File: Int128.h

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (1269 lines) | stat: -rw-r--r-- 44,051 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: Int128Impl.h
// -----------------------------------------------------------------------------
//
// This header file defines 128-bit integer types, `uint128` and `Int128Impl`.
//
// TODO(absl-team): This module is inconsistent as many inline `uint128` methods
// are defined in this file, while many inline `Int128Impl` methods are defined in
// the `int128_*_intrinsic.inc` files.
//

// Int128.h and Int128.cpp are derived from abseil-cpp (https://github.com/abseil/abseil-cpp)
// Imported revision is ddb842f583e560bbde497bc96cfebe25f9089e11.
// We apply the following changes.
// 1. Use WTF macros instead of ABSL macros.
// 2. Remove abseil HashTable handling
// 3. Remove __int128_t handling

#pragma once

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <utility>
#include <wtf/Platform.h>

#if COMPILER(MSVC)
// In very old versions of MSVC and when the /Zc:wchar_t flag is off, wchar_t is
// a typedef for unsigned short.  Otherwise wchar_t is mapped to the __wchar_t
// builtin type.  We need to make sure not to define operator wchar_t()
// alongside operator unsigned short() in these instances.
#define ABSL_INTERNAL_WCHAR_T __wchar_t
#else
#define ABSL_INTERNAL_WCHAR_T wchar_t
#endif

namespace WTF {

class Int128Impl;
class PrintStream;

// UInt128Impl
//
// An unsigned 128-bit integer type. The API is meant to mimic an intrinsic type
// as closely as is practical, including exhibiting undefined behavior in
// analogous cases (e.g. division by zero). This type is intended to be a
// drop-in replacement once C++ supports an intrinsic `uint128_t` type; when
// that occurs, existing well-behaved uses of `UInt128Impl` will continue to work
// using that new type.
//
// Note: code written with this type will continue to compile once `uint128_t`
// is introduced, provided the replacement helper functions
// `UInt128Impl(Low|High)64()` and `MakeUInt128()` are made.
//
// A `UInt128Impl` supports the following:
//
//   * Implicit construction from integral types
//   * Explicit conversion to integral types
//
// However, a `UInt128Impl` differs from intrinsic integral types in the following
// ways:
//
//   * Errors on implicit conversions that do not preserve value (such as
//     loss of precision when converting to float values).
//   * Requires explicit construction from and conversion to floating point
//     types.
//   * Conversion to integral types requires an explicit static_cast() to
//     mimic use of the `-Wnarrowing` compiler flag.
//   * The alignment requirement of `UInt128Impl` may differ from that of an
//     intrinsic 128-bit integer type depending on platform and build
//     configuration.
//
// Example:
//
//     float y = UInt128Max();  // Error. UInt128Impl cannot be implicitly
//                                    // converted to float.
//
//     UInt128Impl v;
//     uint64_t i = v;                         // Error
//     uint64_t i = static_cast<uint64_t>(v);  // OK
//
class alignas(16) UInt128Impl {
 public:
  UInt128Impl() = default;

  // Constructors from arithmetic types
  constexpr UInt128Impl(int v);                 // NOLINT(runtime/explicit)
  constexpr UInt128Impl(unsigned int v);        // NOLINT(runtime/explicit)
  constexpr UInt128Impl(long v);                // NOLINT(runtime/int)
  constexpr UInt128Impl(unsigned long v);       // NOLINT(runtime/int)
  constexpr UInt128Impl(long long v);           // NOLINT(runtime/int)
  constexpr UInt128Impl(unsigned long long v);  // NOLINT(runtime/int)
  constexpr UInt128Impl(Int128Impl v);  // NOLINT(runtime/explicit)
  WTF_EXPORT_PRIVATE explicit UInt128Impl(float v);
  WTF_EXPORT_PRIVATE explicit UInt128Impl(double v);
  WTF_EXPORT_PRIVATE explicit UInt128Impl(long double v);

  // Assignment operators from arithmetic types
  UInt128Impl& operator=(int v);
  UInt128Impl& operator=(unsigned int v);
  UInt128Impl& operator=(long v);                // NOLINT(runtime/int)
  UInt128Impl& operator=(unsigned long v);       // NOLINT(runtime/int)
  UInt128Impl& operator=(long long v);           // NOLINT(runtime/int)
  UInt128Impl& operator=(unsigned long long v);  // NOLINT(runtime/int)
  UInt128Impl& operator=(Int128Impl v);

  // Conversion operators to other arithmetic types
  constexpr explicit operator bool() const;
  constexpr explicit operator char() const;
  constexpr explicit operator signed char() const;
  constexpr explicit operator unsigned char() const;
  constexpr explicit operator char16_t() const;
  constexpr explicit operator char32_t() const;
  constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
  constexpr explicit operator short() const;  // NOLINT(runtime/int)
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator unsigned short() const;
  constexpr explicit operator int() const;
  constexpr explicit operator unsigned int() const;
  constexpr explicit operator long() const;  // NOLINT(runtime/int)
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator unsigned long() const;
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator long long() const;
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator unsigned long long() const;
  explicit operator float() const;
  explicit operator double() const;
  explicit operator long double() const;

  // Trivial copy constructor, assignment operator and destructor.

