End
            //
            // Generate code for when we backtrack back out of an alternative into
            // a Begin or Next node, or when the entry input count check fails. If
            // there are more alternatives we need to jump to the next alternative,
            // if not we backtrack back out of the current set of parentheses.
            //
            // In the case of non-simple nested assertions we need to also link the
            // 'return address' appropriately to backtrack back out into the correct
            // alternative.
            case YarrOpCode::SimpleNestedAlternativeBegin:
            case YarrOpCode::SimpleNestedAlternativeNext:
            case YarrOpCode::NestedAlternativeBegin:
            case YarrOpCode::NestedAlternativeNext: {
                YarrOp& nextOp = m_ops[op.m_nextOp];
                bool isBegin = op.m_previousOp == notFound;
                bool isLastAlternative = nextOp.m_nextOp == notFound;
                ASSERT(isBegin == (op.m_op == YarrOpCode::SimpleNestedAlternativeBegin || op.m_op == YarrOpCode::NestedAlternativeBegin));
                ASSERT(isLastAlternative == (nextOp.m_op == YarrOpCode::SimpleNestedAlternativeEnd || nextOp.m_op == YarrOpCode::NestedAlternativeEnd));

                // Treat an input check failure the same as a failed match.
                m_backtrackingState.append(op.m_jumps);

                // Set the backtracks to jump to the appropriate place. We may need
                // to link the backtracks in one of three different way depending on
                // the type of alternative we are dealing with:
                //  - A single alternative, with no siblings.
                //  - The last alternative of a set of two or more.
                //  - An alternative other than the last of a set of two or more.
                //
                // In the case of a single alternative on its own, we don't need to
                // jump anywhere - if the alternative fails to match we can just
                // continue to backtrack out of the parentheses without jumping.
                //
                // In the case of the last alternative in a set of more than one, we
                // need to jump to return back out to the beginning. We'll do so by
                // adding a jump to the End node's m_jumps list, and linking this
                // when we come to generate the Begin node. For alternatives other
                // than the last, we need to jump to the next alternative.
                //
                // If the alternative had adjusted the input position we must link
                // backtracking to here, correct, and then jump on. If not we can
                // link the backtracks directly to their destination.
                if (op.m_checkAdjust) {
                    // Handle the cases where we need to link the backtracks here.
                    m_backtrackingState.link(&m_jit);
                    m_jit.sub32(MacroAssembler::Imm32(op.m_checkAdjust), m_regs.index);
                    if (!isLastAlternative) {
                        // An alternative that is not the last should jump to its successor.
                        m_jit.jump(nextOp.m_reentry);
                    } else if (!isBegin) {
                        // The last of more than one alternatives must jump back to the beginning.
                        nextOp.m_jumps.append(m_jit.jump());
                    } else {
                        // A single alternative on its own can fall through.
                        m_backtrackingState.fallthrough();
                    }
                } else {
                    // Handle the cases where we can link the backtracks directly to their destinations.
                    if (!isLastAlternative) {
                        // An alternative that is not the last should jump to its successor.
                        m_backtrackingState.linkTo(nextOp.m_reentry, &m_jit);
                    } else if (!isBegin) {
                        // The last of more than one alternatives must jump back to the beginning.
                        m_backtrackingState.takeBacktracksToJumpList(nextOp.m_jumps, &m_jit);
                    }
                    // In the case of a single alternative on its own do nothing - it can fall through.
                }

                // If there is a backtrack jump from a zero length match link it here.
                if (op.m_zeroLengthMatch.isSet())
                    m_backtrackingState.append(op.m_zeroLengthMatch);

                // At this point we've handled the backtracking back into this node.
                // Now link any backtracks that need to jump to here.

                // For non-simple alternatives, link the alternative's 'return address'
                // so that we backtrack back out into the previous alternative.
                if (op.m_op == YarrOpCode::NestedAlternativeNext)
                    m_backtrackingState.append(op.m_returnAddress);

                // If there is more than one alternative, then the last alternative will
                // have planted a jump to be linked to the end. This jump was added to the
                // End node's m_jumps list. If we are back at the beginning, link it here.
                if (isBegin) {
                    YarrOp* endOp = &m_ops[op.m_nextOp];
                    while (endOp->m_nextOp != notFound) {
                        ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeNext || endOp->m_op == YarrOpCode::NestedAlternativeNext);
                        endOp = &m_ops[endOp->m_nextOp];
                    }
                    ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeEnd || endOp->m_op == YarrOpCode::NestedAlternativeEnd);
                    m_backtrackingState.append(endOp->m_jumps);
                }
                break;
            }
            case YarrOpCode::SimpleNestedAlternativeEnd:
            case YarrOpCode::NestedAlternativeEnd: {
                PatternTerm* term = op.m_term;

                // If there is a backtrack jump from a zero length match link it here.
                if (op.m_zeroLengthMatch.isSet())
                    m_backtrackingState.append(op.m_zeroLengthMatch);

                // If we backtrack into the end of a simple subpattern do nothing;
                // just continue through into the last alternative. If we backtrack
                // into the end of a non-simple set of alterntives we need to jump
                // to the backtracking return address set up during generation.
                if (op.m_op == YarrOpCode::NestedAlternativeEnd) {
                    m_backtrackingState.link(&m_jit);

                    // Plant a jump to the return address.
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    loadFromFrameAndJump(parenthesesFrameLocation + BackTrackInfoParentheses::returnAddressIndex());

                    // Link the DataLabelPtr associated with the end of the last
                    // alternative to this point.
                    m_backtrackingState.append(op.m_returnAddress);
                }
                break;
            }

            // YarrOpCode::ParenthesesSubpatternOnceBegin/End
            //
            // When we are backtracking back out of a capturing subpattern we need
            // to clear the start index in the matches output array, to record that
            // this subpattern has not been captured.
            //
            // When backtracking back out of a Greedy quantified subpattern we need
            // to catch this, and try running the remainder of the alternative after
            // the subpattern again, skipping the parentheses.
            //
            // Upon backtracking back into a quantified set of parentheses we need to
            // check whether we were currently skipping the subpattern. If not, we
            // can backtrack into them, if we were we need to either backtrack back
            // out of the start of the parentheses, or jump back to the forwards
            // matching start, depending of whether the match is Greedy or NonGreedy.
            case YarrOpCode::ParenthesesSubpatternOnceBegin: {
                PatternTerm* term = op.m_term;
                ASSERT(term->quantityMaxCount == 1);

                // We only need to backtrack to this point if capturing or greedy.
                if ((term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) || term->quantityType == QuantifierType::Greedy) {
                    m_backtrackingState.link(&m_jit);

                    // If capturing, clear the capture (we only need to reset start).
                    if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
                        auto subpatternId = term->parentheses.subpatternId;
                        clearSubpatternStart(subpatternId);
                        if (m_pattern.m_numDuplicateNamedCaptureGroups) {
                            if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId])
                                m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
                        }
                    }

                    // If Greedy, jump to the end.
                    if (term->quantityType == QuantifierType::Greedy) {
                        // Clear the flag in the stackframe indicating we ran through the subpattern.
                        unsigned parenthesesFrameLocation = term->frameLocation;
                        storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());

                        // Clear out any nested captures.
                        if (m_compileMode == JITCompileMode::IncludeSubpatterns && term->containsAnyCaptures()) {
                            unsigned firstPatternId = term->parentheses.subpatternId;
                            if (term->capture())
                                firstPatternId++;
                            for (unsigned subpattern = firstPatternId; subpattern <= term->parentheses.lastSubpatternId; subpattern++) {
                                clearSubpatternStart(subpattern);

                                if (m_pattern.m_numDuplicateNamedCaptureGroups) {
                                    if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpattern])
                                        m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
                                }
                            }
                        }

                        // Jump to after the parentheses, skipping the subpattern.
                        m_jit.jump(m_ops[op.m_nextOp].m_reentry);
                        // A backtrack from after the parentheses, when skipping the subpattern,
                        // will jump back to here.
                        op.m_jumps.link(&m_jit);
                    }

                    m_backtrackingState.fallthrough();
                }
                break;
            }
            case YarrOpCode::ParenthesesSubpatternOnceEnd: {
                PatternTerm* term = op.m_term;

                if (term->quantityType != QuantifierType::FixedCount) {
                    m_backtrackingState.link(&m_jit);

                    // Check whether we should backtrack back into the parentheses, or if we
                    // are currently in a state where we had skipped over the subpattern
                    // (in which case the flag value on the stack will be -1).
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    MacroAssembler::Jump hadSkipped = m_jit.branch32(MacroAssembler::Equal, MacroAssembler::Address(MacroAssembler::stackPointerRegister, (parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex()) * sizeof(void*)), MacroAssembler::TrustedImm32(-1));

                    if (term->quantityType == QuantifierType::Greedy) {
                        // For Greedy parentheses, we skip after having already tried going
                        // through the subpattern, so if we get here we're done.
                        YarrOp& beginOp = m_ops[op.m_previousOp];
                        beginOp.m_jumps.append(hadSkipped);
                    } else {
                        // For NonGreedy parentheses, we try skipping the subpattern first,
                        // so if we get here we need to try running through the subpattern
                        // next. Jump back to the start of the parentheses in the forwards
                        // matching path.
                        ASSERT(term->quantityType == QuantifierType::NonGreedy);
                        YarrOp& beginOp = m_ops[op.m_previousOp];
                        hadSkipped.linkTo(beginOp.m_reentry, &m_jit);
                    }

                    m_backtrackingState.fallthrough();
                }

                m_backtrackingState.append(op.m_jumps);
                break;
            }

            // YarrOpCode::ParenthesesSubpatternTerminalBegin/End
            //
            // Terminal subpatterns will always match - there is nothing after them to
            // force a backtrack, and they have a minimum count of 0, and as such will
            // always produce an acceptable result.
            case YarrOpCode::ParenthesesSubpatternTerminalBegin: {
                // We will backtrack to this point once the subpattern cannot match any
                // more. Since no match is accepted as a successful match (we are Greedy
                // quantified with a minimum of zero) jump back to the forwards matching
                // path at the end.
                YarrOp& endOp = m_ops[op.m_nextOp];
                m_backtrackingState.linkTo(endOp.m_reentry, &m_jit);
                break;
            }
            case YarrOpCode::ParenthesesSubpatternTerminalEnd:
                // We should never be backtracking to here (hence the 'terminal' in the name).
                ASSERT(m_backtrackingState.isEmpty());
                m_backtrackingState.append(op.m_jumps);
                break;

