File: CurrentTime.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (379 lines) | stat: -rw-r--r-- 12,314 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*
 * Copyright (C) 2006-2019 Apple Inc. All rights reserved.
 * Copyright (C) 2008 Google Inc. All rights reserved.
 * Copyright (C) 2007-2009 Torch Mobile, Inc.
 * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include <wtf/ApproximateTime.h>
#include <wtf/ContinuousApproximateTime.h>
#include <wtf/ContinuousTime.h>
#include <wtf/MonotonicTime.h>
#include <wtf/StdLibExtras.h>
#include <wtf/WallTime.h>

#if OS(DARWIN)
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <mutex>
#include <sys/time.h>
#elif OS(WINDOWS)
#include <windows.h>
#include <math.h>
#include <stdint.h>
#include <time.h>
#else
#include <sys/time.h>
#include <time.h>
#endif

#if OS(FUCHSIA)
#include <zircon/syscalls.h>
#endif

#if OS(HAIKU)
#include <OS.h>
#endif

#if USE(GLIB)
#include <glib.h>
#endif

namespace WTF {

#if OS(WINDOWS)

// Number of 100 nanosecond between January 1, 1601 and January 1, 1970.
static constexpr ULONGLONG epochBias = 116444736000000000ULL;
static constexpr double hundredsOfNanosecondsPerMillisecond = 10000;

static double lowResUTCTime()
{
    FILETIME fileTime;

    GetSystemTimeAsFileTime(&fileTime);

    // As per Windows documentation for FILETIME, copy the resulting FILETIME structure to a
    // ULARGE_INTEGER structure using memcpy (using memcpy instead of direct assignment can
    // prevent alignment faults on 64-bit Windows).

    ULARGE_INTEGER dateTime;
    static_assert(sizeof(dateTime) == sizeof(fileTime));
    memcpySpan(asMutableByteSpan(dateTime), asByteSpan(fileTime));

    // Windows file times are in 100s of nanoseconds.
    return (dateTime.QuadPart - epochBias) / hundredsOfNanosecondsPerMillisecond;
}

static LARGE_INTEGER qpcFrequency;
static bool syncedTime;

static double highResUpTime()
{
    // We use QPC, but only after sanity checking its result, due to bugs:
    // http://support.microsoft.com/kb/274323
    // http://support.microsoft.com/kb/895980
    // http://msdn.microsoft.com/en-us/library/ms644904.aspx ("...you can get different results on different processors due to bugs in the basic input/output system (BIOS) or the hardware abstraction layer (HAL)."

    static LARGE_INTEGER qpcLast;
    static DWORD tickCountLast;
    static bool inited;

    LARGE_INTEGER qpc;
    QueryPerformanceCounter(&qpc);
#if defined(_M_IX86) || defined(__i386__)
    DWORD tickCount = GetTickCount();
#else
    ULONGLONG tickCount = GetTickCount64();
#endif

    if (inited) {
        __int64 qpcElapsed = ((qpc.QuadPart - qpcLast.QuadPart) * 1000) / qpcFrequency.QuadPart;
        __int64 tickCountElapsed;
        if (tickCount >= tickCountLast)
            tickCountElapsed = (tickCount - tickCountLast);
        else {
            __int64 tickCountLarge = tickCount + 0x100000000I64;
            tickCountElapsed = tickCountLarge - tickCountLast;
        }

        // force a re-sync if QueryPerformanceCounter differs from GetTickCount by more than 500ms.
        // (500ms value is from http://support.microsoft.com/kb/274323)
        __int64 diff = tickCountElapsed - qpcElapsed;
        if (diff > 500 || diff < -500)
            syncedTime = false;
    } else
        inited = true;

    qpcLast = qpc;
    tickCountLast = tickCount;

    return (1000.0 * qpc.QuadPart) / static_cast<double>(qpcFrequency.QuadPart);
}

static bool qpcAvailable()
{
    static bool available;
    static bool checked;

    if (checked)
        return available;

    available = QueryPerformanceFrequency(&qpcFrequency);
    checked = true;
    return available;
}

