1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
|
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: Int128Impl.h
// -----------------------------------------------------------------------------
//
// This header file defines 128-bit integer types, `uint128` and `Int128Impl`.
//
// TODO(absl-team): This module is inconsistent as many inline `uint128` methods
// are defined in this file, while many inline `Int128Impl` methods are defined in
// the `int128_*_intrinsic.inc` files.
//
// Int128.h and Int128.cpp are derived from abseil-cpp (https://github.com/abseil/abseil-cpp)
// Imported revision is ddb842f583e560bbde497bc96cfebe25f9089e11.
// We apply the following changes.
// 1. Use WTF macros instead of ABSL macros.
// 2. Remove abseil HashTable handling
// 3. Remove __int128_t handling
#pragma once
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <utility>
#include <wtf/Platform.h>
#if COMPILER(MSVC)
// In very old versions of MSVC and when the /Zc:wchar_t flag is off, wchar_t is
// a typedef for unsigned short. Otherwise wchar_t is mapped to the __wchar_t
// builtin type. We need to make sure not to define operator wchar_t()
// alongside operator unsigned short() in these instances.
#define ABSL_INTERNAL_WCHAR_T __wchar_t
#else
#define ABSL_INTERNAL_WCHAR_T wchar_t
#endif
namespace WTF {
class Int128Impl;
class PrintStream;
// UInt128Impl
//
// An unsigned 128-bit integer type. The API is meant to mimic an intrinsic type
// as closely as is practical, including exhibiting undefined behavior in
// analogous cases (e.g. division by zero). This type is intended to be a
// drop-in replacement once C++ supports an intrinsic `uint128_t` type; when
// that occurs, existing well-behaved uses of `UInt128Impl` will continue to work
// using that new type.
//
// Note: code written with this type will continue to compile once `uint128_t`
// is introduced, provided the replacement helper functions
// `UInt128Impl(Low|High)64()` and `MakeUInt128()` are made.
//
// A `UInt128Impl` supports the following:
//
// * Implicit construction from integral types
// * Explicit conversion to integral types
//
// However, a `UInt128Impl` differs from intrinsic integral types in the following
// ways:
//
// * Errors on implicit conversions that do not preserve value (such as
// loss of precision when converting to float values).
// * Requires explicit construction from and conversion to floating point
// types.
// * Conversion to integral types requires an explicit static_cast() to
// mimic use of the `-Wnarrowing` compiler flag.
// * The alignment requirement of `UInt128Impl` may differ from that of an
// intrinsic 128-bit integer type depending on platform and build
// configuration.
//
// Example:
//
// float y = UInt128Max(); // Error. UInt128Impl cannot be implicitly
// // converted to float.
//
// UInt128Impl v;
// uint64_t i = v; // Error
// uint64_t i = static_cast<uint64_t>(v); // OK
//
class alignas(16) UInt128Impl {
public:
UInt128Impl() = default;
// Constructors from arithmetic types
constexpr UInt128Impl(int v); // NOLINT(runtime/explicit)
constexpr UInt128Impl(unsigned int v); // NOLINT(runtime/explicit)
constexpr UInt128Impl(long v); // NOLINT(runtime/int)
constexpr UInt128Impl(unsigned long v); // NOLINT(runtime/int)
constexpr UInt128Impl(long long v); // NOLINT(runtime/int)
constexpr UInt128Impl(unsigned long long v); // NOLINT(runtime/int)
constexpr UInt128Impl(Int128Impl v); // NOLINT(runtime/explicit)
WTF_EXPORT_PRIVATE explicit UInt128Impl(float v);
WTF_EXPORT_PRIVATE explicit UInt128Impl(double v);
WTF_EXPORT_PRIVATE explicit UInt128Impl(long double v);
// Assignment operators from arithmetic types
UInt128Impl& operator=(int v);
UInt128Impl& operator=(unsigned int v);
UInt128Impl& operator=(long v); // NOLINT(runtime/int)
UInt128Impl& operator=(unsigned long v); // NOLINT(runtime/int)
UInt128Impl& operator=(long long v); // NOLINT(runtime/int)
UInt128Impl& operator=(unsigned long long v); // NOLINT(runtime/int)
UInt128Impl& operator=(Int128Impl v);
// Conversion operators to other arithmetic types
constexpr explicit operator bool() const;
constexpr explicit operator char() const;
constexpr explicit operator signed char() const;
constexpr explicit operator unsigned char() const;
constexpr explicit operator char16_t() const;
constexpr explicit operator char32_t() const;
constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
constexpr explicit operator short() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned short() const;
constexpr explicit operator int() const;
constexpr explicit operator unsigned int() const;
constexpr explicit operator long() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator long long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long long() const;
explicit operator float() const;
explicit operator double() const;
explicit operator long double() const;
// Trivial copy constructor, assignment operator and destructor.