  // Arithmetic operators.
  UInt128Impl& operator+=(UInt128Impl other);
  UInt128Impl& operator-=(UInt128Impl other);
  UInt128Impl& operator*=(UInt128Impl other);
  // Long division/modulo for UInt128Impl.
  UInt128Impl& operator/=(UInt128Impl other);
  UInt128Impl& operator%=(UInt128Impl other);
  UInt128Impl operator++(int);
  UInt128Impl operator--(int);
  UInt128Impl& operator<<=(int);
  UInt128Impl& operator>>=(int);
  UInt128Impl& operator&=(UInt128Impl other);
  UInt128Impl& operator|=(UInt128Impl other);
  UInt128Impl& operator^=(UInt128Impl other);
  UInt128Impl& operator++();
  UInt128Impl& operator--();

  // UInt128Low64()
  //
  // Returns the lower 64-bit value of a `UInt128Impl` value.
  friend constexpr uint64_t UInt128Low64(UInt128Impl v);

  // UInt128High64()
  //
  // Returns the higher 64-bit value of a `UInt128Impl` value.
  friend constexpr uint64_t UInt128High64(UInt128Impl v);

  // MakeUInt128()
  //
  // Constructs a `UInt128Impl` numeric value from two 64-bit unsigned integers.
  // Note that this factory function is the only way to construct a `UInt128Impl`
  // from integer values greater than 2^64.
  //
  // Example:
  //
  //   UInt128Impl big = MakeUInt128(1, 0);
  friend constexpr UInt128Impl MakeUInt128(uint64_t high, uint64_t low);

  // UInt128Max()
  //
  // Returns the highest value for a 128-bit unsigned integer.
  friend constexpr UInt128Impl UInt128Max();

 private:
  constexpr UInt128Impl(uint64_t high, uint64_t low);

  // TODO(strel) Update implementation to use __int128 once all users of
  // UInt128Impl are fixed to not depend on alignof(UInt128Impl) == 8. Also add
  // alignas(16) to class definition to keep alignment consistent across
  // platforms.
#if CPU(LITTLE_ENDIAN)
  uint64_t lo_;
  uint64_t hi_;
#elif CPU(BIG_ENDIAN)
  uint64_t hi_;
  uint64_t lo_;
#else  // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif  // byte order
};

// allow UInt128Impl to be logged
WTF_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, UInt128Impl v);

// TODO(strel) add operator>>(std::istream&, UInt128Impl)

constexpr UInt128Impl UInt128Max() {
  return UInt128Impl((std::numeric_limits<uint64_t>::max)(),
                 (std::numeric_limits<uint64_t>::max)());
}

}  // namespace WTF

// Specialized numeric_limits for UInt128Impl.
namespace std {
template <>
class numeric_limits<WTF::UInt128Impl> {
 public:
  static constexpr bool is_specialized = true;
  static constexpr bool is_signed = false;
  static constexpr bool is_integer = true;
  static constexpr bool is_exact = true;
  static constexpr bool has_infinity = false;
  static constexpr bool has_quiet_NaN = false;
  static constexpr bool has_signaling_NaN = false;
  static constexpr bool has_denorm_loss = false;
  static constexpr float_round_style round_style = round_toward_zero;
  static constexpr bool is_iec559 = false;
  static constexpr bool is_bounded = true;
  static constexpr bool is_modulo = true;
  static constexpr int digits = 128;
  static constexpr int digits10 = 38;
  static constexpr int max_digits10 = 0;
  static constexpr int radix = 2;
  static constexpr int min_exponent = 0;
  static constexpr int min_exponent10 = 0;
  static constexpr int max_exponent = 0;
  static constexpr int max_exponent10 = 0;
  static constexpr bool traps = numeric_limits<uint64_t>::traps;
  static constexpr bool tinyness_before = false;

  static constexpr WTF::UInt128Impl (min)() { return 0; }
  static constexpr WTF::UInt128Impl lowest() { return 0; }
  static constexpr WTF::UInt128Impl (max)() { return WTF::UInt128Max(); }
  static constexpr WTF::UInt128Impl epsilon() { return 0; }
  static constexpr WTF::UInt128Impl round_error() { return 0; }
  static constexpr WTF::UInt128Impl infinity() { return 0; }
  static constexpr WTF::UInt128Impl quiet_NaN() { return 0; }
  static constexpr WTF::UInt128Impl signaling_NaN() { return 0; }
  static constexpr WTF::UInt128Impl denorm_min() { return 0; }
};
}  // namespace std

namespace WTF {

// Int128Impl
//
// A signed 128-bit integer type. The API is meant to mimic an intrinsic
// integral type as closely as is practical, including exhibiting undefined
// behavior in analogous cases (e.g. division by zero).
//
// An `Int128Impl` supports the following:
//
//   * Implicit construction from integral types
//   * Explicit conversion to integral types
//
// However, an `Int128Impl` differs from intrinsic integral types in the following
// ways:
//
//   * It is not implicitly convertible to other integral types.
//   * Requires explicit construction from and conversion to floating point
//     types.

// The design goal for `Int128Impl` is that it will be compatible with a future
// `int128_t`, if that type becomes a part of the standard.
//
// Example:
//
//     float y = Int128Impl(17);  // Error. Int128Impl cannot be implicitly
//                                  // converted to float.
//
//     Int128Impl v;
//     int64_t i = v;                        // Error
//     int64_t i = static_cast<int64_t>(v);  // OK
//
class alignas(16) Int128Impl {
 public:
  Int128Impl() = default;

  // Constructors from arithmetic types
  constexpr Int128Impl(int v);                 // NOLINT(runtime/explicit)
  constexpr Int128Impl(unsigned int v);        // NOLINT(runtime/explicit)
  constexpr Int128Impl(long v);                // NOLINT(runtime/int)
  constexpr Int128Impl(unsigned long v);       // NOLINT(runtime/int)
  constexpr Int128Impl(long long v);           // NOLINT(runtime/int)
  constexpr Int128Impl(unsigned long long v);  // NOLINT(runtime/int)
  constexpr explicit Int128Impl(UInt128Impl v);
  WTF_EXPORT_PRIVATE explicit Int128Impl(float v);
  WTF_EXPORT_PRIVATE explicit Int128Impl(double v);
  WTF_EXPORT_PRIVATE explicit Int128Impl(long double v);