            // YarrOpCode::ParenthesesSubpatternBegin/End
            //
            // When we are backtracking back out of a capturing subpattern we need
            // to clear the start index in the matches output array, to record that
            // this subpattern has not been captured.
            //
            // When backtracking back out of a Greedy quantified subpattern we need
            // to catch this, and try running the remainder of the alternative after
            // the subpattern again, skipping the parentheses.
            //
            // Upon backtracking back into a quantified set of parentheses we need to
            // check whether we were currently skipping the subpattern. If not, we
            // can backtrack into them, if we were we need to either backtrack back
            // out of the start of the parentheses, or jump back to the forwards
            // matching start, depending of whether the match is Greedy or NonGreedy.
            case YarrOpCode::ParenthesesSubpatternBegin: {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
                PatternTerm* term = op.m_term;
                unsigned parenthesesFrameLocation = term->frameLocation;

                if (term->quantityType != QuantifierType::FixedCount) {
                    m_backtrackingState.link(&m_jit);

                    MacroAssembler::RegisterID currParenContextReg = m_regs.regT0;
                    MacroAssembler::RegisterID newParenContextReg = m_regs.regT1;

                    loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex(), currParenContextReg);
                    
                    restoreParenContext(currParenContextReg, m_regs.regT2, term->parentheses.subpatternId, term->parentheses.lastSubpatternId, parenthesesFrameLocation);
                    
                    freeParenContext(currParenContextReg, newParenContextReg);
                    storeToFrame(newParenContextReg, parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex());

                    const MacroAssembler::RegisterID countTemporary = m_regs.regT0;
                    loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), countTemporary);
                    MacroAssembler::Jump zeroLengthMatch = m_jit.branchTest32(MacroAssembler::Zero, countTemporary);

                    m_jit.sub32(MacroAssembler::TrustedImm32(1), countTemporary);
                    storeToFrame(countTemporary, parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex());

                    m_jit.jump(m_ops[op.m_nextOp].m_reentry);

                    zeroLengthMatch.link(&m_jit);

                    // Clear the flag in the stackframe indicating we didn't run through the subpattern.
                    storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex());

                    if (term->quantityType == QuantifierType::Greedy)
                        m_jit.jump(m_ops[op.m_nextOp].m_reentry);

                    // If Greedy, jump to the end.
                    if (term->quantityType == QuantifierType::Greedy) {
                        // A backtrack from after the parentheses, when skipping the subpattern,
                        // will jump back to here.
                        op.m_jumps.link(&m_jit);
                    }

                    m_backtrackingState.fallthrough();
                }
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
                RELEASE_ASSERT_NOT_REACHED();
#endif
                break;
            }
            case YarrOpCode::ParenthesesSubpatternEnd: {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
                PatternTerm* term = op.m_term;

                if (term->quantityType != QuantifierType::FixedCount) {
                    m_backtrackingState.link(&m_jit);

                    unsigned parenthesesFrameLocation = term->frameLocation;

                    if (term->quantityType == QuantifierType::Greedy) {
                        // Check whether we should backtrack back into the parentheses, or if we
                        // are currently in a state where we had skipped over the subpattern
                        // (in which case the flag value on the stack will be -1).
                        MacroAssembler::Jump hadSkipped = m_jit.branch32(MacroAssembler::Equal, MacroAssembler::Address(MacroAssembler::stackPointerRegister, (parenthesesFrameLocation  + BackTrackInfoParentheses::beginIndex()) * sizeof(void*)), MacroAssembler::TrustedImm32(-1));

                        // For Greedy parentheses, we skip after having already tried going
                        // through the subpattern, so if we get here we're done.
                        YarrOp& beginOp = m_ops[op.m_previousOp];
                        beginOp.m_jumps.append(hadSkipped);
                    } else {
                        // For NonGreedy parentheses, we try skipping the subpattern first,
                        // so if we get here we need to try running through the subpattern
                        // next. Jump back to the start of the parentheses in the forwards
                        // matching path.
                        ASSERT(term->quantityType == QuantifierType::NonGreedy);

                        const MacroAssembler::RegisterID beginTemporary = m_regs.regT0;
                        const MacroAssembler::RegisterID countTemporary = m_regs.regT1;

                        YarrOp& beginOp = m_ops[op.m_previousOp];

                        loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex(), beginTemporary);
                        m_jit.branch32(MacroAssembler::Equal, beginTemporary, MacroAssembler::TrustedImm32(-1)).linkTo(beginOp.m_reentry, &m_jit);

                        MacroAssembler::JumpList exceededMatchLimit;

                        if (term->quantityMaxCount != quantifyInfinite) {
                            loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), countTemporary);
                            exceededMatchLimit.append(m_jit.branch32(MacroAssembler::AboveOrEqual, countTemporary, MacroAssembler::Imm32(term->quantityMaxCount)));
                        }

                        m_jit.branch32(MacroAssembler::Above, m_regs.index, beginTemporary).linkTo(beginOp.m_reentry, &m_jit);

                        exceededMatchLimit.link(&m_jit);
                    }

                    m_backtrackingState.fallthrough();
                }

                m_backtrackingState.append(op.m_jumps);
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
                RELEASE_ASSERT_NOT_REACHED();
#endif
                break;
            }

            // YarrOpCode::ParentheticalAssertionBegin/End
            case YarrOpCode::ParentheticalAssertionBegin: {
                PatternTerm* term = op.m_term;
                YarrOp& endOp = m_ops[op.m_nextOp];

                // We need to handle the backtracks upon backtracking back out
                // of a parenthetical assertion if either we need to correct
                // the input index, or the assertion was inverted.
                if (op.m_checkAdjust || term->invert()) {
                    m_backtrackingState.link(&m_jit);

                    if (op.m_checkAdjust)
                        m_jit.add32(MacroAssembler::Imm32(op.m_checkAdjust), m_regs.index);

                    // In an inverted assertion failure to match the subpattern
                    // is treated as a successful match - jump to the end of the
                    // subpattern. We already have adjusted the input position
                    // back to that before the assertion, which is correct.
                    if (term->invert())
                        m_jit.jump(endOp.m_reentry);

                    m_backtrackingState.fallthrough();
                }

                // The End node's jump list will contain any backtracks into
                // the end of the assertion. Also, if inverted, we will have
                // added the failure caused by a successful match to this.
                m_backtrackingState.append(endOp.m_jumps);
                break;
            }
            case YarrOpCode::ParentheticalAssertionEnd: {
                // Never backtrack into an assertion; later failures bail to before the begin.
                m_backtrackingState.takeBacktracksToJumpList(op.m_jumps, &m_jit);
                break;
            }

            case YarrOpCode::MatchFailed:
                break;
            }
        } while (opIndex);
    }

    // Compilation methods:
    // ====================

    // opCompileParenthesesSubpattern
    // Emits ops for a subpattern (set of parentheses). These consist
    // of a set of alternatives wrapped in an outer set of nodes for
    // the parentheses.
    // Supported types of parentheses are 'Once' (quantityMaxCount == 1),
    // 'Terminal' (non-capturing parentheses quantified as greedy
    // and infinite), and 0 based greedy / non-greedy quantified parentheses.
    // Alternatives will use the 'Simple' set of ops if either the
    // subpattern is terminal (in which case we will never need to
    // backtrack), or if the subpattern only contains one alternative.
    void opCompileParenthesesSubpattern(Checked<unsigned> checkedOffset, PatternTerm* term)
    {
        YarrOpCode parenthesesBeginOpCode;
        YarrOpCode parenthesesEndOpCode;
        YarrOpCode alternativeBeginOpCode = YarrOpCode::SimpleNestedAlternativeBegin;
        YarrOpCode alternativeNextOpCode = YarrOpCode::SimpleNestedAlternativeNext;
        YarrOpCode alternativeEndOpCode = YarrOpCode::SimpleNestedAlternativeEnd;

        if (UNLIKELY(!isSafeToRecurse())) {
            m_failureReason = JITFailureReason::ParenthesisNestedTooDeep;
            return;
        }

        // We can currently only compile quantity 1 subpatterns that are
        // not copies. We generate a copy in the case of a range quantifier,
        // e.g. /(?:x){3,9}/, or /(?:x)+/ (These are effectively expanded to
        // /(?:x){3,3}(?:x){0,6}/ and /(?:x)(?:x)*/ repectively). The problem
        // comes where the subpattern is capturing, in which case we would
        // need to restore the capture from the first subpattern upon a
        // failure in the second.
        if (term->quantityMinCount && term->quantityMinCount != term->quantityMaxCount) {
            m_failureReason = JITFailureReason::VariableCountedParenthesisWithNonZeroMinimum;
            return;
        }
        
        if (term->quantityMaxCount == 1 && !term->parentheses.isCopy) {
            // Select the 'Once' nodes.
            parenthesesBeginOpCode = YarrOpCode::ParenthesesSubpatternOnceBegin;
            parenthesesEndOpCode = YarrOpCode::ParenthesesSubpatternOnceEnd;

            // If there is more than one alternative we cannot use the 'simple' nodes.
            if (term->parentheses.disjunction->m_alternatives.size() != 1) {
                alternativeBeginOpCode = YarrOpCode::NestedAlternativeBegin;
                alternativeNextOpCode = YarrOpCode::NestedAlternativeNext;
                alternativeEndOpCode = YarrOpCode::NestedAlternativeEnd;
            }
        } else if (term->parentheses.isTerminal) {
            // Select the 'Terminal' nodes.
            parenthesesBeginOpCode = YarrOpCode::ParenthesesSubpatternTerminalBegin;
            parenthesesEndOpCode = YarrOpCode::ParenthesesSubpatternTerminalEnd;
        } else {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
            // We only handle generic parenthesis with non-fixed counts.
            if (term->quantityType == QuantifierType::FixedCount) {
                // This subpattern is not supported by the JIT.
                m_failureReason = JITFailureReason::FixedCountParenthesizedSubpattern;
                return;
            }

            m_containsNestedSubpatterns = true;

            // Select the 'Generic' nodes.
            parenthesesBeginOpCode = YarrOpCode::ParenthesesSubpatternBegin;
            parenthesesEndOpCode = YarrOpCode::ParenthesesSubpatternEnd;