// Arithmetic operators.
UInt128Impl& operator+=(UInt128Impl other);
UInt128Impl& operator-=(UInt128Impl other);
UInt128Impl& operator*=(UInt128Impl other);
// Long division/modulo for UInt128Impl.
UInt128Impl& operator/=(UInt128Impl other);
UInt128Impl& operator%=(UInt128Impl other);
UInt128Impl operator++(int);
UInt128Impl operator--(int);
UInt128Impl& operator<<=(int);
UInt128Impl& operator>>=(int);
UInt128Impl& operator&=(UInt128Impl other);
UInt128Impl& operator|=(UInt128Impl other);
UInt128Impl& operator^=(UInt128Impl other);
UInt128Impl& operator++();
UInt128Impl& operator--();
// UInt128Low64()
//
// Returns the lower 64-bit value of a `UInt128Impl` value.
friend constexpr uint64_t UInt128Low64(UInt128Impl v);
// UInt128High64()
//
// Returns the higher 64-bit value of a `UInt128Impl` value.
friend constexpr uint64_t UInt128High64(UInt128Impl v);
// MakeUInt128()
//
// Constructs a `UInt128Impl` numeric value from two 64-bit unsigned integers.
// Note that this factory function is the only way to construct a `UInt128Impl`
// from integer values greater than 2^64.
//
// Example:
//
// UInt128Impl big = MakeUInt128(1, 0);
friend constexpr UInt128Impl MakeUInt128(uint64_t high, uint64_t low);
// UInt128Max()
//
// Returns the highest value for a 128-bit unsigned integer.
friend constexpr UInt128Impl UInt128Max();
private:
constexpr UInt128Impl(uint64_t high, uint64_t low);
// TODO(strel) Update implementation to use __int128 once all users of
// UInt128Impl are fixed to not depend on alignof(UInt128Impl) == 8. Also add
// alignas(16) to class definition to keep alignment consistent across
// platforms.
#if CPU(LITTLE_ENDIAN)
uint64_t lo_;
uint64_t hi_;
#elif CPU(BIG_ENDIAN)
uint64_t hi_;
uint64_t lo_;
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
};
// allow UInt128Impl to be logged
WTF_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, UInt128Impl v);
// TODO(strel) add operator>>(std::istream&, UInt128Impl)
constexpr UInt128Impl UInt128Max() {
return UInt128Impl((std::numeric_limits<uint64_t>::max)(),
(std::numeric_limits<uint64_t>::max)());
}
} // namespace WTF
// Specialized numeric_limits for UInt128Impl.
namespace std {
template <>
class numeric_limits<WTF::UInt128Impl> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = 128;
static constexpr int digits10 = 38;
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = numeric_limits<uint64_t>::traps;
static constexpr bool tinyness_before = false;
static constexpr WTF::UInt128Impl (min)() { return 0; }
static constexpr WTF::UInt128Impl lowest() { return 0; }
static constexpr WTF::UInt128Impl (max)() { return WTF::UInt128Max(); }
static constexpr WTF::UInt128Impl epsilon() { return 0; }
static constexpr WTF::UInt128Impl round_error() { return 0; }
static constexpr WTF::UInt128Impl infinity() { return 0; }
static constexpr WTF::UInt128Impl quiet_NaN() { return 0; }
static constexpr WTF::UInt128Impl signaling_NaN() { return 0; }
static constexpr WTF::UInt128Impl denorm_min() { return 0; }
};
} // namespace std
namespace WTF {
// Int128Impl
//
// A signed 128-bit integer type. The API is meant to mimic an intrinsic
// integral type as closely as is practical, including exhibiting undefined
// behavior in analogous cases (e.g. division by zero).
//
// An `Int128Impl` supports the following:
//
// * Implicit construction from integral types
// * Explicit conversion to integral types
//
// However, an `Int128Impl` differs from intrinsic integral types in the following
// ways:
//
// * It is not implicitly convertible to other integral types.
// * Requires explicit construction from and conversion to floating point
// types.
// The design goal for `Int128Impl` is that it will be compatible with a future
// `int128_t`, if that type becomes a part of the standard.