  // Assignment operators from arithmetic types
  Int128Impl& operator=(int v);
  Int128Impl& operator=(unsigned int v);
  Int128Impl& operator=(long v);                // NOLINT(runtime/int)
  Int128Impl& operator=(unsigned long v);       // NOLINT(runtime/int)
  Int128Impl& operator=(long long v);           // NOLINT(runtime/int)
  Int128Impl& operator=(unsigned long long v);  // NOLINT(runtime/int)

  // Conversion operators to other arithmetic types
  constexpr explicit operator bool() const;
  constexpr explicit operator char() const;
  constexpr explicit operator signed char() const;
  constexpr explicit operator unsigned char() const;
  constexpr explicit operator char16_t() const;
  constexpr explicit operator char32_t() const;
  constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
  constexpr explicit operator short() const;  // NOLINT(runtime/int)
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator unsigned short() const;
  constexpr explicit operator int() const;
  constexpr explicit operator unsigned int() const;
  constexpr explicit operator long() const;  // NOLINT(runtime/int)
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator unsigned long() const;
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator long long() const;
  // NOLINTNEXTLINE(runtime/int)
  constexpr explicit operator unsigned long long() const;
  explicit operator float() const;
  explicit operator double() const;
  explicit operator long double() const;

  // Trivial copy constructor, assignment operator and destructor.

  // Arithmetic operators
  Int128Impl& operator+=(Int128Impl other);
  Int128Impl& operator-=(Int128Impl other);
  Int128Impl& operator*=(Int128Impl other);
  Int128Impl& operator/=(Int128Impl other);
  Int128Impl& operator%=(Int128Impl other);
  Int128Impl operator++(int);  // postfix increment: i++
  Int128Impl operator--(int);  // postfix decrement: i--
  Int128Impl& operator++();    // prefix increment:  ++i
  Int128Impl& operator--();    // prefix decrement:  --i
  Int128Impl& operator&=(Int128Impl other);
  Int128Impl& operator|=(Int128Impl other);
  Int128Impl& operator^=(Int128Impl other);
  Int128Impl& operator<<=(int amount);
  Int128Impl& operator>>=(int amount);

  // Int128Low64()
  //
  // Returns the lower 64-bit value of a `Int128Impl` value.
  friend constexpr uint64_t Int128Low64(Int128Impl v);

  // Int128High64()
  //
  // Returns the higher 64-bit value of a `Int128Impl` value.
  friend constexpr int64_t Int128High64(Int128Impl v);

  // MakeInt128()
  //
  // Constructs a `Int128Impl` numeric value from two 64-bit integers. Note that
  // signedness is conveyed in the upper `high` value.
  //
  //   (Int128Impl(1) << 64) * high + low
  //
  // Note that this factory function is the only way to construct a `Int128Impl`
  // from integer values greater than 2^64 or less than -2^64.
  //
  // Example:
  //
  //   Int128Impl big = MakeInt128(1, 0);
  //   Int128Impl big_n = MakeInt128(-1, 0);
  friend constexpr Int128Impl MakeInt128(int64_t high, uint64_t low);

  // Int128Max()
  //
  // Returns the maximum value for a 128-bit signed integer.
  friend constexpr Int128Impl Int128Max();

  // Int128Min()
  //
  // Returns the minimum value for a 128-bit signed integer.
  friend constexpr Int128Impl Int128Min();

 private:
  constexpr Int128Impl(int64_t high, uint64_t low);

#if CPU(LITTLE_ENDIAN)
  uint64_t lo_;
  int64_t hi_;
#elif CPU(BIG_ENDIAN)
  int64_t hi_;
  uint64_t lo_;
#else  // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif  // byte order
};

WTF_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, Int128Impl v);

// TODO(absl-team) add operator>>(std::istream&, Int128Impl)

constexpr Int128Impl Int128Max() {
  return Int128Impl((std::numeric_limits<int64_t>::max)(),
                (std::numeric_limits<uint64_t>::max)());
}

constexpr Int128Impl Int128Min() {
  return Int128Impl((std::numeric_limits<int64_t>::min)(), 0);
}

}  // namespace WTF

// Specialized numeric_limits for Int128Impl.
namespace std {
template <>
class numeric_limits<WTF::Int128Impl> {
 public:
  static constexpr bool is_specialized = true;
  static constexpr bool is_signed = true;
  static constexpr bool is_integer = true;
  static constexpr bool is_exact = true;
  static constexpr bool has_infinity = false;
  static constexpr bool has_quiet_NaN = false;
  static constexpr bool has_signaling_NaN = false;
  static constexpr bool has_denorm_loss = false;
  static constexpr float_round_style round_style = round_toward_zero;
  static constexpr bool is_iec559 = false;
  static constexpr bool is_bounded = true;
  static constexpr bool is_modulo = false;
  static constexpr int digits = 127;
  static constexpr int digits10 = 38;
  static constexpr int max_digits10 = 0;
  static constexpr int radix = 2;
  static constexpr int min_exponent = 0;
  static constexpr int min_exponent10 = 0;
  static constexpr int max_exponent = 0;
  static constexpr int max_exponent10 = 0;
  static constexpr bool traps = numeric_limits<uint64_t>::traps;
  static constexpr bool tinyness_before = false;

  static constexpr WTF::Int128Impl (min)() { return WTF::Int128Min(); }
  static constexpr WTF::Int128Impl lowest() { return WTF::Int128Min(); }
  static constexpr WTF::Int128Impl (max)() { return WTF::Int128Max(); }
  static constexpr WTF::Int128Impl epsilon() { return 0; }
  static constexpr WTF::Int128Impl round_error() { return 0; }
  static constexpr WTF::Int128Impl infinity() { return 0; }
  static constexpr WTF::Int128Impl quiet_NaN() { return 0; }
  static constexpr WTF::Int128Impl signaling_NaN() { return 0; }
  static constexpr WTF::Int128Impl denorm_min() { return 0; }
};
}  // namespace std

