1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
/*
* Copyright (C) 2022-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <array>
#include <wtf/EnumTraits.h>
namespace WTF {
// This is an std::array where the indices of the array are values of an enum (rather than a size_t).
// This assumes the values of the enum start at 0 and monotonically increase by 1
// (so the conversion function between size_t and the enum is just a simple static_cast).
// LastValue is the maximum value of the enum, which determines the size of the array.
template <typename Key, typename T, Key LastValue = EnumTraits<Key>::values::max>
class EnumeratedArray {
WTF_MAKE_FAST_ALLOCATED;
public:
using value_type = T;
using size_type = Key;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
using UnderlyingType = std::array<T, static_cast<std::size_t>(LastValue) + 1>;
using iterator = typename UnderlyingType::iterator;
using const_iterator = typename UnderlyingType::const_iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
EnumeratedArray() = default;
EnumeratedArray(const EnumeratedArray& from)
: m_storage(from.m_storage)
{
}
EnumeratedArray(EnumeratedArray&& from)
: m_storage(WTFMove(from.m_storage))
{
}
EnumeratedArray(const UnderlyingType& from)
: m_storage(from)
{
}
EnumeratedArray(UnderlyingType&& from)
: m_storage(WTFMove(from))
{
}
EnumeratedArray& operator=(const EnumeratedArray& from)
{
m_storage = from.m_storage;
return *this;
}
EnumeratedArray& operator=(EnumeratedArray&& from)
{
m_storage = WTFMove(from.m_storage);
return *this;
}
constexpr reference at(size_type pos)
{
return m_storage.at(index(pos));
}
constexpr const_reference at(size_type pos) const
{
return m_storage.at(index(pos));
}
constexpr reference operator[](size_type pos)
{
return m_storage[index(pos)];
}
constexpr const_reference operator[](size_type pos) const
{
return m_storage[index(pos)];
}
constexpr reference front()
{
return m_storage.front();
}
constexpr const_reference front() const
{
return m_storage.front();
}
constexpr reference back()
{
return m_storage.back();
}
constexpr const_reference back() const
{
return m_storage.back();
}
constexpr T* data() noexcept
{
return m_storage.data();
}
constexpr const T* data() const noexcept
{
return m_storage.data();
}
constexpr iterator begin() noexcept
{
return m_storage.begin();
}
constexpr const_iterator begin() const noexcept
{
return m_storage.begin();
}
constexpr const_iterator cbegin() const noexcept
{
return m_storage.cbegin();
}
constexpr iterator end() noexcept
{
return m_storage.end();
}
constexpr const_iterator end() const noexcept
{
return m_storage.end();
}
constexpr const_iterator cend() const noexcept
{
return m_storage.cend();
}
constexpr reverse_iterator rbegin() noexcept
{
return m_storage.rbegin();
}
constexpr const_reverse_iterator rbegin() const noexcept
{
return m_storage.rbegin();
}
constexpr const_reverse_iterator crbegin() const noexcept
{
return m_storage.crbegin();
}
constexpr reverse_iterator rend() noexcept
{
return m_storage.rend();
}
constexpr const_reverse_iterator rend() const noexcept
{
return m_storage.rend();
}
constexpr const_reverse_iterator crend() const noexcept
{
return m_storage.crend();
}
constexpr bool empty() const noexcept
{
return m_storage.empty();
}
constexpr typename UnderlyingType::size_type size() const noexcept
{
return m_storage.size();
}
constexpr typename UnderlyingType::size_type max_size() const noexcept
{
return m_storage.max_size();
}
constexpr void fill(const T& value)
{
m_storage.fill(value);
}
constexpr void swap(EnumeratedArray& other) noexcept
{
return m_storage.swap(other.m_storage);
}
template <typename Key2, typename T2, Key2 LastValue2>
constexpr bool operator==(const EnumeratedArray<Key2, T2, LastValue2>& rhs) const
{
return m_storage == rhs.m_storage;
}
template <typename Key2, typename T2, Key2 LastValue2>
bool operator<(const EnumeratedArray<Key2, T2, LastValue2>& rhs) const
{
return m_storage < rhs.m_storage;
}
template <typename Key2, typename T2, Key2 LastValue2>
bool operator<=(const EnumeratedArray<Key2, T2, LastValue2>& rhs) const
{
return m_storage <= rhs.m_storage;
}
template <typename Key2, typename T2, Key2 LastValue2>
bool operator>(const EnumeratedArray<Key2, T2, LastValue2>& rhs) const
{
return m_storage > rhs.m_storage;
}
template <typename Key2, typename T2, Key2 LastValue2>
bool operator>=(const EnumeratedArray<Key2, T2, LastValue2>& rhs) const
{
return m_storage >= rhs.m_storage;
}
private:
typename UnderlyingType::size_type index(size_type pos) const
{
return static_cast<typename UnderlyingType::size_type>(pos);
}
UnderlyingType m_storage;
};
} // namespace WTF
using WTF::EnumeratedArray;
|