//
// Example:
//
// float y = Int128Impl(17); // Error. Int128Impl cannot be implicitly
// // converted to float.
//
// Int128Impl v;
// int64_t i = v; // Error
// int64_t i = static_cast<int64_t>(v); // OK
//
class alignas(16) Int128Impl {
public:
Int128Impl() = default;
// Constructors from arithmetic types
constexpr Int128Impl(int v); // NOLINT(runtime/explicit)
constexpr Int128Impl(unsigned int v); // NOLINT(runtime/explicit)
constexpr Int128Impl(long v); // NOLINT(runtime/int)
constexpr Int128Impl(unsigned long v); // NOLINT(runtime/int)
constexpr Int128Impl(long long v); // NOLINT(runtime/int)
constexpr Int128Impl(unsigned long long v); // NOLINT(runtime/int)
constexpr explicit Int128Impl(UInt128Impl v);
WTF_EXPORT_PRIVATE explicit Int128Impl(float v);
WTF_EXPORT_PRIVATE explicit Int128Impl(double v);
WTF_EXPORT_PRIVATE explicit Int128Impl(long double v);
// Assignment operators from arithmetic types
Int128Impl& operator=(int v);
Int128Impl& operator=(unsigned int v);
Int128Impl& operator=(long v); // NOLINT(runtime/int)
Int128Impl& operator=(unsigned long v); // NOLINT(runtime/int)
Int128Impl& operator=(long long v); // NOLINT(runtime/int)
Int128Impl& operator=(unsigned long long v); // NOLINT(runtime/int)
// Conversion operators to other arithmetic types
constexpr explicit operator bool() const;
constexpr explicit operator char() const;
constexpr explicit operator signed char() const;
constexpr explicit operator unsigned char() const;
constexpr explicit operator char16_t() const;
constexpr explicit operator char32_t() const;
constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
constexpr explicit operator short() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned short() const;
constexpr explicit operator int() const;
constexpr explicit operator unsigned int() const;
constexpr explicit operator long() const; // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator long long() const;
// NOLINTNEXTLINE(runtime/int)
constexpr explicit operator unsigned long long() const;
explicit operator float() const;
explicit operator double() const;
explicit operator long double() const;
// Trivial copy constructor, assignment operator and destructor.
// Arithmetic operators
Int128Impl& operator+=(Int128Impl other);
Int128Impl& operator-=(Int128Impl other);
Int128Impl& operator*=(Int128Impl other);
Int128Impl& operator/=(Int128Impl other);
Int128Impl& operator%=(Int128Impl other);
Int128Impl operator++(int); // postfix increment: i++
Int128Impl operator--(int); // postfix decrement: i--
Int128Impl& operator++(); // prefix increment: ++i
Int128Impl& operator--(); // prefix decrement: --i
Int128Impl& operator&=(Int128Impl other);
Int128Impl& operator|=(Int128Impl other);
Int128Impl& operator^=(Int128Impl other);
Int128Impl& operator<<=(int amount);
Int128Impl& operator>>=(int amount);
// Int128Low64()
//
// Returns the lower 64-bit value of a `Int128Impl` value.
friend constexpr uint64_t Int128Low64(Int128Impl v);
// Int128High64()
//
// Returns the higher 64-bit value of a `Int128Impl` value.
friend constexpr int64_t Int128High64(Int128Impl v);
// MakeInt128()
//
// Constructs a `Int128Impl` numeric value from two 64-bit integers. Note that
// signedness is conveyed in the upper `high` value.
//
// (Int128Impl(1) << 64) * high + low
//
// Note that this factory function is the only way to construct a `Int128Impl`
// from integer values greater than 2^64 or less than -2^64.
//
// Example:
//
// Int128Impl big = MakeInt128(1, 0);
// Int128Impl big_n = MakeInt128(-1, 0);
friend constexpr Int128Impl MakeInt128(int64_t high, uint64_t low);
// Int128Max()
//
// Returns the maximum value for a 128-bit signed integer.
friend constexpr Int128Impl Int128Max();
// Int128Min()
//
// Returns the minimum value for a 128-bit signed integer.