// --------------------------------------------------------------------------
//                      Implementation details follow
// --------------------------------------------------------------------------
namespace WTF {

constexpr UInt128Impl MakeUInt128(uint64_t high, uint64_t low) {
  return UInt128Impl(high, low);
}

// Assignment from integer types.

inline UInt128Impl& UInt128Impl::operator=(int v) { return *this = UInt128Impl(v); }

inline UInt128Impl& UInt128Impl::operator=(unsigned int v) {
  return *this = UInt128Impl(v);
}

inline UInt128Impl& UInt128Impl::operator=(long v) {  // NOLINT(runtime/int)
  return *this = UInt128Impl(v);
}

// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(unsigned long v) {
  return *this = UInt128Impl(v);
}

// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(long long v) {
  return *this = UInt128Impl(v);
}

// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(unsigned long long v) {
  return *this = UInt128Impl(v);
}

inline UInt128Impl& UInt128Impl::operator=(Int128Impl v) {
  return *this = UInt128Impl(v);
}

// Arithmetic operators.

constexpr UInt128Impl operator<<(UInt128Impl lhs, int amount);
constexpr UInt128Impl operator>>(UInt128Impl lhs, int amount);
constexpr UInt128Impl operator+(UInt128Impl lhs, UInt128Impl rhs);
constexpr UInt128Impl operator-(UInt128Impl lhs, UInt128Impl rhs);
constexpr UInt128Impl operator*(UInt128Impl lhs, UInt128Impl rhs);
WTF_EXPORT_PRIVATE UInt128Impl operator/(UInt128Impl lhs, UInt128Impl rhs);
WTF_EXPORT_PRIVATE UInt128Impl operator%(UInt128Impl lhs, UInt128Impl rhs);

inline UInt128Impl& UInt128Impl::operator<<=(int amount) {
  *this = *this << amount;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator>>=(int amount) {
  *this = *this >> amount;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator+=(UInt128Impl other) {
  *this = *this + other;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator-=(UInt128Impl other) {
  *this = *this - other;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator*=(UInt128Impl other) {
  *this = *this * other;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator/=(UInt128Impl other) {
  *this = *this / other;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator%=(UInt128Impl other) {
  *this = *this % other;
  return *this;
}

constexpr uint64_t UInt128Low64(UInt128Impl v) { return v.lo_; }

constexpr uint64_t UInt128High64(UInt128Impl v) { return v.hi_; }

// Constructors from integer types.

#if CPU(LITTLE_ENDIAN)

constexpr UInt128Impl::UInt128Impl(uint64_t high, uint64_t low)
    : lo_{low}, hi_{high} {}

constexpr UInt128Impl::UInt128Impl(int v)
    : lo_{static_cast<uint64_t>(v)},
      hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(long v)  // NOLINT(runtime/int)
    : lo_{static_cast<uint64_t>(v)},
      hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(long long v)  // NOLINT(runtime/int)
    : lo_{static_cast<uint64_t>(v)},
      hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}

constexpr UInt128Impl::UInt128Impl(unsigned int v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long long v) : lo_{v}, hi_{0} {}

constexpr UInt128Impl::UInt128Impl(Int128Impl v)
    : lo_{Int128Low64(v)}, hi_{static_cast<uint64_t>(Int128High64(v))} {}

#elif CPU(BIG_ENDIAN)

constexpr UInt128Impl::UInt128Impl(uint64_t high, uint64_t low)
    : hi_{high}, lo_{low} {}

constexpr UInt128Impl::UInt128Impl(int v)
    : hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
      lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(long v)  // NOLINT(runtime/int)
    : hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
      lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(long long v)  // NOLINT(runtime/int)
    : hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
      lo_{static_cast<uint64_t>(v)} {}

constexpr UInt128Impl::UInt128Impl(unsigned int v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long long v) : hi_{0}, lo_{v} {}

constexpr UInt128Impl::UInt128Impl(Int128Impl v)
    : hi_{static_cast<uint64_t>(Int128High64(v))}, lo_{Int128Low64(v)} {}

#else  // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif  // byte order

// Conversion operators to integer types.

constexpr UInt128Impl::operator bool() const { return lo_ || hi_; }

constexpr UInt128Impl::operator char() const { return static_cast<char>(lo_); }

constexpr UInt128Impl::operator signed char() const {
  return static_cast<signed char>(lo_);
}

constexpr UInt128Impl::operator unsigned char() const {
  return static_cast<unsigned char>(lo_);
}

constexpr UInt128Impl::operator char16_t() const {
  return static_cast<char16_t>(lo_);
}

constexpr UInt128Impl::operator char32_t() const {
  return static_cast<char32_t>(lo_);
}

constexpr UInt128Impl::operator ABSL_INTERNAL_WCHAR_T() const {
  return static_cast<ABSL_INTERNAL_WCHAR_T>(lo_);
}

// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::operator short() const { return static_cast<short>(lo_); }

constexpr UInt128Impl::operator unsigned short() const {  // NOLINT(runtime/int)
  return static_cast<unsigned short>(lo_);            // NOLINT(runtime/int)
}

constexpr UInt128Impl::operator int() const { return static_cast<int>(lo_); }

constexpr UInt128Impl::operator unsigned int() const {
  return static_cast<unsigned int>(lo_);
}

// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::operator long() const { return static_cast<long>(lo_); }

constexpr UInt128Impl::operator unsigned long() const {  // NOLINT(runtime/int)
  return static_cast<unsigned long>(lo_);            // NOLINT(runtime/int)
}

constexpr UInt128Impl::operator long long() const {  // NOLINT(runtime/int)
  return static_cast<long long>(lo_);            // NOLINT(runtime/int)
}

constexpr UInt128Impl::operator unsigned long long() const {  // NOLINT(runtime/int)
  return static_cast<unsigned long long>(lo_);            // NOLINT(runtime/int)
}

// Conversion operators to floating point types.

inline UInt128Impl::operator float() const {
  return static_cast<float>(lo_) + std::ldexp(static_cast<float>(hi_), 64);
}

inline UInt128Impl::operator double() const {
  return static_cast<double>(lo_) + std::ldexp(static_cast<double>(hi_), 64);
}

inline UInt128Impl::operator long double() const {
  return static_cast<long double>(lo_) +
         std::ldexp(static_cast<long double>(hi_), 64);
}

// Comparison operators.

constexpr bool operator==(UInt128Impl lhs, UInt128Impl rhs) {
  return (UInt128Low64(lhs) == UInt128Low64(rhs) &&
          UInt128High64(lhs) == UInt128High64(rhs));
}

constexpr bool operator<(UInt128Impl lhs, UInt128Impl rhs) {
  return (UInt128High64(lhs) == UInt128High64(rhs))
             ? (UInt128Low64(lhs) < UInt128Low64(rhs))
             : (UInt128High64(lhs) < UInt128High64(rhs));
}

constexpr bool operator>(UInt128Impl lhs, UInt128Impl rhs) { return rhs < lhs; }

constexpr bool operator<=(UInt128Impl lhs, UInt128Impl rhs) { return !(rhs < lhs); }

constexpr bool operator>=(UInt128Impl lhs, UInt128Impl rhs) { return !(lhs < rhs); }

// Unary operators.

constexpr inline UInt128Impl operator+(UInt128Impl val) {
  return val;
}

constexpr inline Int128Impl operator+(Int128Impl val) {
  return val;
}

constexpr UInt128Impl operator-(UInt128Impl val) {
  return MakeUInt128(
      ~UInt128High64(val) + static_cast<unsigned long>(UInt128Low64(val) == 0),
      ~UInt128Low64(val) + 1);
}

constexpr inline bool operator!(UInt128Impl val) {
  return !UInt128High64(val) && !UInt128Low64(val);
}

// Logical operators.

constexpr inline UInt128Impl operator~(UInt128Impl val) {
  return MakeUInt128(~UInt128High64(val), ~UInt128Low64(val));
}

constexpr inline UInt128Impl operator|(UInt128Impl lhs, UInt128Impl rhs) {
  return MakeUInt128(UInt128High64(lhs) | UInt128High64(rhs),
                     UInt128Low64(lhs) | UInt128Low64(rhs));
}

constexpr inline UInt128Impl operator&(UInt128Impl lhs, UInt128Impl rhs) {
  return MakeUInt128(UInt128High64(lhs) & UInt128High64(rhs),
                     UInt128Low64(lhs) & UInt128Low64(rhs));
}

constexpr inline UInt128Impl operator^(UInt128Impl lhs, UInt128Impl rhs) {
  return MakeUInt128(UInt128High64(lhs) ^ UInt128High64(rhs),
                     UInt128Low64(lhs) ^ UInt128Low64(rhs));
}

inline UInt128Impl& UInt128Impl::operator|=(UInt128Impl other) {
  *this = *this | other;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator&=(UInt128Impl other) {
  *this = *this & other;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator^=(UInt128Impl other) {
  *this = *this ^ other;
  return *this;
}

// Arithmetic operators.

constexpr UInt128Impl operator<<(UInt128Impl lhs, int amount) {
  // uint64_t shifts of >= 64 are undefined, so we will need some
  // special-casing.
  return amount >= 64 ? MakeUInt128(UInt128Low64(lhs) << (amount - 64), 0)
         : amount == 0 ? lhs
                       : MakeUInt128((UInt128High64(lhs) << amount) |
                                         (UInt128Low64(lhs) >> (64 - amount)),
                                     UInt128Low64(lhs) << amount);
}

constexpr UInt128Impl operator>>(UInt128Impl lhs, int amount) {
  // uint64_t shifts of >= 64 are undefined, so we will need some
  // special-casing.
  return amount >= 64 ? MakeUInt128(0, UInt128High64(lhs) >> (amount - 64))
         : amount == 0 ? lhs
                       : MakeUInt128(UInt128High64(lhs) >> amount,
                                     (UInt128Low64(lhs) >> amount) |
                                         (UInt128High64(lhs) << (64 - amount)));
}

namespace int128_internal {
constexpr UInt128Impl AddResult(UInt128Impl result, UInt128Impl lhs) {
  // check for carry
  return (UInt128Low64(result) < UInt128Low64(lhs))
             ? MakeUInt128(UInt128High64(result) + 1, UInt128Low64(result))
             : result;
}
}  // namespace int128_internal

constexpr UInt128Impl operator+(UInt128Impl lhs, UInt128Impl rhs) {
  return int128_internal::AddResult(
      MakeUInt128(UInt128High64(lhs) + UInt128High64(rhs),
                  UInt128Low64(lhs) + UInt128Low64(rhs)),
      lhs);
}

