File: Int128.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (378 lines) | stat: -rw-r--r-- 13,483 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "config.h"
#include <wtf/Int128.h>

#include <stddef.h>
#include <cassert>
#include <iomanip>
#include <ostream>  // NOLINT(readability/streams)
#include <sstream>
#include <string>
#include <type_traits>
#include <wtf/MathExtras.h>
#include <wtf/PrintStream.h>
#include <wtf/Vector.h>
#include <wtf/text/IntegerToStringConversion.h>

namespace WTF {

namespace {

// Returns the 0-based position of the last set bit (i.e., most significant bit)
// in the given UInt128Impl. The argument is not 0.
//
// For example:
//   Given: 5 (decimal) == 101 (binary)
//   Returns: 2
static ALWAYS_INLINE int Fls128(UInt128Impl n) {
  if (uint64_t hi = UInt128High64(n)) {
    ASSERT(hi != 0);
    return 127 - clz(hi);
  }
  const uint64_t low = UInt128Low64(n);
  ASSERT(low != 0);
  return 63 - clz(low);
}

// Long division/modulo for UInt128Impl implemented using the shift-subtract
// division algorithm adapted from:
// https://stackoverflow.com/questions/5386377/division-without-using
static inline void DivModImpl(UInt128Impl dividend, UInt128Impl divisor, UInt128Impl* quotient_ret, UInt128Impl* remainder_ret) {
  assert(divisor != 0);

  if (divisor > dividend) {
    *quotient_ret = 0;
    *remainder_ret = dividend;
    return;
  }

  if (divisor == dividend) {
    *quotient_ret = 1;
    *remainder_ret = 0;
    return;
  }

  UInt128Impl denominator = divisor;
  UInt128Impl quotient = 0;

  // Left aligns the MSB of the denominator and the dividend.
  const int shift = Fls128(dividend) - Fls128(denominator);
  denominator <<= shift;

  // Uses shift-subtract algorithm to divide dividend by denominator. The
  // remainder will be left in dividend.
  for (int i = 0; i <= shift; ++i) {
    quotient <<= 1;
    if (dividend >= denominator) {
      dividend -= denominator;
      quotient |= 1;
    }
    denominator >>= 1;
  }

  *quotient_ret = quotient;
  *remainder_ret = dividend;
}

template <typename T>
static UInt128Impl MakeUInt128FromFloat(T v) {
  static_assert(std::is_floating_point<T>::value);

  // Rounding behavior is towards zero, same as for built-in types.

  // Undefined behavior if v is NaN or cannot fit into UInt128Impl.
  assert(std::isfinite(v) && v > -1 &&
         (std::numeric_limits<T>::max_exponent <= 128 ||
          v < std::ldexp(static_cast<T>(1), 128)));

  if (v >= std::ldexp(static_cast<T>(1), 64)) {
    uint64_t hi = static_cast<uint64_t>(std::ldexp(v, -64));
    uint64_t lo = static_cast<uint64_t>(v - std::ldexp(static_cast<T>(hi), 64));
    return MakeUInt128(hi, lo);
  }

  return MakeUInt128(0, static_cast<uint64_t>(v));
}

}  // namespace

UInt128Impl::UInt128Impl(float v) : UInt128Impl(MakeUInt128FromFloat(v)) {}
UInt128Impl::UInt128Impl(double v) : UInt128Impl(MakeUInt128FromFloat(v)) {}
UInt128Impl::UInt128Impl(long double v) : UInt128Impl(MakeUInt128FromFloat(v)) {}

UInt128Impl operator/(UInt128Impl lhs, UInt128Impl rhs) {
  UInt128Impl quotient = 0;
  UInt128Impl remainder = 0;
  DivModImpl(lhs, rhs, &quotient, &remainder);
  return quotient;
}

UInt128Impl operator%(UInt128Impl lhs, UInt128Impl rhs) {
  UInt128Impl quotient = 0;
  UInt128Impl remainder = 0;
  DivModImpl(lhs, rhs, &quotient, &remainder);
  return remainder;
}

namespace {

static std::string UInt128ToFormattedString(UInt128Impl v, std::ios_base::fmtflags flags) {
  // Select a divisor which is the largest power of the base < 2^64.
  UInt128Impl div;
  int div_base_log;
  switch (flags & std::ios::basefield) {
    case std::ios::hex:
      div = 0x1000000000000000;  // 16^15
      div_base_log = 15;
      break;
    case std::ios::oct:
      div = 01000000000000000000000;  // 8^21
      div_base_log = 21;
      break;
    default:  // std::ios::dec
      div = 10000000000000000000u;  // 10^19
      div_base_log = 19;
      break;
  }