friend constexpr Int128Impl Int128Min();
private:
constexpr Int128Impl(int64_t high, uint64_t low);
#if CPU(LITTLE_ENDIAN)
uint64_t lo_;
int64_t hi_;
#elif CPU(BIG_ENDIAN)
int64_t hi_;
uint64_t lo_;
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
};
WTF_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, Int128Impl v);
// TODO(absl-team) add operator>>(std::istream&, Int128Impl)
constexpr Int128Impl Int128Max() {
return Int128Impl((std::numeric_limits<int64_t>::max)(),
(std::numeric_limits<uint64_t>::max)());
}
constexpr Int128Impl Int128Min() {
return Int128Impl((std::numeric_limits<int64_t>::min)(), 0);
}
} // namespace WTF
// Specialized numeric_limits for Int128Impl.
namespace std {
template <>
class numeric_limits<WTF::Int128Impl> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = true;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;
static constexpr int digits = 127;
static constexpr int digits10 = 38;
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = numeric_limits<uint64_t>::traps;
static constexpr bool tinyness_before = false;
static constexpr WTF::Int128Impl (min)() { return WTF::Int128Min(); }
static constexpr WTF::Int128Impl lowest() { return WTF::Int128Min(); }
static constexpr WTF::Int128Impl (max)() { return WTF::Int128Max(); }
static constexpr WTF::Int128Impl epsilon() { return 0; }
static constexpr WTF::Int128Impl round_error() { return 0; }
static constexpr WTF::Int128Impl infinity() { return 0; }
static constexpr WTF::Int128Impl quiet_NaN() { return 0; }
static constexpr WTF::Int128Impl signaling_NaN() { return 0; }
static constexpr WTF::Int128Impl denorm_min() { return 0; }
};
} // namespace std
// --------------------------------------------------------------------------
// Implementation details follow
// --------------------------------------------------------------------------
namespace WTF {
constexpr UInt128Impl MakeUInt128(uint64_t high, uint64_t low) {
return UInt128Impl(high, low);
}
// Assignment from integer types.
inline UInt128Impl& UInt128Impl::operator=(int v) { return *this = UInt128Impl(v); }
inline UInt128Impl& UInt128Impl::operator=(unsigned int v) {
return *this = UInt128Impl(v);
}
inline UInt128Impl& UInt128Impl::operator=(long v) { // NOLINT(runtime/int)
return *this = UInt128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(unsigned long v) {
return *this = UInt128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(long long v) {
return *this = UInt128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline UInt128Impl& UInt128Impl::operator=(unsigned long long v) {
return *this = UInt128Impl(v);
}
inline UInt128Impl& UInt128Impl::operator=(Int128Impl v) {
return *this = UInt128Impl(v);
}
// Arithmetic operators.
constexpr UInt128Impl operator<<(UInt128Impl lhs, int amount);
constexpr UInt128Impl operator>>(UInt128Impl lhs, int amount);
constexpr UInt128Impl operator+(UInt128Impl lhs, UInt128Impl rhs);
constexpr UInt128Impl operator-(UInt128Impl lhs, UInt128Impl rhs);
constexpr UInt128Impl operator*(UInt128Impl lhs, UInt128Impl rhs);
WTF_EXPORT_PRIVATE UInt128Impl operator/(UInt128Impl lhs, UInt128Impl rhs);
WTF_EXPORT_PRIVATE UInt128Impl operator%(UInt128Impl lhs, UInt128Impl rhs);
inline UInt128Impl& UInt128Impl::operator<<=(int amount) {
*this = *this << amount;
return *this;
}
inline UInt128Impl& UInt128Impl::operator>>=(int amount) {
*this = *this >> amount;
return *this;
}
inline UInt128Impl& UInt128Impl::operator+=(UInt128Impl other) {
*this = *this + other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator-=(UInt128Impl other) {
*this = *this - other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator*=(UInt128Impl other) {
*this = *this * other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator/=(UInt128Impl other) {
*this = *this / other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator%=(UInt128Impl other) {
*this = *this % other;
return *this;
}
constexpr uint64_t UInt128Low64(UInt128Impl v) { return v.lo_; }
constexpr uint64_t UInt128High64(UInt128Impl v) { return v.hi_; }
// Constructors from integer types.
