1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*
* Copyright (C) 2017-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <wtf/ConcurrentPtrHashSet.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace WTF {
ConcurrentPtrHashSet::ConcurrentPtrHashSet()
{
initialize();
}
ConcurrentPtrHashSet::~ConcurrentPtrHashSet() = default;
void ConcurrentPtrHashSet::deleteOldTables()
{
// This is just in case. It does not make it OK for other threads to call add(). But it might prevent
// some bad crashes if we did make that mistake.
Locker locker { m_lock };
ASSERT(m_table.loadRelaxed() != &m_stubTable);
m_allTables.removeAllMatching(
[&] (std::unique_ptr<Table>& table) -> bool {
return table.get() != m_table.loadRelaxed();
});
}
void ConcurrentPtrHashSet::clear()
{
// This is just in case. It does not make it OK for other threads to call add(). But it might prevent
// some bad crashes if we did make that mistake.
Locker locker { m_lock };
m_allTables.clear();
initialize();
}
void ConcurrentPtrHashSet::initialize()
{
constexpr unsigned initialSize = 32;
std::unique_ptr<Table> table = Table::create(initialSize);
m_table.storeRelaxed(table.get());
m_allTables.append(WTFMove(table));
m_stubTable.initializeStub();
}
bool ConcurrentPtrHashSet::addSlow(Table* table, unsigned mask, unsigned startIndex, unsigned index, void* ptr)
{
if (table->load.exchangeAdd(1) >= table->maxLoad())
return resizeAndAdd(ptr);
for (;;) {
void* oldEntry = table->array[index].compareExchangeStrong(nullptr, ptr);
if (!oldEntry) {
if (m_table.load() != table) {
// We added an entry to an old table! We need to reexecute the add on the new table.
return add(ptr);
}
return true;
}
if (oldEntry == ptr)
return false;
index = (index + 1) & mask;
RELEASE_ASSERT(index != startIndex);
}
}
bool ConcurrentPtrHashSet::containsImplSlow(void* ptr) const
{
Locker locker { m_lock };
ASSERT(m_table.loadRelaxed() != &m_stubTable);
return containsImpl(ptr);
}
size_t ConcurrentPtrHashSet::sizeSlow() const
{
Locker locker { m_lock };
ASSERT(m_table.loadRelaxed() != &m_stubTable);
return size();
}
void ConcurrentPtrHashSet::resizeIfNecessary()
{
Locker locker { m_lock };
Table* table = m_table.loadRelaxed();
ASSERT(table != &m_stubTable);
if (table->load.loadRelaxed() < table->maxLoad())
return;
// Stubbing out m_table with m_stubTable here is necessary to ensure that
// we don't miss copying any entries that may be concurrently be added.
//
// If addSlow() completes before this stubbing, the new entry is guaranteed
// to be copied below.
//
// If addSlow() completes after this stubbing, addSlow() will check m_table
// before it finishes, and detect that its newly added entry may not have
// made it in. As a result, it will try to re-add the entry, and end up
// blocking on resizeIfNecessary() until the resizing is donw. This is
// because m_stubTable will tell addSlow() think that the table is out of
// space and it needs to resize. NOTE: m_stubTable always says it is out of
// space.
m_table.store(&m_stubTable);
std::unique_ptr<Table> newTable = Table::create(table->size * 2);
unsigned mask = newTable->mask;
unsigned load = 0;
for (unsigned i = 0; i < table->size; ++i) {
void* ptr = table->array[i].loadRelaxed();
if (!ptr)
continue;
unsigned startIndex = hash(ptr) & mask;
unsigned index = startIndex;
for (;;) {
Atomic<void*>& entryRef = newTable->array[index];
void* entry = entryRef.loadRelaxed();
if (!entry) {
entryRef.storeRelaxed(ptr);
break;
}
RELEASE_ASSERT(entry != ptr);
index = (index + 1) & mask;
RELEASE_ASSERT(index != startIndex);
}
load++;
}
newTable->load.storeRelaxed(load);
m_table.store(newTable.get());
// addSlow() will always start by exchangeAdd'ing 1 to the current m_table's
// load value before checking if it exceeds its max allowed load. For the
// real m_table, this is not an issue because at most, it will accummulate
// up to N extra adds above max load, where N is the number of threads
// concurrrently adding entries.
//
// However, m_table may be replaced with m_stubTable for each resize
// operation. As a result, the cummulative error on its load value
// may far exceed N (as specified above). To fix this, we always reset it
// here to prevent an overflow. Note: a load of stubDefaultLoadValue means
// that m_stubTable is full since its size is 0.
//
// In practice, this won't matter because we most likely won't do so many
// resize operations such that this will get to the point of overflowing.
// However, since resizing is not in the fast path, let's just be pedantic
// and reset it for correctness.
m_stubTable.load.store(Table::stubDefaultLoadValue);
m_allTables.append(WTFMove(newTable));
}
bool ConcurrentPtrHashSet::resizeAndAdd(void* ptr)
{
resizeIfNecessary();
return add(ptr);
}
std::unique_ptr<ConcurrentPtrHashSet::Table> ConcurrentPtrHashSet::Table::create(unsigned size)
{
std::unique_ptr<ConcurrentPtrHashSet::Table> result(new (fastMalloc(OBJECT_OFFSETOF(Table, array) + sizeof(Atomic<void*>) * size)) Table());
result->size = size;
result->mask = size - 1;
result->load.storeRelaxed(0);
for (unsigned i = 0; i < size; ++i)
result->array[i].storeRelaxed(nullptr);
return result;
}
void ConcurrentPtrHashSet::Table::initializeStub()
{
// The stub table is set up to look like it is already filled up. This is
// so that it can be used during resizing to force all attempts to add to
// be routed to resizeAndAdd() where it will block until the resizing is
// done.
size = 0;
mask = 0;
load.storeRelaxed(stubDefaultLoadValue);
array[0].storeRelaxed(nullptr);
}
} // namespace WTF
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|