static inline double currentTime()
{
    // Use a combination of ftime and QueryPerformanceCounter.
    // ftime returns the information we want, but doesn't have sufficient resolution.
    // QueryPerformanceCounter has high resolution, but is only usable to measure time intervals.
    // To combine them, we call ftime and QueryPerformanceCounter initially. Later calls will use QueryPerformanceCounter
    // by itself, adding the delta to the saved ftime.  We periodically re-sync to correct for drift.
    static double syncLowResUTCTime;
    static double syncHighResUpTime;
    static double lastUTCTime;

    double lowResTime = lowResUTCTime();

    if (!qpcAvailable())
        return lowResTime / 1000.0;

    double highResTime = highResUpTime();

    if (!syncedTime) {
        timeBeginPeriod(1); // increase time resolution around low-res time getter
        syncLowResUTCTime = lowResTime = lowResUTCTime();
        timeEndPeriod(1); // restore time resolution
        syncHighResUpTime = highResTime;
        syncedTime = true;
    }

    double highResElapsed = highResTime - syncHighResUpTime;
    double utc = syncLowResUTCTime + highResElapsed;

    // force a clock re-sync if we've drifted
    double lowResElapsed = lowResTime - syncLowResUTCTime;
    const double maximumAllowedDriftMsec = 15.625 * 2.0; // 2x the typical low-res accuracy
    if (std::abs(highResElapsed - lowResElapsed) > maximumAllowedDriftMsec)
        syncedTime = false;

    // make sure time doesn't run backwards (only correct if difference is < 2 seconds, since DST or clock changes could occur)
    const double backwardTimeLimit = 2000.0;
    if (utc < lastUTCTime && (lastUTCTime - utc) < backwardTimeLimit)
        return lastUTCTime / 1000.0;
    lastUTCTime = utc;
    return utc / 1000.0;
}

Int128 currentTimeInNanoseconds()
{
    return static_cast<Int128>(currentTime() * 1'000'000'000);
}

#elif OS(HAIKU)

Int128 currentTimeInNanoseconds()
{
    return static_cast<Int128>(real_time_clock_usecs() * 1000.0);
}

double currentTime()
{
    return (double)real_time_clock_usecs() / 1'000'000.0;
}

#else

Int128 currentTimeInNanoseconds()
{
    struct timespec ts { };
    clock_gettime(CLOCK_REALTIME, &ts);
    return (static_cast<Int128>(ts.tv_sec) * 1'000'000'000) + ts.tv_nsec;
}

static inline double currentTime()
{
    struct timespec ts { };
    clock_gettime(CLOCK_REALTIME, &ts);
    return static_cast<double>(ts.tv_sec) + ts.tv_nsec / 1'000'000'000.0;
}

#endif

WallTime WallTime::now()
{
    return fromRawSeconds(currentTime());
}

#if OS(DARWIN)
static mach_timebase_info_data_t& machTimebaseInfo()
{
    // Based on listing #2 from Apple QA 1398, but modified to be thread-safe.
    static mach_timebase_info_data_t timebaseInfo;
    static std::once_flag initializeTimerOnceFlag;
    std::call_once(initializeTimerOnceFlag, [] {
        kern_return_t kr = mach_timebase_info(&timebaseInfo);
        ASSERT_UNUSED(kr, kr == KERN_SUCCESS);
        ASSERT(timebaseInfo.denom);
    });
    return timebaseInfo;
}

MonotonicTime MonotonicTime::fromMachAbsoluteTime(uint64_t machAbsoluteTime)
{
    auto& info = machTimebaseInfo();
    return fromRawSeconds((machAbsoluteTime * info.numer) / (1.0e9 * info.denom));
}

uint64_t MonotonicTime::toMachAbsoluteTime() const
{
    auto& info = machTimebaseInfo();
    return static_cast<uint64_t>((m_value * 1.0e9 * info.denom) / info.numer);
}

ApproximateTime ApproximateTime::fromMachApproximateTime(uint64_t machApproximateTime)
{
    auto& info = machTimebaseInfo();
    return fromRawSeconds((machApproximateTime * info.numer) / (1.0e9 * info.denom));
}

uint64_t ApproximateTime::toMachApproximateTime() const
{
    auto& info = machTimebaseInfo();
    return static_cast<uint64_t>((m_value * 1.0e9 * info.denom) / info.numer);
}