#if CPU(LITTLE_ENDIAN)
constexpr UInt128Impl::UInt128Impl(uint64_t high, uint64_t low)
: lo_{low}, hi_{high} {}
constexpr UInt128Impl::UInt128Impl(int v)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(long long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr UInt128Impl::UInt128Impl(unsigned int v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long long v) : lo_{v}, hi_{0} {}
constexpr UInt128Impl::UInt128Impl(Int128Impl v)
: lo_{Int128Low64(v)}, hi_{static_cast<uint64_t>(Int128High64(v))} {}
#elif CPU(BIG_ENDIAN)
constexpr UInt128Impl::UInt128Impl(uint64_t high, uint64_t low)
: hi_{high}, lo_{low} {}
constexpr UInt128Impl::UInt128Impl(int v)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(long v) // NOLINT(runtime/int)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(long long v) // NOLINT(runtime/int)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr UInt128Impl::UInt128Impl(unsigned int v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::UInt128Impl(unsigned long long v) : hi_{0}, lo_{v} {}
constexpr UInt128Impl::UInt128Impl(Int128Impl v)
: hi_{static_cast<uint64_t>(Int128High64(v))}, lo_{Int128Low64(v)} {}
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
// Conversion operators to integer types.
constexpr UInt128Impl::operator bool() const { return lo_ || hi_; }
constexpr UInt128Impl::operator char() const { return static_cast<char>(lo_); }
constexpr UInt128Impl::operator signed char() const {
return static_cast<signed char>(lo_);
}
constexpr UInt128Impl::operator unsigned char() const {
return static_cast<unsigned char>(lo_);
}
constexpr UInt128Impl::operator char16_t() const {
return static_cast<char16_t>(lo_);
}
constexpr UInt128Impl::operator char32_t() const {
return static_cast<char32_t>(lo_);
}
constexpr UInt128Impl::operator ABSL_INTERNAL_WCHAR_T() const {
return static_cast<ABSL_INTERNAL_WCHAR_T>(lo_);
}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::operator short() const { return static_cast<short>(lo_); }
constexpr UInt128Impl::operator unsigned short() const { // NOLINT(runtime/int)
return static_cast<unsigned short>(lo_); // NOLINT(runtime/int)
}
constexpr UInt128Impl::operator int() const { return static_cast<int>(lo_); }
constexpr UInt128Impl::operator unsigned int() const {
return static_cast<unsigned int>(lo_);
}
// NOLINTNEXTLINE(runtime/int)
constexpr UInt128Impl::operator long() const { return static_cast<long>(lo_); }
constexpr UInt128Impl::operator unsigned long() const { // NOLINT(runtime/int)
return static_cast<unsigned long>(lo_); // NOLINT(runtime/int)
}
constexpr UInt128Impl::operator long long() const { // NOLINT(runtime/int)
return static_cast<long long>(lo_); // NOLINT(runtime/int)
}
constexpr UInt128Impl::operator unsigned long long() const { // NOLINT(runtime/int)
return static_cast<unsigned long long>(lo_); // NOLINT(runtime/int)
}
// Conversion operators to floating point types.
inline UInt128Impl::operator float() const {
return static_cast<float>(lo_) + std::ldexp(static_cast<float>(hi_), 64);
}
inline UInt128Impl::operator double() const {
return static_cast<double>(lo_) + std::ldexp(static_cast<double>(hi_), 64);
}
inline UInt128Impl::operator long double() const {
return static_cast<long double>(lo_) +
std::ldexp(static_cast<long double>(hi_), 64);
}
// Comparison operators.
constexpr bool operator==(UInt128Impl lhs, UInt128Impl rhs) {
return (UInt128Low64(lhs) == UInt128Low64(rhs) &&
UInt128High64(lhs) == UInt128High64(rhs));
}
constexpr bool operator<(UInt128Impl lhs, UInt128Impl rhs) {
return (UInt128High64(lhs) == UInt128High64(rhs))
? (UInt128Low64(lhs) < UInt128Low64(rhs))
: (UInt128High64(lhs) < UInt128High64(rhs));
}
constexpr bool operator>(UInt128Impl lhs, UInt128Impl rhs) { return rhs < lhs; }
constexpr bool operator<=(UInt128Impl lhs, UInt128Impl rhs) { return !(rhs < lhs); }
constexpr bool operator>=(UInt128Impl lhs, UInt128Impl rhs) { return !(lhs < rhs); }
// Unary operators.
constexpr inline UInt128Impl operator+(UInt128Impl val) {
return val;
}
constexpr inline Int128Impl operator+(Int128Impl val) {
return val;
}
constexpr UInt128Impl operator-(UInt128Impl val) {
return MakeUInt128(
~UInt128High64(val) + static_cast<unsigned long>(UInt128Low64(val) == 0),
~UInt128Low64(val) + 1);
}
constexpr inline bool operator!(UInt128Impl val) {
return !UInt128High64(val) && !UInt128Low64(val);
}
// Logical operators.