            // If there is more than one alternative we cannot use the 'simple' nodes.
            if (term->parentheses.disjunction->m_alternatives.size() != 1) {
                alternativeBeginOpCode = YarrOpCode::NestedAlternativeBegin;
                alternativeNextOpCode = YarrOpCode::NestedAlternativeNext;
                alternativeEndOpCode = YarrOpCode::NestedAlternativeEnd;
            }
#else
            // This subpattern is not supported by the JIT.
            m_failureReason = JITFailureReason::ParenthesizedSubpattern;
            return;
#endif
        }

        size_t parenBegin = m_ops.size();
        m_ops.append(parenthesesBeginOpCode);

        m_ops.append(alternativeBeginOpCode);
        m_ops.last().m_previousOp = notFound;
        m_ops.last().m_term = term;
        PatternDisjunction* disjunction = term->parentheses.disjunction;
        auto& alternatives = disjunction->m_alternatives;
        for (unsigned i = 0; i < alternatives.size(); ++i) {
            size_t lastOpIndex = m_ops.size() - 1;

            PatternAlternative* nestedAlternative = alternatives[i].get();
            {
                // Calculate how much input we need to check for, and if non-zero check.
                YarrOp& lastOp = m_ops[lastOpIndex];
                lastOp.m_checkAdjust = nestedAlternative->m_minimumSize;
                if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
                    lastOp.m_checkAdjust -= disjunction->m_minimumSize;

                Checked<unsigned, RecordOverflow> checkedOffsetResult(checkedOffset);
                checkedOffsetResult += lastOp.m_checkAdjust;

                if (UNLIKELY(checkedOffsetResult.hasOverflowed())) {
                    m_failureReason = JITFailureReason::OffsetTooLarge;
                    return;
                }

                lastOp.m_checkedOffset = checkedOffsetResult;
            }
            opCompileAlternative(m_ops[lastOpIndex].m_checkedOffset, nestedAlternative);

            size_t thisOpIndex = m_ops.size();
            m_ops.append(YarrOp(alternativeNextOpCode));

            YarrOp& lastOp = m_ops[lastOpIndex];
            YarrOp& thisOp = m_ops[thisOpIndex];

            lastOp.m_alternative = nestedAlternative;
            lastOp.m_nextOp = thisOpIndex;
            thisOp.m_previousOp = lastOpIndex;
            thisOp.m_term = term;
        }
        YarrOp& lastOp = m_ops.last();
        ASSERT(lastOp.m_op == alternativeNextOpCode);
        lastOp.m_op = alternativeEndOpCode;
        lastOp.m_alternative = nullptr;
        lastOp.m_nextOp = notFound;
        lastOp.m_checkedOffset = checkedOffset;

        size_t parenEnd = m_ops.size();
        m_ops.append(parenthesesEndOpCode);

        m_ops[parenBegin].m_term = term;
        m_ops[parenBegin].m_previousOp = notFound;
        m_ops[parenBegin].m_nextOp = parenEnd;
        m_ops[parenBegin].m_checkedOffset = checkedOffset;
        m_ops[parenEnd].m_term = term;
        m_ops[parenEnd].m_previousOp = parenBegin;
        m_ops[parenEnd].m_nextOp = notFound;
        m_ops[parenEnd].m_checkedOffset = checkedOffset;
    }

    // opCompileParentheticalAssertion
    // Emits ops for a parenthetical assertion. These consist of an
    // YarrOpCode::SimpleNestedAlternativeBegin/Next/End set of nodes wrapping
    // the alternatives, with these wrapped by an outer pair of
    // YarrOpCode::ParentheticalAssertionBegin/End nodes.
    // We can always use the OpSimpleNestedAlternative nodes in the
    // case of parenthetical assertions since these only ever match
    // once, and will never backtrack back into the assertion.
    void opCompileParentheticalAssertion(Checked<unsigned> checkedOffset, PatternTerm* term)
    {
        if (UNLIKELY(!isSafeToRecurse())) {
            m_failureReason = JITFailureReason::ParenthesisNestedTooDeep;
            return;
        }

        auto originalCheckedOffset = checkedOffset;
        size_t parenBegin = m_ops.size();
        m_ops.append(YarrOpCode::ParentheticalAssertionBegin);
        m_ops.last().m_checkAdjust = checkedOffset - term->inputPosition;
        checkedOffset -= m_ops.last().m_checkAdjust;
        m_ops.last().m_checkedOffset = checkedOffset;

        m_ops.append(YarrOpCode::SimpleNestedAlternativeBegin);
        m_ops.last().m_previousOp = notFound;
        m_ops.last().m_term = term;
        PatternDisjunction* disjunction = term->parentheses.disjunction;
        auto& alternatives = disjunction->m_alternatives;
        for (unsigned i = 0; i < alternatives.size(); ++i) {
            size_t lastOpIndex = m_ops.size() - 1;

            PatternAlternative* nestedAlternative = alternatives[i].get();
            {
                // Calculate how much input we need to check for, and if non-zero check.
                YarrOp& lastOp = m_ops[lastOpIndex];
                lastOp.m_checkAdjust = nestedAlternative->m_minimumSize;
                if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
                    lastOp.m_checkAdjust -= disjunction->m_minimumSize;
                lastOp.m_checkedOffset = checkedOffset + lastOp.m_checkAdjust;
            }
            opCompileAlternative(m_ops[lastOpIndex].m_checkedOffset, nestedAlternative);

            size_t thisOpIndex = m_ops.size();
            m_ops.append(YarrOp(YarrOpCode::SimpleNestedAlternativeNext));

            YarrOp& lastOp = m_ops[lastOpIndex];
            YarrOp& thisOp = m_ops[thisOpIndex];

            lastOp.m_alternative = nestedAlternative;
            lastOp.m_nextOp = thisOpIndex;
            thisOp.m_previousOp = lastOpIndex;
            thisOp.m_term = term;
        }
        YarrOp& lastOp = m_ops.last();
        ASSERT(lastOp.m_op == YarrOpCode::SimpleNestedAlternativeNext);
        lastOp.m_op = YarrOpCode::SimpleNestedAlternativeEnd;
        lastOp.m_alternative = nullptr;
        lastOp.m_nextOp = notFound;
        lastOp.m_checkedOffset = checkedOffset;

        size_t parenEnd = m_ops.size();
        m_ops.append(YarrOpCode::ParentheticalAssertionEnd);

        m_ops[parenBegin].m_term = term;
        m_ops[parenBegin].m_previousOp = notFound;
        m_ops[parenBegin].m_nextOp = parenEnd;
        m_ops[parenEnd].m_term = term;
        m_ops[parenEnd].m_previousOp = parenBegin;
        m_ops[parenEnd].m_nextOp = notFound;
        m_ops[parenEnd].m_checkedOffset = originalCheckedOffset;
    }

    // opCompileAlternative
    // Called to emit nodes for all terms in an alternative.
    void opCompileAlternative(Checked<unsigned> checkedOffset, PatternAlternative* alternative)
    {
        optimizeAlternative(alternative);

        for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
            PatternTerm* term = &alternative->m_terms[i];

            switch (term->type) {
            case PatternTerm::Type::ParenthesesSubpattern:
                opCompileParenthesesSubpattern(checkedOffset, term);
                break;

            case PatternTerm::Type::ParentheticalAssertion:
                opCompileParentheticalAssertion(checkedOffset, term);
                break;

            default:
                m_ops.append(term);
                m_ops.last().m_checkedOffset = checkedOffset;
            }
        }
    }

    // opCompileBody
    // This method compiles the body disjunction of the regular expression.
    // The body consists of two sets of alternatives - zero or more 'once
    // through' (BOL anchored) alternatives, followed by zero or more
    // repeated alternatives.
    // For each of these two sets of alteratives, if not empty they will be
    // wrapped in a set of YarrOpCode::BodyAlternativeBegin/Next/End nodes (with the
    // 'begin' node referencing the first alternative, and 'next' nodes
    // referencing any further alternatives. The begin/next/end nodes are
    // linked together in a doubly linked list. In the case of repeating
    // alternatives, the end node is also linked back to the beginning.
    // If no repeating alternatives exist, then a YarrOpCode::MatchFailed node exists
    // to return the failing result.
    void opCompileBody(PatternDisjunction* disjunction)
    {
        if (UNLIKELY(!isSafeToRecurse())) {
            m_failureReason = JITFailureReason::ParenthesisNestedTooDeep;
            return;
        }
        
        auto& alternatives = disjunction->m_alternatives;
        size_t currentAlternativeIndex = 0;

        // Emit the 'once through' alternatives.
        if (alternatives.size() && alternatives[0]->onceThrough()) {
            m_ops.append(YarrOp(YarrOpCode::BodyAlternativeBegin));
            m_ops.last().m_previousOp = notFound;

            do {
                size_t lastOpIndex = m_ops.size() - 1;

                PatternAlternative* alternative = alternatives[currentAlternativeIndex].get();
                m_ops[lastOpIndex].m_checkedOffset = alternative->m_minimumSize;
                opCompileAlternative(alternative->m_minimumSize, alternative);

                size_t thisOpIndex = m_ops.size();
                m_ops.append(YarrOp(YarrOpCode::BodyAlternativeNext));

                YarrOp& lastOp = m_ops[lastOpIndex];
                YarrOp& thisOp = m_ops[thisOpIndex];

                lastOp.m_alternative = alternative;
                lastOp.m_nextOp = thisOpIndex;
                thisOp.m_previousOp = lastOpIndex;
                
                ++currentAlternativeIndex;
            } while (currentAlternativeIndex < alternatives.size() && alternatives[currentAlternativeIndex]->onceThrough());

            YarrOp& lastOp = m_ops.last();

            ASSERT(lastOp.m_op == YarrOpCode::BodyAlternativeNext);
            lastOp.m_op = YarrOpCode::BodyAlternativeEnd;
            lastOp.m_alternative = nullptr;
            lastOp.m_nextOp = notFound;
            lastOp.m_checkedOffset = 0;
        }

        if (currentAlternativeIndex == alternatives.size()) {
            m_ops.append(YarrOp(YarrOpCode::MatchFailed));
            m_ops.last().m_checkedOffset = 0;
            return;
        }

