1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*
* Copyright (C) 2011-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <array>
#include <wtf/StdLibExtras.h>
#include <wtf/text/AtomString.h>
namespace WTF {
DECLARE_ALLOCATOR_WITH_HEAP_IDENTIFIER(BloomFilter);
// Bloom filter with k=2. Uses 2^keyBits/8 bytes of memory.
// False positive rate is approximately (1-e^(-2n/m))^2, where n is the number of unique
// keys and m is the table size (==2^keyBits).
// See http://en.wikipedia.org/wiki/Bloom_filter
template <unsigned keyBits>
class BloomFilter {
WTF_MAKE_FAST_ALLOCATED_WITH_HEAP_IDENTIFIER(BloomFilter);
public:
static constexpr size_t tableSize = 1 << keyBits;
BloomFilter();
void add(unsigned hash);
// For example SHA1::Digest.
template <size_t hashSize> void add(const std::array<uint8_t, hashSize>&);
void add(const BloomFilter&);
// The filter may give false positives (claim it may contain a key it doesn't)
// but never false negatives (claim it doesn't contain a key it does).
bool mayContain(unsigned hash) const;
template <size_t hashSize> bool mayContain(const std::array<uint8_t, hashSize>&) const;
void clear();
void add(const AtomString& string) { add(string.impl()->existingHash()); }
void add(const String& string) { add(string.impl()->hash()); }
bool mayContain(const AtomString& string) const { return mayContain(string.impl()->existingHash()); }
bool mayContain(const String& string) const { return mayContain(string.impl()->hash()); }
private:
static constexpr unsigned bitsPerPosition = 8 * sizeof(unsigned);
static constexpr unsigned keyMask = (1 << keyBits) - 1;
static unsigned arrayIndex(unsigned key) { return key / bitsPerPosition; }
static unsigned bitMask(unsigned key) { return 1 << (key % bitsPerPosition); }
template <size_t hashSize> static std::pair<unsigned, unsigned> keysFromHash(const std::array<uint8_t, hashSize>&);
bool isBitSet(unsigned key) const;
void setBit(unsigned key);
std::array<unsigned, tableSize / bitsPerPosition> m_bitArray;
};
template <unsigned keyBits>
inline BloomFilter<keyBits>::BloomFilter()
: m_bitArray()
{
}
template <unsigned keyBits>
inline bool BloomFilter<keyBits>::mayContain(unsigned hash) const
{
// The top and bottom bits of the incoming hash are treated as independent bloom filter hash functions.
// This works well as long as the filter size is not much above 2^16.
return isBitSet(hash) && isBitSet(hash >> 16);
}
template <unsigned keyBits>
inline void BloomFilter<keyBits>::add(unsigned hash)
{
setBit(hash);
setBit(hash >> 16);
}
template <unsigned keyBits>
template <size_t hashSize>
inline std::pair<unsigned, unsigned> BloomFilter<keyBits>::keysFromHash(const std::array<uint8_t, hashSize>& hash)
{
// We could use larger k value than 2 for long hashes.
static_assert(hashSize >= 2 * sizeof(unsigned), "Hash array too short");
std::span hashSpan { hash };
return {
reinterpretCastSpanStartTo<unsigned>(hashSpan),
reinterpretCastSpanStartTo<unsigned>(hashSpan.subspan(sizeof(unsigned)))
};
}
template <unsigned keyBits>
template <size_t hashSize>
inline bool BloomFilter<keyBits>::mayContain(const std::array<uint8_t, hashSize>& hash) const
{
auto keys = keysFromHash(hash);
return isBitSet(keys.first) && isBitSet(keys.second);
}
template <unsigned keyBits>
template <size_t hashSize>
inline void BloomFilter<keyBits>::add(const std::array<uint8_t, hashSize>& hash)
{
auto keys = keysFromHash(hash);
setBit(keys.first);
setBit(keys.second);
}
template <unsigned keyBits>
inline void BloomFilter<keyBits>::add(const BloomFilter& other)
{
for (size_t i = 0; i < m_bitArray.size(); ++i)
m_bitArray[i] |= other.m_bitArray[i];
}
template <unsigned keyBits>
bool BloomFilter<keyBits>::isBitSet(unsigned key) const
{
unsigned maskedKey = key & keyMask;
ASSERT(arrayIndex(maskedKey) < m_bitArray.size());
return m_bitArray[arrayIndex(maskedKey)] & bitMask(maskedKey);
}
template <unsigned keyBits>
void BloomFilter<keyBits>::setBit(unsigned key)
{
unsigned maskedKey = key & keyMask;
ASSERT(arrayIndex(maskedKey) < m_bitArray.size());
m_bitArray[arrayIndex(maskedKey)] |= bitMask(maskedKey);
}
template <unsigned keyBits>
inline void BloomFilter<keyBits>::clear()
{
m_bitArray.fill(0);
}
// Counting bloom filter with 8 bit counters. Uses 2^keyBits bytes of memory. Error rates as above.