  // Now piece together the UInt128Impl representation from three chunks of the
  // original value, each less than "div" and therefore representable as a
  // uint64_t.
  std::ostringstream os;
  std::ios_base::fmtflags copy_mask =
      std::ios::basefield | std::ios::showbase | std::ios::uppercase;
  os.setf(flags & copy_mask, copy_mask);
  UInt128Impl high = v;
  UInt128Impl low;
  DivModImpl(high, div, &high, &low);
  UInt128Impl mid;
  DivModImpl(high, div, &high, &mid);
  if (UInt128Low64(high) != 0) {
    os << UInt128Low64(high);
    os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
    os << UInt128Low64(mid);
    os << std::setw(div_base_log);
  } else if (UInt128Low64(mid) != 0) {
    os << UInt128Low64(mid);
    os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
  }
  os << UInt128Low64(low);
  return os.str();
}

}  // namespace

std::ostream& operator<<(std::ostream& os, UInt128Impl v) {
  std::ios_base::fmtflags flags = os.flags();
  std::string rep = UInt128ToFormattedString(v, flags);

  // Add the requisite padding.
  std::streamsize width = os.width(0);
  if (static_cast<size_t>(width) > rep.size()) {
    std::ios::fmtflags adjustfield = flags & std::ios::adjustfield;
    if (adjustfield == std::ios::left) {
      rep.append(width - rep.size(), os.fill());
    } else if (adjustfield == std::ios::internal &&
               (flags & std::ios::showbase) &&
               (flags & std::ios::basefield) == std::ios::hex && v != 0) {
      rep.insert(2, width - rep.size(), os.fill());
    } else {
      rep.insert(0, width - rep.size(), os.fill());
    }
  }

  return os << rep;
}

namespace {

static UInt128Impl UnsignedAbsoluteValue(Int128Impl v) {
  // Cast to UInt128Impl before possibly negating because -Int128Min() is undefined.
  return Int128High64(v) < 0 ? -UInt128Impl(v) : UInt128Impl(v);
}

}  // namespace

namespace {

template <typename T>
static Int128Impl MakeInt128FromFloat(T v) {
  // Conversion when v is NaN or cannot fit into Int128Impl would be undefined
  // behavior if using an intrinsic 128-bit integer.
  assert(std::isfinite(v) && (std::numeric_limits<T>::max_exponent <= 127 ||
                              (v >= -std::ldexp(static_cast<T>(1), 127) &&
                               v < std::ldexp(static_cast<T>(1), 127))));

  // We must convert the absolute value and then negate as needed, because
  // floating point types are typically sign-magnitude. Otherwise, the
  // difference between the high and low 64 bits when interpreted as two's
  // complement overwhelms the precision of the mantissa.
  UInt128Impl result = v < 0 ? -MakeUInt128FromFloat(-v) : MakeUInt128FromFloat(v);
  return MakeInt128(int128_internal::BitCastToSigned(UInt128High64(result)),
                    UInt128Low64(result));
}

}  // namespace

Int128Impl::Int128Impl(float v) : Int128Impl(MakeInt128FromFloat(v)) {}
Int128Impl::Int128Impl(double v) : Int128Impl(MakeInt128FromFloat(v)) {}
Int128Impl::Int128Impl(long double v) : Int128Impl(MakeInt128FromFloat(v)) {}

Int128Impl operator/(Int128Impl lhs, Int128Impl rhs) {
  assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.

  UInt128Impl quotient = 0;
  UInt128Impl remainder = 0;
  DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
             &quotient, &remainder);
  if ((Int128High64(lhs) < 0) != (Int128High64(rhs) < 0)) quotient = -quotient;
  return MakeInt128(int128_internal::BitCastToSigned(UInt128High64(quotient)),
                    UInt128Low64(quotient));
}

Int128Impl operator%(Int128Impl lhs, Int128Impl rhs) {
  assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.

  UInt128Impl quotient = 0;
  UInt128Impl remainder = 0;
  DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
             &quotient, &remainder);
  if (Int128High64(lhs) < 0) remainder = -remainder;
  return MakeInt128(int128_internal::BitCastToSigned(UInt128High64(remainder)),
                    UInt128Low64(remainder));
}

std::ostream& operator<<(std::ostream& os, Int128Impl v) {
  std::ios_base::fmtflags flags = os.flags();
  std::string rep;

  // Add the sign if needed.
  bool print_as_decimal =
      (flags & std::ios::basefield) == std::ios::dec ||
      (flags & std::ios::basefield) == std::ios_base::fmtflags();
  if (print_as_decimal) {
    if (Int128High64(v) < 0) {
      rep.append("-");
    } else if (flags & std::ios::showpos) {
      rep.append("+");
    }
  }

  rep.append(UInt128ToFormattedString(
      print_as_decimal ? UnsignedAbsoluteValue(v) : UInt128Impl(v), os.flags()));