        // Emit the repeated alternatives.
        size_t repeatLoop = m_ops.size();
        m_ops.append(YarrOp(YarrOpCode::BodyAlternativeBegin));
        m_ops.last().m_previousOp = notFound;
        // Collect BoyerMooreInfo if it is possible and profitable. BoyerMooreInfo will be used to emit fast skip path with large stride
        // at the beginning of the body alternatives.
        // We do not emit these fast path when RegExp has sticky or unicode flag. Sticky case does not need this since
        // it fails when the body alternatives fail to match with the current offset.
        // FIXME: Support unicode flag.
        // https://bugs.webkit.org/show_bug.cgi?id=228611
        if (disjunction->m_minimumSize && !m_pattern.sticky() && !m_pattern.eitherUnicode()) {
            auto bmInfo = BoyerMooreInfo::create(m_charSize, std::min<unsigned>(disjunction->m_minimumSize, BoyerMooreInfo::maxLength));
            if (collectBoyerMooreInfo(disjunction, currentAlternativeIndex, bmInfo.get())) {
                dataLogLnIf(YarrJITInternal::verbose, bmInfo.get());
                m_ops.last().m_bmInfo = bmInfo.ptr();
                m_bmInfos.append(WTFMove(bmInfo));
                m_usesT2 = true;
                if (m_sampleString)
                    m_sampler.sample(m_sampleString.value());
            } else
                dataLogLnIf(YarrJITInternal::verbose, "BM collection failed");
        }

        do {
            size_t lastOpIndex = m_ops.size() - 1;

            PatternAlternative* alternative = alternatives[currentAlternativeIndex].get();
            ASSERT(!alternative->onceThrough());
            m_ops[lastOpIndex].m_checkedOffset = alternative->m_minimumSize;
            opCompileAlternative(alternative->m_minimumSize, alternative);

            size_t thisOpIndex = m_ops.size();
            m_ops.append(YarrOp(YarrOpCode::BodyAlternativeNext));

            YarrOp& lastOp = m_ops[lastOpIndex];
            YarrOp& thisOp = m_ops[thisOpIndex];

            lastOp.m_alternative = alternative;
            lastOp.m_nextOp = thisOpIndex;
            thisOp.m_previousOp = lastOpIndex;
            
            ++currentAlternativeIndex;
        } while (currentAlternativeIndex < alternatives.size());
        YarrOp& lastOp = m_ops.last();
        ASSERT(lastOp.m_op == YarrOpCode::BodyAlternativeNext);
        lastOp.m_op = YarrOpCode::BodyAlternativeEnd;
        lastOp.m_alternative = nullptr;
        lastOp.m_nextOp = repeatLoop;
        lastOp.m_checkedOffset = 0;
    }

    std::optional<unsigned> collectBoyerMooreInfoFromTerm(PatternTerm& term, unsigned cursor, BoyerMooreInfo& bmInfo)
    {
        switch (term.type) {
        case PatternTerm::Type::AssertionBOL:
        case PatternTerm::Type::AssertionEOL:
        case PatternTerm::Type::AssertionWordBoundary:
            // Conservatively say any assertions just match.
            return cursor;

        case PatternTerm::Type::BackReference:
        case PatternTerm::Type::ForwardReference:
            return std::nullopt;

        case PatternTerm::Type::ParenthesesSubpattern: {
            // Right now, we only support /(...)/ or /(...)?/ case.
            PatternDisjunction* disjunction = term.parentheses.disjunction;
            if (term.quantityType != QuantifierType::FixedCount && term.quantityType != QuantifierType::Greedy)
                return std::nullopt;
            if (term.quantityMaxCount != 1)
                return std::nullopt;
            if (term.m_matchDirection != MatchDirection::Forward)
                return std::nullopt;
            if (term.m_invert)
                return std::nullopt;

            auto& alternatives = disjunction->m_alternatives;
            std::optional<unsigned> minimumCursor;
            for (unsigned i = 0; i < alternatives.size(); ++i) {
                PatternAlternative* alternative = alternatives[i].get();
                unsigned alternativeCursor = cursor;
                for (unsigned index = 0; index < alternative->m_terms.size() && alternativeCursor < bmInfo.length(); ++index) {
                    PatternTerm& term = alternative->m_terms[index];
                    std::optional<unsigned> nextCursor = collectBoyerMooreInfoFromTerm(term, alternativeCursor, bmInfo);
                    if (!nextCursor) {
                        dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", alternativeCursor);
                        bmInfo.shortenLength(alternativeCursor);
                        break;
                    }
                    alternativeCursor = nextCursor.value();
                }
                if (!minimumCursor)
                    minimumCursor = alternativeCursor;
                else if (minimumCursor.value() != alternativeCursor) {
                    // Alternatives have different size.
                    // Let's say we have /(aaa|b)c/. Then, we would like to create BM info,
                    //
                    //     offset     0 1
                    //     characters a a
                    //                b c
                    //
                    // And we do not want to create 2, 3, 4 offsets since it changes based on whether we pick "aaa" or "b".
                    // So, when we encounter (aaa|b), after applying each alternative to BMInfo, we cut BMInfo candidate length
                    // with the shortest + 1 size, in this case "2".
                    if (minimumCursor.value() > alternativeCursor)
                        minimumCursor = alternativeCursor;
                    dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", minimumCursor.value() + 1);
                    bmInfo.shortenLength(minimumCursor.value() + 1);
                }
            }

            if (term.quantityType == QuantifierType::FixedCount)
                cursor = minimumCursor.value();
            else {
                // Let's see /(aaaa|bbbb)?c/. In this case, we do not update the cursor since "(aaaa|bbbb)" is optional.
                // And let's shorten the candidate to "1" in this case since we do not want to apply "c" to all possible subsequent cases.
                dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", cursor + 1);
                bmInfo.shortenLength(cursor + 1);
            }
            return cursor;
        }

        case PatternTerm::Type::ParentheticalAssertion:
            return std::nullopt;

        case PatternTerm::Type::DotStarEnclosure:
            return std::nullopt;

        case PatternTerm::Type::CharacterClass: {
            if (term.quantityType != QuantifierType::FixedCount && term.quantityType != QuantifierType::Greedy)
                return std::nullopt;
            if (term.quantityMaxCount != 1)
                return std::nullopt;
            if (term.inputPosition != cursor)
                return std::nullopt;
            auto& characterClass = *term.characterClass;
            if (term.invert() || characterClass.m_anyCharacter) {
                bmInfo.setAll(cursor);
                // If this is greedy one-character pattern "a?", we should not increase cursor.
                // If we see greedy pattern, then we cut bmInfo here to avoid possibility explosion.
                if (term.quantityType == QuantifierType::FixedCount)
                    ++cursor;
                else
                    bmInfo.shortenLength(cursor + 1);
                return cursor;
            }
            if (!characterClass.m_rangesUnicode.isEmpty())
                bmInfo.addRanges(cursor, characterClass.m_rangesUnicode);
            if (!characterClass.m_matchesUnicode.isEmpty())
                bmInfo.addCharacters(cursor, characterClass.m_matchesUnicode);
            if (!characterClass.m_ranges.isEmpty())
                bmInfo.addRanges(cursor, characterClass.m_ranges);
            if (!characterClass.m_matches.isEmpty())
                bmInfo.addCharacters(cursor, characterClass.m_matches);

            // If this is greedy one-character pattern "a?", we should not increase cursor.
            // If we see greedy pattern, then we cut bmInfo here to avoid possibility explosion.
            if (term.quantityType == QuantifierType::FixedCount)
                ++cursor;
            else
                bmInfo.shortenLength(cursor + 1);
            return cursor;
        }
        case PatternTerm::Type::PatternCharacter: {
            if (term.quantityType != QuantifierType::FixedCount && term.quantityType != QuantifierType::Greedy)
                return std::nullopt;
            if (term.quantityMaxCount != 1)
                return std::nullopt;
            if (term.inputPosition != cursor)
                return std::nullopt;
            if (U16_LENGTH(term.patternCharacter) != 1 && m_decodeSurrogatePairs)
                return std::nullopt;
            // For case-insesitive compares, non-ascii characters that have different
            // upper & lower case representations are already converted to a character class.
            ASSERT(!term.ignoreCase() || isASCIIAlpha(term.patternCharacter) || isCanonicallyUnique(term.patternCharacter, m_canonicalMode));
            if (term.ignoreCase() && isASCIIAlpha(term.patternCharacter)) {
                bmInfo.set(cursor, toASCIIUpper(term.patternCharacter));
                bmInfo.set(cursor, toASCIILower(term.patternCharacter));
            } else
                bmInfo.set(cursor, term.patternCharacter);

            // If this is greedy one-character pattern "a?", we should not increase cursor.
            // If we see greedy pattern, then we cut bmInfo here to avoid possibility explosion.
            if (term.quantityType == QuantifierType::FixedCount)
                ++cursor;
            else
                bmInfo.shortenLength(cursor + 1);
            return cursor;
        }
        }
        return std::nullopt;
    }

    bool collectBoyerMooreInfo(PatternDisjunction* disjunction, size_t currentAlternativeIndex, BoyerMooreInfo& bmInfo)
    {
        // If we have a searching pattern /abcdef/, then we can check the 6th character against a set of {a, b, c, d, e, f}.
        // If it does not match, we can shift 6 characters. We use this strategy since this way can be extended easily to support
        // disjunction, character-class, and ignore-cases. For example, in the case of /(?:abc|def)/, we can check 3rd character
        // against {a, b, c, d, e, f} and shift 3 characters if it does not match.
        //
        // Then, the best way to perform the above shifting is that finding the longest character sequence which does not have
        // many candidates. In the case of /[a-z]aaaaaaa[a-z]/, we can extract "aaaaaaa" sequence and check 8th character against {a}.
        // If it does not match, then we can shift 7 characters (length of "aaaaaaa"). This shifting is better than using "[a-z]aaaaaaa[a-z]"
        // sequence and {a-z} set since {a-z} set will almost always match.
        //
        // We first collect possible characters for each character position. Then, apply heuristics to extract good character sequence from
        // that and construct fast searching with long stride.