// See http://en.wikipedia.org/wiki/Bloom_filter#Counting_filters
template <unsigned keyBits>
class CountingBloomFilter {
WTF_MAKE_FAST_ALLOCATED;
public:
static constexpr size_t tableSize = 1 << keyBits;
static unsigned maximumCount() { return std::numeric_limits<uint8_t>::max(); }
CountingBloomFilter();
void add(unsigned hash);
void remove(unsigned hash);
// The filter may give false positives (claim it may contain a key it doesn't)
// but never false negatives (claim it doesn't contain a key it does).
bool mayContain(unsigned hash) const { return firstBucket(hash) && secondBucket(hash); }
// The filter must be cleared before reuse even if all keys are removed.
// Otherwise overflowed keys will stick around.
void clear();
void add(const AtomString& string) { add(string.impl()->existingHash()); }
void add(const String& string) { add(string.impl()->hash()); }
void remove(const AtomString& string) { remove(string.impl()->existingHash()); }
void remove(const String& string) { remove(string.impl()->hash()); }
bool mayContain(const AtomString& string) const { return mayContain(string.impl()->existingHash()); }
bool mayContain(const String& string) const { return mayContain(string.impl()->hash()); }
#if ASSERT_ENABLED
// Slow.
bool likelyEmpty() const;
bool isClear() const;
#endif
private:
static constexpr unsigned keyMask = (1 << keyBits) - 1;
uint8_t& firstBucket(unsigned hash) { return m_buckets[hash & keyMask]; }
uint8_t& secondBucket(unsigned hash) { return m_buckets[(hash >> 16) & keyMask]; }
const uint8_t& firstBucket(unsigned hash) const { return m_buckets[hash & keyMask]; }
const uint8_t& secondBucket(unsigned hash) const { return m_buckets[(hash >> 16) & keyMask]; }
std::array<uint8_t, tableSize> m_buckets;
};
template <unsigned keyBits>
inline CountingBloomFilter<keyBits>::CountingBloomFilter()
: m_buckets()
{
}
template <unsigned keyBits>
inline void CountingBloomFilter<keyBits>::add(unsigned hash)
{
auto& first = firstBucket(hash);
auto& second = secondBucket(hash);
if (LIKELY(first < maximumCount()))
++first;
if (LIKELY(second < maximumCount()))
++second;
}
template <unsigned keyBits>
inline void CountingBloomFilter<keyBits>::remove(unsigned hash)
{
auto& first = firstBucket(hash);
auto& second = secondBucket(hash);
ASSERT(first);
ASSERT(second);
// In case of an overflow, the bucket sticks in the table until clear().
if (LIKELY(first < maximumCount()))
--first;
if (LIKELY(second < maximumCount()))
--second;
}
template <unsigned keyBits>
inline void CountingBloomFilter<keyBits>::clear()
{
m_buckets.fill(0);
}
#if ASSERT_ENABLED
template <unsigned keyBits>
bool CountingBloomFilter<keyBits>::likelyEmpty() const
{
for (auto& bucket : m_buckets) {
if (bucket && bucket != maximumCount())
return false;
}
return true;
}
template <unsigned keyBits>
bool CountingBloomFilter<keyBits>::isClear() const
{
for (auto& bucket : m_buckets) {
if (bucket)
return false;
}
return true;
}
#endif // ASSERT_ENABLED
} // namespace WTF
using WTF::BloomFilter;
using WTF::CountingBloomFilter;
|