  // Add the requisite padding.
  std::streamsize width = os.width(0);
  if (static_cast<size_t>(width) > rep.size()) {
    switch (flags & std::ios::adjustfield) {
      case std::ios::left:
        rep.append(width - rep.size(), os.fill());
        break;
      case std::ios::internal:
        if (print_as_decimal && (rep[0] == '+' || rep[0] == '-')) {
          rep.insert(1, width - rep.size(), os.fill());
        } else if ((flags & std::ios::basefield) == std::ios::hex &&
                   (flags & std::ios::showbase) && v != 0) {
          rep.insert(2, width - rep.size(), os.fill());
        } else {
          rep.insert(0, width - rep.size(), os.fill());
        }
        break;
      default:  // std::ios::right
        rep.insert(0, width - rep.size(), os.fill());
        break;
    }
  }

  return os << rep;
}

void printInternal(PrintStream& out, UInt128 value)
{
    auto vector = numberToStringUnsigned<Vector<LChar, 50>>(value);
    vector.append('\0');
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    out.printf("%s", std::bit_cast<const char*>(vector.data()));
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}

void printInternal(PrintStream& out, Int128 value)
{
    if (value >= 0) {
        printInternal(out, static_cast<UInt128>(value));
        return;
    }
    UInt128 positive;
    if (value == std::numeric_limits<Int128>::min())
        positive = static_cast<UInt128>(0x8000'0000'0000'0000ULL) << 64;
    else
        positive = -value;
    auto vector = numberToStringUnsigned<Vector<LChar, 50>>(positive);
    vector.append('\0');
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    out.printf("-%s", std::bit_cast<const char*>(vector.data()));
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}

}  // namespace WTF

namespace std {
constexpr bool numeric_limits<WTF::UInt128Impl>::is_specialized;
constexpr bool numeric_limits<WTF::UInt128Impl>::is_signed;
constexpr bool numeric_limits<WTF::UInt128Impl>::is_integer;
constexpr bool numeric_limits<WTF::UInt128Impl>::is_exact;
constexpr bool numeric_limits<WTF::UInt128Impl>::has_infinity;
constexpr bool numeric_limits<WTF::UInt128Impl>::has_quiet_NaN;
constexpr bool numeric_limits<WTF::UInt128Impl>::has_signaling_NaN;
constexpr bool numeric_limits<WTF::UInt128Impl>::has_denorm_loss;
constexpr float_round_style numeric_limits<WTF::UInt128Impl>::round_style;
constexpr bool numeric_limits<WTF::UInt128Impl>::is_iec559;
constexpr bool numeric_limits<WTF::UInt128Impl>::is_bounded;
constexpr bool numeric_limits<WTF::UInt128Impl>::is_modulo;
constexpr int numeric_limits<WTF::UInt128Impl>::digits;
constexpr int numeric_limits<WTF::UInt128Impl>::digits10;
constexpr int numeric_limits<WTF::UInt128Impl>::max_digits10;
constexpr int numeric_limits<WTF::UInt128Impl>::radix;
constexpr int numeric_limits<WTF::UInt128Impl>::min_exponent;
constexpr int numeric_limits<WTF::UInt128Impl>::min_exponent10;
constexpr int numeric_limits<WTF::UInt128Impl>::max_exponent;
constexpr int numeric_limits<WTF::UInt128Impl>::max_exponent10;
constexpr bool numeric_limits<WTF::UInt128Impl>::traps;
constexpr bool numeric_limits<WTF::UInt128Impl>::tinyness_before;

constexpr bool numeric_limits<WTF::Int128Impl>::is_specialized;
constexpr bool numeric_limits<WTF::Int128Impl>::is_signed;
constexpr bool numeric_limits<WTF::Int128Impl>::is_integer;
constexpr bool numeric_limits<WTF::Int128Impl>::is_exact;
constexpr bool numeric_limits<WTF::Int128Impl>::has_infinity;
constexpr bool numeric_limits<WTF::Int128Impl>::has_quiet_NaN;
constexpr bool numeric_limits<WTF::Int128Impl>::has_signaling_NaN;
constexpr bool numeric_limits<WTF::Int128Impl>::has_denorm_loss;
constexpr float_round_style numeric_limits<WTF::Int128Impl>::round_style;
constexpr bool numeric_limits<WTF::Int128Impl>::is_iec559;
constexpr bool numeric_limits<WTF::Int128Impl>::is_bounded;
constexpr bool numeric_limits<WTF::Int128Impl>::is_modulo;
constexpr int numeric_limits<WTF::Int128Impl>::digits;
constexpr int numeric_limits<WTF::Int128Impl>::digits10;
constexpr int numeric_limits<WTF::Int128Impl>::max_digits10;
constexpr int numeric_limits<WTF::Int128Impl>::radix;
constexpr int numeric_limits<WTF::Int128Impl>::min_exponent;
constexpr int numeric_limits<WTF::Int128Impl>::min_exponent10;
constexpr int numeric_limits<WTF::Int128Impl>::max_exponent;
constexpr int numeric_limits<WTF::Int128Impl>::max_exponent10;
constexpr bool numeric_limits<WTF::Int128Impl>::traps;
constexpr bool numeric_limits<WTF::Int128Impl>::tinyness_before;
}  // namespace std