        ASSERT(disjunction->m_minimumSize);

        // FIXME: Support non-fixed-sized lookahead (e.g. /.*abc/ and extract "abc" sequence).
        // https://bugs.webkit.org/show_bug.cgi?id=228612
        auto& alternatives = disjunction->m_alternatives;
        for (; currentAlternativeIndex < alternatives.size(); ++currentAlternativeIndex) {
            unsigned cursor = 0;
            PatternAlternative* alternative = alternatives[currentAlternativeIndex].get();
            for (unsigned index = 0; index < alternative->m_terms.size() && cursor < bmInfo.length(); ++index) {
                PatternTerm& term = alternative->m_terms[index];
                std::optional<unsigned> nextCursor = collectBoyerMooreInfoFromTerm(term, cursor, bmInfo);
                if (!nextCursor) {
                    dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", cursor);
                    bmInfo.shortenLength(cursor);
                    break;
                }
                cursor = nextCursor.value();
            }
        }
        return bmInfo.length();
    }

    std::span<const BoyerMooreBitmap::Map::WordType> getBoyerMooreBitmap(const BoyerMooreBitmap::Map& map)
    {
        if (auto existing = m_boyerMooreData->tryReuseBoyerMooreBitmap(map); existing.size())
            return existing;

        auto heapMap = makeUniqueRef<BoyerMooreBitmap::Map>(map);
        auto pointer = heapMap->storage();
        m_bmMaps.append(WTFMove(heapMap));
        return pointer;
    }

    void generateTryReadUnicodeCharacterHelper()
    {
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_tryReadUnicodeCharacterCalls.isEmpty())
            return;

        ASSERT(m_decodeSurrogatePairs);

        m_tryReadUnicodeCharacterEntry = m_jit.label();

        m_jit.tagReturnAddress();

        tryReadUnicodeCharImpl<TryReadUnicodeCharCodeLocation::CompiledAsHelper>(m_regs.regT0);

        m_jit.ret();
#endif
    }

    void generateEnter()
    {
        auto pushInEnter = [&](GPRReg gpr) {
            m_jit.push(gpr);
            m_pushCountInEnter += 1;
        };

        auto pushPairInEnter = [&](GPRReg gpr1, GPRReg gpr2) {
            m_jit.pushPair(gpr1, gpr2);
            m_pushCountInEnter += 2;
        };

#if CPU(X86_64)
        UNUSED_VARIABLE(pushPairInEnter);
        m_jit.emitFunctionPrologue();

        if (m_pattern.m_saveInitialStartValue)
            pushInEnter(X86Registers::ebx);

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        if (m_containsNestedSubpatterns) {
            pushInEnter(X86Registers::r12);
        }
#endif

        if (mayCall()) {
            pushInEnter(X86Registers::r13);
            pushInEnter(X86Registers::r14);
            pushInEnter(X86Registers::r15);
        } else if (m_pattern.hasDuplicateNamedCaptureGroups())
            pushInEnter(X86Registers::r14);

#elif CPU(ARM64)
        UNUSED_VARIABLE(pushInEnter);
        if (!Options::useJITCage())
            m_jit.tagReturnAddress();
        if (mayCall()) {
            if (!Options::useJITCage())
                pushPairInEnter(MacroAssembler::framePointerRegister, MacroAssembler::linkRegister);

            m_jit.move(MacroAssembler::TrustedImm32(0xd800), m_regs.leadingSurrogateTag);
            m_jit.move(MacroAssembler::TrustedImm32(0xdc00), m_regs.trailingSurrogateTag);
        }
#elif CPU(ARM_THUMB2)
        UNUSED_VARIABLE(pushPairInEnter);
        pushInEnter(ARMRegisters::r4);
        pushInEnter(ARMRegisters::r5);
        pushInEnter(ARMRegisters::r6);
        pushInEnter(ARMRegisters::r8);
        pushInEnter(ARMRegisters::r10);
#elif CPU(RISCV64)
        UNUSED_VARIABLE(pushInEnter);
        if (mayCall())
            pushPairInEnter(MacroAssembler::framePointerRegister, MacroAssembler::linkRegister);
#else
        UNUSED_VARIABLE(pushInEnter);
        UNUSED_VARIABLE(pushPairInEnter);
#endif
    }

    void generateReturn()
    {
#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
        if (m_compileMode == JITCompileMode::InlineTest) {
            m_inlinedMatched.append(m_jit.jump());
            return;
        }
#endif

#if CPU(X86_64)
        if (mayCall()) {
            m_jit.pop(X86Registers::r15);
            m_jit.pop(X86Registers::r14);
            m_jit.pop(X86Registers::r13);
        } else if (m_pattern.hasDuplicateNamedCaptureGroups())
            m_jit.pop(X86Registers::r14);

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        if (m_containsNestedSubpatterns) {
            m_jit.pop(X86Registers::r12);
        }
#endif

        if (m_pattern.m_saveInitialStartValue)
            m_jit.pop(X86Registers::ebx);
        m_jit.emitFunctionEpilogue();
#elif CPU(ARM64)
        if (mayCall()) {
            if (!Options::useJITCage())
                m_jit.popPair(MacroAssembler::framePointerRegister, MacroAssembler::linkRegister);
        }
#elif CPU(ARM_THUMB2)
        m_jit.pop(ARMRegisters::r10);
        m_jit.pop(ARMRegisters::r8);
        m_jit.pop(ARMRegisters::r6);
        m_jit.pop(ARMRegisters::r5);
        m_jit.pop(ARMRegisters::r4);
#elif CPU(RISCV64)
        if (mayCall())
            m_jit.popPair(MacroAssembler::framePointerRegister, MacroAssembler::linkRegister);
#endif

#if CPU(ARM64E)
        if (Options::useJITCage())
            m_jit.farJump(MacroAssembler::TrustedImmPtr(retagCodePtr<void*, CFunctionPtrTag, OperationPtrTag>(&vmEntryToYarrJITAfter)), OperationPtrTag);
        else
            m_jit.ret();
#else
        m_jit.ret();
#endif
    }

    void loadSubPattern(MacroAssembler::RegisterID outputGPR, unsigned subpatternId, MacroAssembler::RegisterID startIndexGPR, MacroAssembler::RegisterID endIndexOrLenGPR)
    {
        m_jit.loadPair32(outputGPR, MacroAssembler::TrustedImm32((subpatternId << 1) * sizeof(int)), startIndexGPR, endIndexOrLenGPR);
    }

    void loadSubPatternIdForDuplicateNamedGroup(MacroAssembler::RegisterID outputGPR, unsigned duplicateNamedGroupId, MacroAssembler::RegisterID subpatternIdGPR)
    {
        m_jit.load32(MacroAssembler::Address(outputGPR, offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned)), subpatternIdGPR);
    }

    void loadSubPattern(MacroAssembler::RegisterID outputGPR, MacroAssembler::RegisterID subpatternIdGPR, MacroAssembler::RegisterID startIndexGPR, MacroAssembler::RegisterID endIndexOrLenGPR)
    {
        m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(outputGPR, subpatternIdGPR, MacroAssembler::TimesEight), endIndexOrLenGPR);
        m_jit.loadPair32(endIndexOrLenGPR, startIndexGPR, endIndexOrLenGPR);
    }

    void loadSubPatternEnd(MacroAssembler::RegisterID outputGPR, MacroAssembler::RegisterID subpatternIdGPR, MacroAssembler::RegisterID endIndex)
    {
        m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(outputGPR, subpatternIdGPR, MacroAssembler::TimesEight), endIndex);
        m_jit.load32(MacroAssembler::Address(endIndex, sizeof(unsigned)), endIndex);
    }

public:
    YarrGenerator(CCallHelpers& jit, VM* vm, YarrCodeBlock* codeBlock, const YarrJITRegs& regs, YarrPattern& pattern, StringView patternString, CharSize charSize, JITCompileMode compileMode, std::optional<StringView> sampleString)
        : m_jit(jit)
        , m_vm(vm)
        , m_codeBlock(codeBlock)
        , m_boyerMooreData(static_cast<YarrBoyerMooreData*>(codeBlock))
        , m_regs(regs)
        , m_pattern(pattern)
        , m_patternString(patternString)
        , m_charSize(charSize)
        , m_compileMode(compileMode)
        , m_decodeSurrogatePairs(m_charSize == CharSize::Char16 && m_pattern.eitherUnicode())
        , m_unicodeIgnoreCase(m_pattern.eitherUnicode() && m_pattern.ignoreCase())
        , m_decode16BitForBackreferencesWithCalls(m_charSize == CharSize::Char16 && m_pattern.m_containsBackreferences && m_pattern.ignoreCase())
        , m_canonicalMode(m_pattern.eitherUnicode() ? CanonicalMode::Unicode : CanonicalMode::UCS2)
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        , m_parenContextSizes(compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numSubpatterns : 0, compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numDuplicateNamedCaptureGroups : 0, m_pattern.m_body->m_callFrameSize)
#endif
        , m_sampleString(sampleString)
        , m_sampler(charSize)
    {
    }

    YarrGenerator(CCallHelpers& jit, VM* vm, YarrBoyerMooreData* yarrBMData, const YarrJITRegs& regs, YarrPattern& pattern, StringView patternString, CharSize charSize, JITCompileMode compileMode)
        : m_jit(jit)
        , m_vm(vm)
        , m_codeBlock(nullptr)
        , m_boyerMooreData(yarrBMData)
        , m_regs(regs)
        , m_pattern(pattern)
        , m_patternString(patternString)
        , m_charSize(charSize)
        , m_compileMode(compileMode)
        , m_decodeSurrogatePairs(m_charSize == CharSize::Char16 && m_pattern.eitherUnicode())
        , m_unicodeIgnoreCase(m_pattern.eitherUnicode() && m_pattern.ignoreCase())
        , m_decode16BitForBackreferencesWithCalls(m_charSize == CharSize::Char16 && m_pattern.m_containsBackreferences && m_pattern.ignoreCase())
        , m_canonicalMode(m_pattern.eitherUnicode() ? CanonicalMode::Unicode : CanonicalMode::UCS2)
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        , m_parenContextSizes(compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numSubpatterns : 0, compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numDuplicateNamedCaptureGroups : 0, m_pattern.m_body->m_callFrameSize)
#endif
        , m_sampler(charSize)
    {
        if (m_pattern.m_containsBackreferences)
            m_usesT2 = true;
    }

    bool isSafeToRecurse() const
    {
        if (m_compilationThreadStackChecker)
            return m_compilationThreadStackChecker->isSafeToRecurse();

        return m_vm->isSafeToRecurse();
    }

    void setStackChecker(StackCheck* stackChecker)
    {
        m_compilationThreadStackChecker = stackChecker;
    }

    template<typename OperationType>
    static constexpr void functionChecks()
    {
        static_assert(FunctionTraits<OperationType>::cCallArity() == 5, "YarrJITCode takes 5 arguments");
        static_assert(std::is_same<MatchingContextHolder*, typename FunctionTraits<OperationType>::template ArgumentType<4>>::value, "MatchingContextHolder* is expected as the function 5th argument");
    }

    void compile(YarrCodeBlock& codeBlock)
    {
        MacroAssembler::Label startOfMainCode;