constexpr inline UInt128Impl operator~(UInt128Impl val) {
return MakeUInt128(~UInt128High64(val), ~UInt128Low64(val));
}
constexpr inline UInt128Impl operator|(UInt128Impl lhs, UInt128Impl rhs) {
return MakeUInt128(UInt128High64(lhs) | UInt128High64(rhs),
UInt128Low64(lhs) | UInt128Low64(rhs));
}
constexpr inline UInt128Impl operator&(UInt128Impl lhs, UInt128Impl rhs) {
return MakeUInt128(UInt128High64(lhs) & UInt128High64(rhs),
UInt128Low64(lhs) & UInt128Low64(rhs));
}
constexpr inline UInt128Impl operator^(UInt128Impl lhs, UInt128Impl rhs) {
return MakeUInt128(UInt128High64(lhs) ^ UInt128High64(rhs),
UInt128Low64(lhs) ^ UInt128Low64(rhs));
}
inline UInt128Impl& UInt128Impl::operator|=(UInt128Impl other) {
*this = *this | other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator&=(UInt128Impl other) {
*this = *this & other;
return *this;
}
inline UInt128Impl& UInt128Impl::operator^=(UInt128Impl other) {
*this = *this ^ other;
return *this;
}
// Arithmetic operators.
constexpr UInt128Impl operator<<(UInt128Impl lhs, int amount) {
// uint64_t shifts of >= 64 are undefined, so we will need some
// special-casing.
return amount >= 64 ? MakeUInt128(UInt128Low64(lhs) << (amount - 64), 0)
: amount == 0 ? lhs
: MakeUInt128((UInt128High64(lhs) << amount) |
(UInt128Low64(lhs) >> (64 - amount)),
UInt128Low64(lhs) << amount);
}
constexpr UInt128Impl operator>>(UInt128Impl lhs, int amount) {
// uint64_t shifts of >= 64 are undefined, so we will need some
// special-casing.
return amount >= 64 ? MakeUInt128(0, UInt128High64(lhs) >> (amount - 64))
: amount == 0 ? lhs
: MakeUInt128(UInt128High64(lhs) >> amount,
(UInt128Low64(lhs) >> amount) |
(UInt128High64(lhs) << (64 - amount)));
}
namespace int128_internal {
constexpr UInt128Impl AddResult(UInt128Impl result, UInt128Impl lhs) {
// check for carry
return (UInt128Low64(result) < UInt128Low64(lhs))
? MakeUInt128(UInt128High64(result) + 1, UInt128Low64(result))
: result;
}
} // namespace int128_internal
constexpr UInt128Impl operator+(UInt128Impl lhs, UInt128Impl rhs) {
return int128_internal::AddResult(
MakeUInt128(UInt128High64(lhs) + UInt128High64(rhs),
UInt128Low64(lhs) + UInt128Low64(rhs)),
lhs);
}
namespace int128_internal {
constexpr UInt128Impl SubstructResult(UInt128Impl result, UInt128Impl lhs, UInt128Impl rhs) {
// check for carry
return (UInt128Low64(lhs) < UInt128Low64(rhs))
? MakeUInt128(UInt128High64(result) - 1, UInt128Low64(result))
: result;
}
} // namespace int128_internal
constexpr UInt128Impl operator-(UInt128Impl lhs, UInt128Impl rhs) {
return int128_internal::SubstructResult(
MakeUInt128(UInt128High64(lhs) - UInt128High64(rhs),
UInt128Low64(lhs) - UInt128Low64(rhs)),
lhs, rhs);
}
constexpr UInt128Impl operator*(UInt128Impl lhs, UInt128Impl rhs) {
uint64_t a32 = UInt128Low64(lhs) >> 32;
uint64_t a00 = UInt128Low64(lhs) & 0xffffffff;
uint64_t b32 = UInt128Low64(rhs) >> 32;
uint64_t b00 = UInt128Low64(rhs) & 0xffffffff;
UInt128Impl result =
MakeUInt128(UInt128High64(lhs) * UInt128Low64(rhs) +
UInt128Low64(lhs) * UInt128High64(rhs) + a32 * b32,
a00 * b00);
UInt128Impl v1 = UInt128Impl(a32 * b00) << 32;
UInt128Impl v2 = UInt128Impl(a00 * b32) << 32;
return result + v1 + v2;
}
// Increment/decrement operators.