namespace int128_internal {
constexpr UInt128Impl SubstructResult(UInt128Impl result, UInt128Impl lhs, UInt128Impl rhs) {
  // check for carry
  return (UInt128Low64(lhs) < UInt128Low64(rhs))
             ? MakeUInt128(UInt128High64(result) - 1, UInt128Low64(result))
             : result;
}
}  // namespace int128_internal

constexpr UInt128Impl operator-(UInt128Impl lhs, UInt128Impl rhs) {
  return int128_internal::SubstructResult(
      MakeUInt128(UInt128High64(lhs) - UInt128High64(rhs),
                  UInt128Low64(lhs) - UInt128Low64(rhs)),
      lhs, rhs);
}

constexpr UInt128Impl operator*(UInt128Impl lhs, UInt128Impl rhs) {
  uint64_t a32 = UInt128Low64(lhs) >> 32;
  uint64_t a00 = UInt128Low64(lhs) & 0xffffffff;
  uint64_t b32 = UInt128Low64(rhs) >> 32;
  uint64_t b00 = UInt128Low64(rhs) & 0xffffffff;
  UInt128Impl result =
      MakeUInt128(UInt128High64(lhs) * UInt128Low64(rhs) +
                      UInt128Low64(lhs) * UInt128High64(rhs) + a32 * b32,
                  a00 * b00);
  UInt128Impl v1 = UInt128Impl(a32 * b00) << 32;
  UInt128Impl v2 = UInt128Impl(a00 * b32) << 32;
  return result + v1 + v2;
}

// Increment/decrement operators.

inline UInt128Impl UInt128Impl::operator++(int) {
  UInt128Impl tmp(*this);
  *this += 1;
  return tmp;
}

inline UInt128Impl UInt128Impl::operator--(int) {
  UInt128Impl tmp(*this);
  *this -= 1;
  return tmp;
}

inline UInt128Impl& UInt128Impl::operator++() {
  *this += 1;
  return *this;
}

inline UInt128Impl& UInt128Impl::operator--() {
  *this -= 1;
  return *this;
}

constexpr Int128Impl MakeInt128(int64_t high, uint64_t low) {
  return Int128Impl(high, low);
}

// Assignment from integer types.
inline Int128Impl& Int128Impl::operator=(int v) {
  return *this = Int128Impl(v);
}

inline Int128Impl& Int128Impl::operator=(unsigned int v) {
  return *this = Int128Impl(v);
}

inline Int128Impl& Int128Impl::operator=(long v) {  // NOLINT(runtime/int)
  return *this = Int128Impl(v);
}

// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(unsigned long v) {
  return *this = Int128Impl(v);
}

// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(long long v) {
  return *this = Int128Impl(v);
}

// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(unsigned long long v) {
  return *this = Int128Impl(v);
}

// Arithmetic operators.
constexpr Int128Impl operator-(Int128Impl v);
constexpr Int128Impl operator+(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator-(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator*(Int128Impl lhs, Int128Impl rhs);
WTF_EXPORT_PRIVATE Int128Impl operator/(Int128Impl lhs, Int128Impl rhs);
WTF_EXPORT_PRIVATE Int128Impl operator%(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator|(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator&(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator^(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator<<(Int128Impl lhs, int amount);
constexpr Int128Impl operator>>(Int128Impl lhs, int amount);

inline Int128Impl& Int128Impl::operator+=(Int128Impl other) {
  *this = *this + other;
  return *this;
}

inline Int128Impl& Int128Impl::operator-=(Int128Impl other) {
  *this = *this - other;
  return *this;
}

inline Int128Impl& Int128Impl::operator*=(Int128Impl other) {
  *this = *this * other;
  return *this;
}

inline Int128Impl& Int128Impl::operator/=(Int128Impl other) {
  *this = *this / other;
  return *this;
}

inline Int128Impl& Int128Impl::operator%=(Int128Impl other) {
  *this = *this % other;
  return *this;
}

inline Int128Impl& Int128Impl::operator|=(Int128Impl other) {
  *this = *this | other;
  return *this;
}

inline Int128Impl& Int128Impl::operator&=(Int128Impl other) {
  *this = *this & other;
  return *this;
}

inline Int128Impl& Int128Impl::operator^=(Int128Impl other) {
  *this = *this ^ other;
  return *this;
}

inline Int128Impl& Int128Impl::operator<<=(int amount) {
  *this = *this << amount;
  return *this;
}

inline Int128Impl& Int128Impl::operator>>=(int amount) {
  *this = *this >> amount;
  return *this;
}

namespace int128_internal {

// Casts from unsigned to signed while preserving the underlying binary
// representation.
constexpr int64_t BitCastToSigned(uint64_t v) {
  // Casting an unsigned integer to a signed integer of the same
  // width is implementation defined behavior if the source value would not fit
  // in the destination type. We step around it with a roundtrip bitwise not
  // operation to make sure this function remains constexpr. Clang, GCC, and
  // MSVC optimize this to a no-op on x86-64.
  return v & (uint64_t{1} << 63) ? ~static_cast<int64_t>(~v)
                                 : static_cast<int64_t>(v);
}