#if !ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs) {
            codeBlock.setFallBackWithFailureReason(JITFailureReason::DecodeSurrogatePair);
            return;
        }
#endif

        if (m_pattern.m_containsBackreferences
#if ENABLE(YARR_JIT_BACKREFERENCES)
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
            && (m_compileMode == JITCompileMode::MatchOnly)
#else
            && (m_compileMode == JITCompileMode::MatchOnly || (m_pattern.ignoreCase() && m_charSize != CharSize::Char8))
#endif
#endif
            ) {
                codeBlock.setFallBackWithFailureReason(JITFailureReason::BackReference);
                return;
        }

        if (m_pattern.m_containsLookbehinds) {
            codeBlock.setFallBackWithFailureReason(JITFailureReason::Lookbehind);
            return;
        }

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
        if (m_decodeSurrogatePairs && m_compileMode != JITCompileMode::InlineTest && !m_pattern.multiline() && !m_pattern.m_containsBOL && !m_pattern.m_containsLookbehinds && !m_pattern.m_containsModifiers) {
            ASSERT(m_regs.firstCharacterAdditionalReadSize != InvalidGPRReg);
            m_useFirstNonBMPCharacterOptimization = true;
        }
#endif

        // We need to compile before generating code since we set flags based on compilation that
        // are used during generation.
        opCompileBody(m_pattern.m_body);
        
        if (m_failureReason) {
            codeBlock.setFallBackWithFailureReason(*m_failureReason);
            return;
        }

        if (UNLIKELY(Options::dumpDisassembly() || Options::dumpRegExpDisassembly()))
            m_disassembler = makeUnique<YarrDisassembler>(this);

        if (m_disassembler)
            m_disassembler->setStartOfCode(m_jit.label());

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        if (m_containsNestedSubpatterns)
            codeBlock.setUsesPatternContextBuffer();
#endif

        generateEnter();

        startOfMainCode = m_jit.label();

        MacroAssembler::Jump hasInput = checkInput();
        generateFailReturn();
        hasInput.link(&m_jit);

        unsigned callFrameSizeInBytes = alignCallFrameSizeInBytes(m_pattern.m_body->m_callFrameSize);
        if (callFrameSizeInBytes) {
            // Check stack size
            m_jit.addPtr(MacroAssembler::TrustedImm32(-callFrameSizeInBytes), MacroAssembler::stackPointerRegister, m_regs.regT0);

            // Make sure that the JITed functions have 5 parameters and that the 5th argument is a MatchingContextHolder*
            functionChecks<YarrCodeBlock::YarrJITCode8>();
            functionChecks<YarrCodeBlock::YarrJITCode16>();
            functionChecks<YarrCodeBlock::YarrJITCodeMatchOnly8>();
            functionChecks<YarrCodeBlock::YarrJITCodeMatchOnly16>();
#if CPU(ARM_THUMB2)
            // Not enough argument registers: try to load the 5th argument from the stack
            MacroAssembler::RegisterID matchingContext = m_regs.regT1;

            // The argument will be in an offset that depends on the arch and the number of registers we pushed into the stack
            // POKE_ARGUMENT_OFFSET: MIPS reserves space in the stack for all arguments, so we add +4 offset
            // m_pushCountInEnter: number of registers pushed into the stack (see generateEnter())
            unsigned offset = POKE_ARGUMENT_OFFSET + m_pushCountInEnter;
            m_jit.loadPtr(MacroAssembler::Address(MacroAssembler::stackPointerRegister, offset * sizeof(void*)), matchingContext);
#else
            MacroAssembler::RegisterID matchingContext = m_regs.matchingContext;
#endif
            MacroAssembler::Jump stackOk = m_jit.branchPtr(MacroAssembler::BelowOrEqual, MacroAssembler::Address(matchingContext, MatchingContextHolder::offsetOfStackLimit()), m_regs.regT0);

            // Exceeded stack limit, punt to the interpreter.
            m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
            m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
            generateReturn();

            stackOk.link(&m_jit);
            m_jit.move(m_regs.regT0, MacroAssembler::stackPointerRegister);
        }

#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
        if (m_decodeSurrogatePairs)
            m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(m_regs.input, m_regs.length, MacroAssembler::TimesTwo), m_regs.endOfStringAddress);
#endif

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        if (m_containsNestedSubpatterns)
            m_jit.move(MacroAssembler::TrustedImm32(matchLimit), m_regs.remainingMatchCount);
#endif

        // Initialize subpatterns' starts. And initialize matchStart if `!m_pattern.m_body->m_hasFixedSize`.
        // If the mode is JITCompileMode::IncludeSubpatterns, then matchStart is subpatterns[0]'s start.
        if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
            unsigned subpatternId = 0;
            // First subpatternId's start is configured to `index` if !m_pattern.m_body->m_hasFixedSize.
            if (!m_pattern.m_body->m_hasFixedSize) {
                setMatchStart(m_regs.index);
                ++subpatternId;
            }
            for (; subpatternId < m_pattern.m_numSubpatterns + 1; ++subpatternId)
                m_jit.store32(MacroAssembler::TrustedImm32(-1), MacroAssembler::Address(m_regs.output, (subpatternId << 1) * sizeof(int)));
            for (unsigned i = m_pattern.offsetVectorBaseForNamedCaptures(); i < m_pattern.offsetsSize(); ++i)
                m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (i) * sizeof(int)));
        } else {
            if (!m_pattern.m_body->m_hasFixedSize)
                setMatchStart(m_regs.index);
        }

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        if (m_containsNestedSubpatterns) {
            initParenContextFreeList();
            if (m_failureReason) {
                codeBlock.setFallBackWithFailureReason(*m_failureReason);
                return;
            }
        }
#endif
        
        if (m_pattern.m_saveInitialStartValue)
            m_jit.move(m_regs.index, m_regs.initialStart);

        generate();
        if (m_disassembler)
            m_disassembler->setEndOfGenerate(m_jit.label());
        backtrack();
        if (m_disassembler)
            m_disassembler->setEndOfBacktrack(m_jit.label());

        ptrdiff_t codeSize = MacroAssembler::differenceBetween(startOfMainCode, m_jit.label());
        bool canInline = m_compileMode != JITCompileMode::IncludeSubpatterns
            && !m_pattern.global() && !m_pattern.sticky() && !m_pattern.eitherUnicode()
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
            && !m_containsNestedSubpatterns
#endif
            && !m_pattern.m_containsBackreferences
            && !m_pattern.m_saveInitialStartValue;

        generateTryReadUnicodeCharacterHelper();

        generateJITFailReturn();

        if (m_disassembler)
            m_disassembler->setEndOfCode(m_jit.label());

        auto backtrackRecords = m_backtrackingState.backtrackRecords();
        if (!backtrackRecords.isEmpty()) {
            m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
                BacktrackingState::linkBacktrackRecords(linkBuffer, backtrackRecords);
            });
        }

        if (!m_tryReadUnicodeCharacterCalls.isEmpty()) {
            m_jit.addLinkTask([=, this] (LinkBuffer& linkBuffer) {
                CodeLocationLabel<NoPtrTag> tryReadUnicodeCharacterHelper = linkBuffer.locationOf<NoPtrTag>(m_tryReadUnicodeCharacterEntry);

                for (auto call : m_tryReadUnicodeCharacterCalls)
                    linkBuffer.link(call, tryReadUnicodeCharacterHelper);
            });
        }

        if (m_disassembler) {
            m_jit.addLateLinkTask([=, this] (LinkBuffer& linkBuffer) {
                m_disassembler->dump(linkBuffer);
            });
        }

        LinkBuffer linkBuffer(m_jit, &codeBlock, LinkBuffer::Profile::YarrJIT, JITCompilationCanFail);
        if (linkBuffer.didFailToAllocate()) {
            codeBlock.setFallBackWithFailureReason(JITFailureReason::ExecutableMemoryAllocationFailure);
            return;
        }

        if (m_compileMode == JITCompileMode::MatchOnly) {
            if (m_charSize == CharSize::Char8) {
                codeBlock.set8BitCodeMatchOnly(FINALIZE_REGEXP_CODE(linkBuffer, YarrMatchOnly8BitPtrTag, nullptr, "Match-only 8-bit regular expression"), WTFMove(m_bmMaps));
                codeBlock.set8BitInlineStats(codeSize, callFrameSizeInBytes, canInline, m_usesT2);
            } else {
                codeBlock.set16BitCodeMatchOnly(FINALIZE_REGEXP_CODE(linkBuffer, YarrMatchOnly16BitPtrTag, nullptr, "Match-only 16-bit regular expression"), WTFMove(m_bmMaps));
                codeBlock.set16BitInlineStats(codeSize, callFrameSizeInBytes, canInline, m_usesT2);
            }
        } else {
            if (m_charSize == CharSize::Char8)
                codeBlock.set8BitCode(FINALIZE_REGEXP_CODE(linkBuffer, Yarr8BitPtrTag, nullptr, "8-bit regular expression"), WTFMove(m_bmMaps));
            else
                codeBlock.set16BitCode(FINALIZE_REGEXP_CODE(linkBuffer, Yarr16BitPtrTag, nullptr, "16-bit regular expression"), WTFMove(m_bmMaps));
        }
        if (m_failureReason)
            codeBlock.setFallBackWithFailureReason(*m_failureReason);
    }

#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
    void compileInline(YarrBoyerMooreData& boyerMooreData)
    {
        RELEASE_ASSERT(!m_pattern.m_containsBackreferences);

        // We need to compile before generating code since we set flags based on compilation that
        // are used during generation.
        opCompileBody(m_pattern.m_body);

#ifndef JIT_UNICODE_EXPRESSIONS
        RELEASE_ASSERT(!m_decodeSurrogatePairs);
#endif