inline UInt128Impl UInt128Impl::operator++(int) {
UInt128Impl tmp(*this);
*this += 1;
return tmp;
}
inline UInt128Impl UInt128Impl::operator--(int) {
UInt128Impl tmp(*this);
*this -= 1;
return tmp;
}
inline UInt128Impl& UInt128Impl::operator++() {
*this += 1;
return *this;
}
inline UInt128Impl& UInt128Impl::operator--() {
*this -= 1;
return *this;
}
constexpr Int128Impl MakeInt128(int64_t high, uint64_t low) {
return Int128Impl(high, low);
}
// Assignment from integer types.
inline Int128Impl& Int128Impl::operator=(int v) {
return *this = Int128Impl(v);
}
inline Int128Impl& Int128Impl::operator=(unsigned int v) {
return *this = Int128Impl(v);
}
inline Int128Impl& Int128Impl::operator=(long v) { // NOLINT(runtime/int)
return *this = Int128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(unsigned long v) {
return *this = Int128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(long long v) {
return *this = Int128Impl(v);
}
// NOLINTNEXTLINE(runtime/int)
inline Int128Impl& Int128Impl::operator=(unsigned long long v) {
return *this = Int128Impl(v);
}
// Arithmetic operators.
constexpr Int128Impl operator-(Int128Impl v);
constexpr Int128Impl operator+(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator-(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator*(Int128Impl lhs, Int128Impl rhs);
WTF_EXPORT_PRIVATE Int128Impl operator/(Int128Impl lhs, Int128Impl rhs);
WTF_EXPORT_PRIVATE Int128Impl operator%(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator|(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator&(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator^(Int128Impl lhs, Int128Impl rhs);
constexpr Int128Impl operator<<(Int128Impl lhs, int amount);
constexpr Int128Impl operator>>(Int128Impl lhs, int amount);
inline Int128Impl& Int128Impl::operator+=(Int128Impl other) {
*this = *this + other;
return *this;
}
inline Int128Impl& Int128Impl::operator-=(Int128Impl other) {
*this = *this - other;
return *this;
}
inline Int128Impl& Int128Impl::operator*=(Int128Impl other) {
*this = *this * other;
return *this;
}
inline Int128Impl& Int128Impl::operator/=(Int128Impl other) {
*this = *this / other;
return *this;
}
inline Int128Impl& Int128Impl::operator%=(Int128Impl other) {
*this = *this % other;
return *this;
}
inline Int128Impl& Int128Impl::operator|=(Int128Impl other) {
*this = *this | other;
return *this;
}
inline Int128Impl& Int128Impl::operator&=(Int128Impl other) {
*this = *this & other;
return *this;
}
inline Int128Impl& Int128Impl::operator^=(Int128Impl other) {
*this = *this ^ other;
return *this;
}
inline Int128Impl& Int128Impl::operator<<=(int amount) {
*this = *this << amount;
return *this;
}
inline Int128Impl& Int128Impl::operator>>=(int amount) {
*this = *this >> amount;
return *this;
}
namespace int128_internal {
// Casts from unsigned to signed while preserving the underlying binary
// representation.
constexpr int64_t BitCastToSigned(uint64_t v) {
// Casting an unsigned integer to a signed integer of the same
// width is implementation defined behavior if the source value would not fit
// in the destination type. We step around it with a roundtrip bitwise not
// operation to make sure this function remains constexpr. Clang, GCC, and
// MSVC optimize this to a no-op on x86-64.
return v & (uint64_t{1} << 63) ? ~static_cast<int64_t>(~v)
: static_cast<int64_t>(v);
}
} // namespace int128_internal
// #include "absl/numeric/int128_no_intrinsic.inc" // IWYU pragma: export
constexpr uint64_t Int128Low64(Int128Impl v) { return v.lo_; }
constexpr int64_t Int128High64(Int128Impl v) { return v.hi_; }
#if CPU(LITTLE_ENDIAN)
constexpr Int128Impl::Int128Impl(int64_t high, uint64_t low) :
lo_(low), hi_(high) {}
constexpr Int128Impl::Int128Impl(int v)
: lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(long long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)}, hi_{v < 0 ? ~int64_t{0} : 0} {}
constexpr Int128Impl::Int128Impl(unsigned int v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long long v) : lo_{v}, hi_{0} {}
constexpr Int128Impl::Int128Impl(UInt128Impl v)
: lo_{UInt128Low64(v)}, hi_{static_cast<int64_t>(UInt128High64(v))} {}
#elif CPU(BIG_ENDIAN)
constexpr Int128Impl::Int128Impl(int64_t high, uint64_t low) :
hi_{high}, lo_{low} {}
constexpr Int128Impl::Int128Impl(int v)
: hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(long v) // NOLINT(runtime/int)
: hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(long long v) // NOLINT(runtime/int)
: hi_{v < 0 ? ~int64_t{0} : 0}, lo_{static_cast<uint64_t>(v)} {}
constexpr Int128Impl::Int128Impl(unsigned int v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long v) : hi_{0}, lo_{v} {}
// NOLINTNEXTLINE(runtime/int)
constexpr Int128Impl::Int128Impl(unsigned long long v) : hi_{0}, lo_{v} {}
constexpr Int128Impl::Int128Impl(UInt128Impl v)
: hi_{static_cast<int64_t>(UInt128High64(v))}, lo_{UInt128Low64(v)} {}
#else // byte order
#error "Unsupported byte order: must be little-endian or big-endian."