}  // namespace int128_internal

// #include "absl/numeric/int128_no_intrinsic.inc"  // IWYU pragma: export

constexpr uint64_t Int128Low64(Int128Impl v) { return v.lo_; }

constexpr int64_t Int128High64(Int128Impl v) { return v.hi_; }

#if CPU(LITTLE_ENDIAN)

constexpr Int128Impl::Int128Impl(int64_t high, uint64_t low) :
    lo_(low), hi_(high) {}

constexpr Int128Impl::Int128Impl(int v)
    : lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(long v)  // NOLINT(runtime/int)
    : lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(long long v)  // NOLINT(runtime/int)
    : lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}

constexpr Int128Impl::Int128Impl(unsigned int v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long long v) : lo_{v}, hi_{0} {}

constexpr Int128Impl::Int128Impl(UInt128Impl v)
    : lo_{UInt128Low64(v)}, hi_{static_cast<int64_t>(UInt128High64(v))} {}

#elif CPU(BIG_ENDIAN)

constexpr Int128Impl::Int128Impl(int64_t high, uint64_t low) :
    hi_{high}, lo_{low} {}

constexpr Int128Impl::Int128Impl(int v)
    : hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(long v)  // NOLINT(runtime/int)
    : hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(long long v)  // NOLINT(runtime/int)
    : hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}

constexpr Int128Impl::Int128Impl(unsigned int v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long long v) : hi_{0}, lo_{v} {}

constexpr Int128Impl::Int128Impl(UInt128Impl v)
    : hi_{static_cast<int64_t>(UInt128High64(v))}, lo_{UInt128Low64(v)} {}

#else  // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif  // byte order

constexpr Int128Impl::operator bool() const { return lo_ || hi_; }

constexpr Int128Impl::operator char() const {
  // NOLINTNEXTLINE(runtime/int)
  return static_cast<char>(static_cast<long long>(*this));
}

constexpr Int128Impl::operator signed char() const {
  // NOLINTNEXTLINE(runtime/int)
  return static_cast<signed char>(static_cast<long long>(*this));
}

constexpr Int128Impl::operator unsigned char() const {
  return static_cast<unsigned char>(lo_);
}

constexpr Int128Impl::operator char16_t() const {
  return static_cast<char16_t>(lo_);
}

constexpr Int128Impl::operator char32_t() const {
  return static_cast<char32_t>(lo_);
}

constexpr Int128Impl::operator ABSL_INTERNAL_WCHAR_T() const {
  // NOLINTNEXTLINE(runtime/int)
  return static_cast<ABSL_INTERNAL_WCHAR_T>(static_cast<long long>(*this));
}

constexpr Int128Impl::operator short() const {  // NOLINT(runtime/int)
  // NOLINTNEXTLINE(runtime/int)
  return static_cast<short>(static_cast<long long>(*this));
}

constexpr Int128Impl::operator unsigned short() const {  // NOLINT(runtime/int)
  return static_cast<unsigned short>(lo_);           // NOLINT(runtime/int)
}

constexpr Int128Impl::operator int() const {
  // NOLINTNEXTLINE(runtime/int)
  return static_cast<int>(static_cast<long long>(*this));
}

constexpr Int128Impl::operator unsigned int() const {
  return static_cast<unsigned int>(lo_);
}

constexpr Int128Impl::operator long() const {  // NOLINT(runtime/int)
  // NOLINTNEXTLINE(runtime/int)
  return static_cast<long>(static_cast<long long>(*this));
}

constexpr Int128Impl::operator unsigned long() const {  // NOLINT(runtime/int)
  return static_cast<unsigned long>(lo_);           // NOLINT(runtime/int)
}

constexpr Int128Impl::operator long long() const {  // NOLINT(runtime/int)
  // We don't bother checking the value of hi_. If *this < 0, lo_'s high bit
  // must be set in order for the value to fit into a long long. Conversely, if
  // lo_'s high bit is set, *this must be < 0 for the value to fit.
  return int128_internal::BitCastToSigned(lo_);
}

constexpr Int128Impl::operator unsigned long long() const {  // NOLINT(runtime/int)
  return static_cast<unsigned long long>(lo_);           // NOLINT(runtime/int)
}

inline Int128Impl::operator float() const {
  // We must convert the absolute value and then negate as needed, because
  // floating point types are typically sign-magnitude. Otherwise, the
  // difference between the high and low 64 bits when interpreted as two's
  // complement overwhelms the precision of the mantissa.
  //
  // Also check to make sure we don't negate Int128Min()
  return hi_ < 0 && *this != Int128Min()
             ? -static_cast<float>(-*this)
             : static_cast<float>(lo_) +
                   std::ldexp(static_cast<float>(hi_), 64);
}

inline Int128Impl::operator double() const {
  // See comment in Int128Impl::operator float() above.
  return hi_ < 0 && *this != Int128Min()
             ? -static_cast<double>(-*this)
             : static_cast<double>(lo_) +
                   std::ldexp(static_cast<double>(hi_), 64);
}

inline Int128Impl::operator long double() const {
  // See comment in Int128Impl::operator float() above.
  return hi_ < 0 && *this != Int128Min()
             ? -static_cast<long double>(-*this)
             : static_cast<long double>(lo_) +
                   std::ldexp(static_cast<long double>(hi_), 64);
}

// Comparison operators.

constexpr bool operator==(Int128Impl lhs, Int128Impl rhs) {
  return (Int128Low64(lhs) == Int128Low64(rhs) &&
          Int128High64(lhs) == Int128High64(rhs));
}

constexpr bool operator<(Int128Impl lhs, Int128Impl rhs) {
  return (Int128High64(lhs) == Int128High64(rhs))
             ? (Int128Low64(lhs) < Int128Low64(rhs))
             : (Int128High64(lhs) < Int128High64(rhs));
}

constexpr bool operator>(Int128Impl lhs, Int128Impl rhs) {
  return (Int128High64(lhs) == Int128High64(rhs))
             ? (Int128Low64(lhs) > Int128Low64(rhs))
             : (Int128High64(lhs) > Int128High64(rhs));
}

constexpr bool operator<=(Int128Impl lhs, Int128Impl rhs) { return !(lhs > rhs); }

constexpr bool operator>=(Int128Impl lhs, Int128Impl rhs) { return !(lhs < rhs); }