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        RELEASE_ASSERT(!m_containsNestedSubpatterns);
#endif

        if (UNLIKELY(Options::dumpDisassembly() || Options::dumpRegExpDisassembly()))
            m_disassembler = makeUnique<YarrDisassembler>(this);

        if (m_disassembler)
            m_disassembler->setStartOfCode(m_jit.label());

        if (m_failureReason) {
            m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
            m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
            return;
        }

        if (m_usesT2)
            ASSERT(m_regs.regT2 != MacroAssembler::InvalidGPRReg);

        MacroAssembler::Jump hasInput = checkInput();
        generateFailReturn();
        hasInput.link(&m_jit);

        unsigned callFrameSizeInBytes = alignCallFrameSizeInBytes(m_pattern.m_body->m_callFrameSize);
        if (callFrameSizeInBytes) {
            // Create space on stack for matching context data.
            // Note that this stack check cannot clobber m_regs.regT1 as it is needed for the slow path we call if we fail the stack check.
            m_jit.addPtr(MacroAssembler::TrustedImm32(-callFrameSizeInBytes), MacroAssembler::stackPointerRegister, m_regs.regT0);
            MacroAssembler::Jump stackOk = m_jit.branchPtr(MacroAssembler::LessThanOrEqual, MacroAssembler::AbsoluteAddress(const_cast<VM*>(m_vm)->addressOfSoftStackLimit()), m_regs.regT0);

            // Exceeded stack limit, punt to the interpreter.
            m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
            m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
            m_inlinedFailedMatch.append(m_jit.jump());

            stackOk.link(&m_jit);
            m_jit.move(m_regs.regT0, MacroAssembler::stackPointerRegister);
        }

#ifdef JIT_UNICODE_EXPRESSIONS
        if (m_decodeSurrogatePairs)
            m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(m_regs.input, m_regs.length, MacroAssembler::TimesTwo), m_regs.endOfStringAddress);
#endif

#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
        if (m_containsNestedSubpatterns)
            m_jit.move(MacroAssembler::TrustedImm32(matchLimit), m_regs.remainingMatchCount);
#endif

        if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
            for (unsigned i = 0; i < m_pattern.m_numSubpatterns + 1; ++i)
                m_jit.store32(MacroAssembler::TrustedImm32(-1), MacroAssembler::Address(m_regs.output, (i << 1) * sizeof(int)));
            for (unsigned i = m_pattern.offsetVectorBaseForNamedCaptures(); i < m_pattern.offsetsSize(); ++i)
                m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (i) * sizeof(int)));
        }

        if (!m_pattern.m_body->m_hasFixedSize)
            setMatchStart(m_regs.index);

        if (m_pattern.m_saveInitialStartValue)
            m_jit.move(m_regs.index, m_regs.initialStart);

        generate();
        if (m_disassembler)
            m_disassembler->setEndOfGenerate(m_jit.label());
        backtrack();
        if (m_disassembler)
            m_disassembler->setEndOfBacktrack(m_jit.label());

        generateTryReadUnicodeCharacterHelper();

        generateJITFailReturn();

        if (m_disassembler)
            m_disassembler->setEndOfCode(m_jit.label());

        m_inlinedFailedMatch.link(&m_jit);
        m_inlinedMatched.link(&m_jit);

        auto backtrackRecords = m_backtrackingState.backtrackRecords();
        if (!backtrackRecords.isEmpty()) {
            m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
                BacktrackingState::linkBacktrackRecords(linkBuffer, backtrackRecords);
            });
        }

        if (!m_tryReadUnicodeCharacterCalls.isEmpty()) {
            m_jit.addLinkTask([=, this] (LinkBuffer& linkBuffer) {
                CodeLocationLabel<NoPtrTag> tryReadUnicodeCharacterHelper = linkBuffer.locationOf<NoPtrTag>(m_tryReadUnicodeCharacterEntry);

                for (auto call : m_tryReadUnicodeCharacterCalls)
                    linkBuffer.link(call, tryReadUnicodeCharacterHelper);
            });
        }

        boyerMooreData.saveMaps(WTFMove(m_bmMaps));
    }
#endif

    const char* variant() final
    {
        if (m_compileMode == JITCompileMode::MatchOnly) {
            if (m_charSize == CharSize::Char8)
                return "Match-only 8-bit regular expression";

            return "Match-only 16-bit regular expression";
        }

        if (m_charSize == CharSize::Char8)
            return "8-bit regular expression";

        return "16-bit regular expression";
    }

    unsigned opCount() final
    {
        return m_ops.size();
    }

    void dumpPatternString(PrintStream& out) final
    {
        m_pattern.dumpPatternString(out, m_patternString);
    }

    int dumpFor(PrintStream& out, unsigned opIndex) final
    {
        if (opIndex >= opCount())
            return 0;

        out.printf("%4d:", opIndex);

        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        switch (op.m_op) {
        case YarrOpCode::Term: {
            out.print("Term ");
            switch (term->type) {
            case PatternTerm::Type::AssertionBOL:
                out.printf("Assert BOL checked-offset:(%u)", op.m_checkedOffset.value());
                break;

            case PatternTerm::Type::AssertionEOL:
                out.printf("Assert EOL checked-offset:(%u)", op.m_checkedOffset.value());
                break;

            case PatternTerm::Type::BackReference:
                out.printf("BackReference pattern #%u checked-offset:(%u)", term->backReferenceSubpatternId, op.m_checkedOffset.value());
                term->dumpQuantifier(out);
                break;

            case PatternTerm::Type::PatternCharacter:
                out.printf("PatternCharacter checked-offset:(%u) ", op.m_checkedOffset.value());
                dumpUChar32(out, term->patternCharacter);
                if (op.m_term->ignoreCase())
                    out.print("ignore case ");

                term->dumpQuantifier(out);
                break;

            case PatternTerm::Type::CharacterClass:
                out.printf("PatternCharacterClass checked-offset:(%u) ", op.m_checkedOffset.value());
                if (term->invert())
                    out.print("not ");
                dumpCharacterClass(out, &m_pattern, term->characterClass);
                term->dumpQuantifier(out);
                break;

            case PatternTerm::Type::AssertionWordBoundary:
                out.printf("%sword boundary checked-offset:(%u)", term->invert() ? "non-" : "", op.m_checkedOffset.value());
                break;

            case PatternTerm::Type::DotStarEnclosure:
                out.printf(".* enclosure checked-offset:(%u)", op.m_checkedOffset.value());
                break;

            case PatternTerm::Type::ForwardReference:
                out.printf("ForwardReference <not handled> checked-offset:(%u)", op.m_checkedOffset.value());
                break;

            case PatternTerm::Type::ParenthesesSubpattern:
            case PatternTerm::Type::ParentheticalAssertion:
                RELEASE_ASSERT_NOT_REACHED();
                break;
            }

            if (op.m_isDeadCode)
                out.print(" already handled");
            out.print("\n");
            return 0;
        }

        case YarrOpCode::BodyAlternativeBegin:
            out.printf("BodyAlternativeBegin minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
            return 0;

        case YarrOpCode::BodyAlternativeNext:
            out.printf("BodyAlternativeNext minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
            return 0;

        case YarrOpCode::BodyAlternativeEnd:
            out.printf("BodyAlternativeEnd checked-offset:(%u)\n", op.m_checkedOffset.value());
            return 0;

        case YarrOpCode::SimpleNestedAlternativeBegin:
            out.printf("SimpleNestedAlternativeBegin minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
            return 1;

        case YarrOpCode::NestedAlternativeBegin:
            out.printf("NestedAlternativeBegin minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
            return 1;

        case YarrOpCode::SimpleNestedAlternativeNext:
            out.printf("SimpleNestedAlternativeNext minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
            return 0;

        case YarrOpCode::NestedAlternativeNext:
            out.printf("NestedAlternativeNext minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
            return 0;

        case YarrOpCode::SimpleNestedAlternativeEnd:
            out.printf("SimpleNestedAlternativeEnd checked-offset:(%u) ", op.m_checkedOffset.value());
            term->dumpQuantifier(out);
            out.print("\n");
            return -1;

        case YarrOpCode::NestedAlternativeEnd:
            out.printf("NestedAlternativeEnd checked-offset:(%u) ", op.m_checkedOffset.value());
            term->dumpQuantifier(out);
            out.print("\n");
            return -1;

        case YarrOpCode::ParenthesesSubpatternOnceBegin:
            out.printf("ParenthesesSubpatternOnceBegin checked-offset:(%u) ", op.m_checkedOffset.value());
            if (term->capture())
                out.printf("capturing pattern #%u ", term->parentheses.subpatternId);
            else
                out.print("non-capturing ");
            term->dumpQuantifier(out);
            out.print("\n");
            return 0;

        case YarrOpCode::ParenthesesSubpatternOnceEnd:
            out.printf("ParenthesesSubpatternOnceEnd checked-offset:(%u) ", op.m_checkedOffset.value());
            if (term->capture())
                out.printf("capturing pattern #%u ", term->parentheses.subpatternId);
            else
                out.print("non-capturing ");
            term->dumpQuantifier(out);
            out.print("\n");
            return 0;

        case YarrOpCode::ParenthesesSubpatternTerminalBegin:
            out.printf("ParenthesesSubpatternTerminalBegin checked-offset:(%u) ", op.m_checkedOffset.value());
            if (term->capture())
                out.printf("capturing pattern #%u\n", term->parentheses.subpatternId);
            else
                out.print("non-capturing\n");
            return 0;

        case YarrOpCode::ParenthesesSubpatternTerminalEnd:
            out.printf("ParenthesesSubpatternTerminalEnd checked-offset:(%u) ", op.m_checkedOffset.value());
            if (term->capture())
                out.printf("capturing pattern #%u\n", term->parentheses.subpatternId);
            else
                out.print("non-capturing\n");
            return 0;

        case YarrOpCode::ParenthesesSubpatternBegin:
            out.printf("ParenthesesSubpatternBegin checked-offset:(%u) ", op.m_checkedOffset.value());
            if (term->capture())
                out.printf("capturing pattern #%u", term->parentheses.subpatternId);
            else
                out.print("non-capturing");
            term->dumpQuantifier(out);
            out.print("\n");
            return 0;

        case YarrOpCode::ParenthesesSubpatternEnd:
            out.printf("ParenthesesSubpatternEnd checked-offset:(%u) ", op.m_checkedOffset.value());
            if (term->capture())
                out.printf("capturing pattern #%u", term->parentheses.subpatternId);
            else
                out.print("non-capturing");
            term->dumpQuantifier(out);
            out.print("\n");
            return 0;

        case YarrOpCode::ParentheticalAssertionBegin:
            out.printf("ParentheticalAssertionBegin%s checked-offset:(%u)\n", term->invert() ? " inverted" : "", op.m_checkedOffset.value());
            return 0;

        case YarrOpCode::ParentheticalAssertionEnd:
            out.printf("ParentheticalAssertionEnd%s checked-offset:(%u)\n", term->invert() ? " inverted" : "", op.m_checkedOffset.value());
            return 0;

        case YarrOpCode::MatchFailed:
            out.printf("MatchFailed checked-offset:(%u)\n", op.m_checkedOffset.value());
            return 0;
        }

        return 0;
    }

    bool mayCall() const
    {
        return m_decodeSurrogatePairs || m_decode16BitForBackreferencesWithCalls;
    }

private:
    CCallHelpers& m_jit;
    VM* m_vm;
    YarrCodeBlock* const m_codeBlock;
    YarrBoyerMooreData* const m_boyerMooreData;
    const YarrJITRegs& m_regs;