ContinuousTime ContinuousTime::fromMachContinuousTime(uint64_t machContinuousTime)
{
    auto& info = machTimebaseInfo();
    return fromRawSeconds((machContinuousTime * info.numer) / (1.0e9 * info.denom));
}

uint64_t ContinuousTime::toMachContinuousTime() const
{
    auto& info = machTimebaseInfo();
    return static_cast<uint64_t>((m_value * 1.0e9 * info.denom) / info.numer);
}

ContinuousApproximateTime ContinuousApproximateTime::fromMachContinuousApproximateTime(uint64_t machContinuousApproximateTime)
{
    auto& info = machTimebaseInfo();
    return fromRawSeconds((machContinuousApproximateTime * info.numer) / (1.0e9 * info.denom));
}

uint64_t ContinuousApproximateTime::toMachContinuousApproximateTime() const
{
    auto& info = machTimebaseInfo();
    return static_cast<uint64_t>((m_value * 1.0e9 * info.denom) / info.numer);
}
#endif

MonotonicTime MonotonicTime::now()
{
#if USE(GLIB)
    return fromRawSeconds(static_cast<double>(g_get_monotonic_time() / 1000000.0));
#elif OS(DARWIN)
    return fromMachAbsoluteTime(mach_absolute_time());
#elif OS(FUCHSIA)
    return fromRawSeconds(zx_clock_get_monotonic() / static_cast<double>(ZX_SEC(1)));
#elif OS(LINUX) || OS(FREEBSD) || OS(OPENBSD) || OS(NETBSD)
    struct timespec ts { };
    clock_gettime(CLOCK_MONOTONIC, &ts);
    return fromRawSeconds(static_cast<double>(ts.tv_sec) + ts.tv_nsec / 1.0e9);
#elif OS(HAIKU)
    return fromRawSeconds(static_cast<double>(system_time_nsecs() / 1.0e9));
#else
    static double lastTime = 0;
    double currentTimeNow = currentTime();
    if (currentTimeNow < lastTime)
        return lastTime;
    lastTime = currentTimeNow;
    return fromRawSeconds(currentTimeNow);
#endif
}

ApproximateTime ApproximateTime::now()
{
#if OS(DARWIN)
    return fromMachApproximateTime(mach_approximate_time());
#elif OS(LINUX)
    struct timespec ts { };
    clock_gettime(CLOCK_MONOTONIC_COARSE, &ts);
    return fromRawSeconds(static_cast<double>(ts.tv_sec) + ts.tv_nsec / 1.0e9);
#elif OS(FREEBSD)
    struct timespec ts { };
    clock_gettime(CLOCK_MONOTONIC_FAST, &ts);
    return fromRawSeconds(static_cast<double>(ts.tv_sec) + ts.tv_nsec / 1.0e9);
#elif OS(HAIKU)
    return fromRawSeconds(static_cast<double>(system_time() / 1.0e6));
#else
    return ApproximateTime::fromRawSeconds(MonotonicTime::now().secondsSinceEpoch().value());
#endif
}

ContinuousTime ContinuousTime::now()
{
#if OS(DARWIN)
    return fromMachContinuousTime(mach_continuous_time());
#elif OS(LINUX) || OS(OPENBSD)
    struct timespec ts { };
    clock_gettime(CLOCK_BOOTTIME, &ts);
    return fromRawSeconds(static_cast<double>(ts.tv_sec) + ts.tv_nsec / 1.0e9);
#else
    static double lastTime = 0;
    double currentTimeNow = currentTime();
    if (currentTimeNow < lastTime)
        return lastTime;
    lastTime = currentTimeNow;
    return fromRawSeconds(currentTimeNow);
#endif
}

ContinuousApproximateTime ContinuousApproximateTime::now()
{
#if OS(DARWIN)
    return fromMachContinuousApproximateTime(mach_continuous_approximate_time());
#elif OS(LINUX) || OS(OPENBSD)
    struct timespec ts { };
    clock_gettime(CLOCK_BOOTTIME, &ts);
    return fromRawSeconds(static_cast<double>(ts.tv_sec) + ts.tv_nsec / 1.0e9);
#else
    static double lastTime = 0;
    double currentTimeNow = currentTime();
    if (currentTimeNow < lastTime)
        return lastTime;
    lastTime = currentTimeNow;
    return fromRawSeconds(currentTimeNow);
#endif
}

} // namespace WTF