// Unary operators.

constexpr Int128Impl operator-(Int128Impl v) {
  return MakeInt128(~Int128High64(v) + (Int128Low64(v) == 0),
                    ~Int128Low64(v) + 1);
}

constexpr bool operator!(Int128Impl v) {
  return !Int128Low64(v) && !Int128High64(v);
}

constexpr Int128Impl operator~(Int128Impl val) {
  return MakeInt128(~Int128High64(val), ~Int128Low64(val));
}

// Arithmetic operators.

namespace int128_internal {
constexpr Int128Impl SignedAddResult(Int128Impl result, Int128Impl lhs) {
  // check for carry
  return (Int128Low64(result) < Int128Low64(lhs))
             ? MakeInt128(Int128High64(result) + 1, Int128Low64(result))
             : result;
}
}  // namespace int128_internal
constexpr Int128Impl operator+(Int128Impl lhs, Int128Impl rhs) {
  return int128_internal::SignedAddResult(
      MakeInt128(Int128High64(lhs) + Int128High64(rhs),
                 Int128Low64(lhs) + Int128Low64(rhs)),
      lhs);
}

namespace int128_internal {
constexpr Int128Impl SignedSubstructResult(Int128Impl result, Int128Impl lhs, Int128Impl rhs) {
  // check for carry
  return (Int128Low64(lhs) < Int128Low64(rhs))
             ? MakeInt128(Int128High64(result) - 1, Int128Low64(result))
             : result;
}
}  // namespace int128_internal
constexpr Int128Impl operator-(Int128Impl lhs, Int128Impl rhs) {
  return int128_internal::SignedSubstructResult(
      MakeInt128(Int128High64(lhs) - Int128High64(rhs),
                 Int128Low64(lhs) - Int128Low64(rhs)),
      lhs, rhs);
}

constexpr Int128Impl operator*(Int128Impl lhs, Int128Impl rhs) {
  return MakeInt128(
      int128_internal::BitCastToSigned(UInt128High64(UInt128Impl(lhs) * rhs)),
      UInt128Low64(UInt128Impl(lhs) * rhs));
}

inline Int128Impl Int128Impl::operator++(int) {
  Int128Impl tmp(*this);
  *this += 1;
  return tmp;
}

inline Int128Impl Int128Impl::operator--(int) {
  Int128Impl tmp(*this);
  *this -= 1;
  return tmp;
}

inline Int128Impl& Int128Impl::operator++() {
  *this += 1;
  return *this;
}

inline Int128Impl& Int128Impl::operator--() {
  *this -= 1;
  return *this;
}

constexpr Int128Impl operator|(Int128Impl lhs, Int128Impl rhs) {
  return MakeInt128(Int128High64(lhs) | Int128High64(rhs),
                    Int128Low64(lhs) | Int128Low64(rhs));
}

constexpr Int128Impl operator&(Int128Impl lhs, Int128Impl rhs) {
  return MakeInt128(Int128High64(lhs) & Int128High64(rhs),
                    Int128Low64(lhs) & Int128Low64(rhs));
}

constexpr Int128Impl operator^(Int128Impl lhs, Int128Impl rhs) {
  return MakeInt128(Int128High64(lhs) ^ Int128High64(rhs),
                    Int128Low64(lhs) ^ Int128Low64(rhs));
}

constexpr Int128Impl operator<<(Int128Impl lhs, int amount) {
  // int64_t shifts of >= 64 are undefined, so we need some special-casing.
  return amount >= 64
             ? MakeInt128(
                   static_cast<int64_t>(Int128Low64(lhs) << (amount - 64)), 0)
         : amount == 0
             ? lhs
             : MakeInt128(
                   (Int128High64(lhs) << amount) |
                       static_cast<int64_t>(Int128Low64(lhs) >> (64 - amount)),
                   Int128Low64(lhs) << amount);
}

constexpr Int128Impl operator>>(Int128Impl lhs, int amount) {
  // int64_t shifts of >= 64 are undefined, so we need some special-casing.
  // The (Int128High64(lhs) >> 32) >> 32 "trick" causes the the most significant
  // int64 to be inititialized with all zeros or all ones correctly. It takes
  // into account whether the number is negative or positive, and whether the
  // current architecture does arithmetic or logical right shifts for negative
  // numbers.
  return amount >= 64
             ? MakeInt128(
                   (Int128High64(lhs) >> 32) >> 32,
                   static_cast<uint64_t>(Int128High64(lhs) >> (amount - 64)))
         : amount == 0
             ? lhs
             : MakeInt128(Int128High64(lhs) >> amount,
                          (Int128Low64(lhs) >> amount) |
                              (static_cast<uint64_t>(Int128High64(lhs))
                               << (64 - amount)));
}

#if HAVE(INT128_T)
#if COMPILER(MSVC) // Workaround for a clang-cl bug <https://webkit.org/b/274765>
typedef __uint128_t UInt128 __attribute__((aligned(16)));
typedef __int128_t Int128 __attribute__((aligned(16)));
#else
using UInt128 = __uint128_t;
using Int128 = __int128_t;
#endif
#else
using UInt128 = UInt128Impl;
using Int128 = Int128Impl;
#endif

WTF_EXPORT_PRIVATE void printInternal(PrintStream&, UInt128);
WTF_EXPORT_PRIVATE void printInternal(PrintStream&, Int128);

}  // namespace WTF

using WTF::Int128;
using WTF::UInt128;