    StackCheck* m_compilationThreadStackChecker { nullptr };
    YarrPattern& m_pattern;
    const StringView m_patternString;

    const CharSize m_charSize;
    const JITCompileMode m_compileMode;

    // Used to detect regular expression constructs that are not currently
    // supported in the JIT; fall back to the interpreter when this is detected.
    std::optional<JITFailureReason> m_failureReason;

    const bool m_decodeSurrogatePairs : 1;
    const bool m_unicodeIgnoreCase : 1;
    const bool m_decode16BitForBackreferencesWithCalls : 1;

    bool m_usesT2 { false };
    const CanonicalMode m_canonicalMode;
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
    bool m_containsNestedSubpatterns { false };
    ParenContextSizes m_parenContextSizes;
#endif
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
    bool m_useFirstNonBMPCharacterOptimization { false };
#endif
    MacroAssembler::JumpList m_abortExecution;
    MacroAssembler::JumpList m_hitMatchLimit;
    Vector<MacroAssembler::Call> m_tryReadUnicodeCharacterCalls;
    MacroAssembler::Label m_tryReadUnicodeCharacterEntry;
    MacroAssembler::JumpList m_inlinedMatched;
    MacroAssembler::JumpList m_inlinedFailedMatch;

    // The regular expression expressed as a linear sequence of operations.
    Vector<YarrOp, 128> m_ops;
    Vector<UniqueRef<BoyerMooreInfo>, 4> m_bmInfos;
    Vector<UniqueRef<BoyerMooreBitmap::Map>> m_bmMaps;

    // This class records state whilst generating the backtracking path of code.
    BacktrackingState m_backtrackingState;
    
    std::unique_ptr<YarrDisassembler> m_disassembler;

    // Member is used to count the number of GPR pushed into the stack when
    // entering JITed code. It is used to figure out if an function argument
    // offset in the stack if there wasn't enough registers to pass it, e.g.,
    // ARMv7 and MIPS only use 4 registers to pass function arguments.
    unsigned m_pushCountInEnter { 0 };

    std::optional<StringView> m_sampleString;
    SubjectSampler m_sampler;
};

#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
MacroAssemblerCodeRef<JITThunkPtrTag> areCanonicallyEquivalentThunkGenerator(VM&)
{
    CCallHelpers jit(nullptr);

    unsigned pushCount = 0;

#if CPU(ARM64)
    constexpr unsigned registersToSave = 16;

    auto pushCallerSavePair = [&]() {
        jit.pushPair(GPRInfo::toRegister(pushCount), GPRInfo::toRegister(pushCount + 1));
        pushCount += 2;
    };

    auto popCallerSavePair = [&]() {
        pushCount -= 2;
        jit.popPair(GPRInfo::toRegister(pushCount), GPRInfo::toRegister(pushCount + 1));
    };
#elif CPU(X86_64)
    constexpr unsigned registersToSave = 7;

    constexpr GPRReg callerSaves[registersToSave] = {
        // We don't save RAX since the return value ends up there.
        X86Registers::ecx,
        X86Registers::edx,
        X86Registers::esi,
        X86Registers::edi,
        X86Registers::r8,
        X86Registers::r9,
        X86Registers::r10
    };

    auto pushCallerSave = [&]() {
        jit.push(callerSaves[pushCount]);
        pushCount++;
    };

    auto popCallerSave = [&]() {
        pushCount--;
        jit.pop(callerSaves[pushCount]);
    };
#endif

    jit.emitFunctionPrologue();

#if CPU(ARM64)
    while (pushCount < registersToSave)
        pushCallerSavePair();
#elif CPU(X86_64)
    while (pushCount < registersToSave)
        pushCallerSave();
#endif

    jit.setupArguments<decltype(operationAreCanonicallyEquivalent)>(areCanonicallyEquivalentCharArgReg, areCanonicallyEquivalentPattCharArgReg, areCanonicallyEquivalentCanonicalModeArgReg);
    jit.callOperation<OperationPtrTag>(operationAreCanonicallyEquivalent);

#if CPU(ARM64)
    // Convert 8-bit bool result into 32 bit value and save in IP0 while restoring callee saves.
    jit.zeroExtend8To32(GPRInfo::returnValueGPR, ARM64Registers::ip0);

    while (pushCount)
        popCallerSavePair();

    jit.move(ARM64Registers::ip0, areCanonicallyEquivalentCharArgReg);
#elif CPU(X86_64)
    // Convert 8-bit bool result into 32 bit value.
    jit.zeroExtend8To32(GPRInfo::returnValueGPR, GPRInfo::returnValueGPR);

    while (pushCount)
        popCallerSave();
#endif

    ASSERT(!pushCount);

    jit.emitFunctionEpilogue();
    jit.ret();

    LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID, LinkBuffer::Profile::Thunk);

    return FINALIZE_THUNK(patchBuffer, JITThunkPtrTag, nullptr, "YARR areCanonicallyEquivalent call");
}

JSC_DEFINE_NOEXCEPT_JIT_OPERATION(operationAreCanonicallyEquivalent, bool, (unsigned a, unsigned b, CanonicalMode canonicalMode))
{
    return areCanonicallyEquivalent(static_cast<char32_t>(a), static_cast<char32_t>(b), canonicalMode);
}
#endif

static void dumpCompileFailure(JITFailureReason failure)
{
    switch (failure) {
    case JITFailureReason::DecodeSurrogatePair:
        dataLog("Can't JIT a pattern decoding surrogate pairs\n");
        break;
    case JITFailureReason::BackReference:
        dataLog("Can't JIT some patterns containing back references\n");
        break;
    case JITFailureReason::ForwardReference:
        dataLog("Can't JIT a pattern containing forward references\n");
        break;
    case JITFailureReason::Lookbehind:
        dataLog("Can't JIT a pattern containing lookbehinds\n");
        break;
    case JITFailureReason::VariableCountedParenthesisWithNonZeroMinimum:
        dataLog("Can't JIT a pattern containing a variable counted parenthesis with a non-zero minimum\n");
        break;
    case JITFailureReason::ParenthesizedSubpattern:
        dataLog("Can't JIT a pattern containing parenthesized subpatterns\n");
        break;
    case JITFailureReason::FixedCountParenthesizedSubpattern:
        dataLog("Can't JIT a pattern containing fixed count parenthesized subpatterns\n");
        break;
    case JITFailureReason::ParenthesisNestedTooDeep:
        dataLog("Can't JIT pattern due to parentheses nested too deeply\n");
        break;
    case JITFailureReason::ExecutableMemoryAllocationFailure:
        dataLog("Can't JIT because of failure of allocation of executable memory\n");
        break;
    case JITFailureReason::OffsetTooLarge:
        dataLog("Can't JIT because pattern exceeds string length limits\n");
        break;
    }
}

void jitCompile(YarrPattern& pattern, StringView patternString, CharSize charSize, std::optional<StringView> sampleString, VM* vm, YarrCodeBlock& codeBlock, JITCompileMode mode)
{
    CCallHelpers masm;

    ASSERT(mode == JITCompileMode::MatchOnly || mode == JITCompileMode::IncludeSubpatterns);

    YarrJITDefaultRegisters jitRegisters;
    YarrGenerator<YarrJITDefaultRegisters>(masm, vm, &codeBlock, jitRegisters, pattern, patternString, charSize, mode, sampleString).compile(codeBlock);

    if (auto failureReason = codeBlock.failureReason()) {
        if (UNLIKELY(Options::dumpCompiledRegExpPatterns())) {
            pattern.dumpPatternString(WTF::dataFile(), patternString);
            dataLog(" : ");
            dumpCompileFailure(*failureReason);
        }
    }
}

#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
#if !(CPU(ARM64) || CPU(X86_64) || CPU(RISCV64))
#error "No support for inlined JIT'ing of RegExp.test for this CPU / OS combination."
#endif

void jitCompileInlinedTest(StackCheck* m_compilationThreadStackChecker, StringView patternString, OptionSet<Yarr::Flags> flags, CharSize charSize, VM* vm, YarrBoyerMooreData& boyerMooreData, CCallHelpers& jit, YarrJITRegisters& jitRegisters)
{
    Yarr::ErrorCode errorCode;
    Yarr::YarrPattern pattern(patternString, flags, errorCode);

    if (errorCode != Yarr::ErrorCode::NoError) {
        // This path cannot clobber jitRegisters.regT1 as it is needed for the slow path we'll end up in.
        jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), jitRegisters.returnRegister);
        return;
    }

    jitRegisters.validate();

    YarrGenerator<YarrJITRegisters> yarrGenerator(jit, vm, &boyerMooreData, jitRegisters, pattern, patternString, charSize, JITCompileMode::InlineTest);
    yarrGenerator.setStackChecker(m_compilationThreadStackChecker);
    yarrGenerator.compileInline(boyerMooreData);
}
#endif

void YarrCodeBlock::dumpSimpleName(PrintStream& out) const
{
    if (m_regExp)
        RegExp::dumpToStream(m_regExp, out);
    else
        out.print("unspecified");
}

}}

#endif

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END