#endif // byte order
constexpr Int128Impl::operator bool() const { return lo_ || hi_; }
constexpr Int128Impl::operator char() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<char>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator signed char() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<signed char>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned char() const {
return static_cast<unsigned char>(lo_);
}
constexpr Int128Impl::operator char16_t() const {
return static_cast<char16_t>(lo_);
}
constexpr Int128Impl::operator char32_t() const {
return static_cast<char32_t>(lo_);
}
constexpr Int128Impl::operator ABSL_INTERNAL_WCHAR_T() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<ABSL_INTERNAL_WCHAR_T>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator short() const { // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
return static_cast<short>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned short() const { // NOLINT(runtime/int)
return static_cast<unsigned short>(lo_); // NOLINT(runtime/int)
}
constexpr Int128Impl::operator int() const {
// NOLINTNEXTLINE(runtime/int)
return static_cast<int>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned int() const {
return static_cast<unsigned int>(lo_);
}
constexpr Int128Impl::operator long() const { // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
return static_cast<long>(static_cast<long long>(*this));
}
constexpr Int128Impl::operator unsigned long() const { // NOLINT(runtime/int)
return static_cast<unsigned long>(lo_); // NOLINT(runtime/int)
}
constexpr Int128Impl::operator long long() const { // NOLINT(runtime/int)
// We don't bother checking the value of hi_. If *this < 0, lo_'s high bit
// must be set in order for the value to fit into a long long. Conversely, if
// lo_'s high bit is set, *this must be < 0 for the value to fit.
return int128_internal::BitCastToSigned(lo_);
}
constexpr Int128Impl::operator unsigned long long() const { // NOLINT(runtime/int)
return static_cast<unsigned long long>(lo_); // NOLINT(runtime/int)
}
inline Int128Impl::operator float() const {
// We must convert the absolute value and then negate as needed, because
// floating point types are typically sign-magnitude. Otherwise, the
// difference between the high and low 64 bits when interpreted as two's
// complement overwhelms the precision of the mantissa.
//
// Also check to make sure we don't negate Int128Min()
return hi_ < 0 && *this != Int128Min()
? -static_cast<float>(-*this)
: static_cast<float>(lo_) +
std::ldexp(static_cast<float>(hi_), 64);
}
inline Int128Impl::operator double() const {
// See comment in Int128Impl::operator float() above.
return hi_ < 0 && *this != Int128Min()
? -static_cast<double>(-*this)
: static_cast<double>(lo_) +
std::ldexp(static_cast<double>(hi_), 64);
}
inline Int128Impl::operator long double() const {
// See comment in Int128Impl::operator float() above.
return hi_ < 0 && *this != Int128Min()
? -static_cast<long double>(-*this)
: static_cast<long double>(lo_) +
std::ldexp(static_cast<long double>(hi_), 64);
}
// Comparison operators.
constexpr bool operator==(Int128Impl lhs, Int128Impl rhs) {
return (Int128Low64(lhs) == Int128Low64(rhs) &&
Int128High64(lhs) == Int128High64(rhs));
}
constexpr bool operator<(Int128Impl lhs, Int128Impl rhs) {
return (Int128High64(lhs) == Int128High64(rhs))
? (Int128Low64(lhs) < Int128Low64(rhs))
: (Int128High64(lhs) < Int128High64(rhs));
}
constexpr bool operator>(Int128Impl lhs, Int128Impl rhs) {
return (Int128High64(lhs) == Int128High64(rhs))
? (Int128Low64(lhs) > Int128Low64(rhs))
: (Int128High64(lhs) > Int128High64(rhs));
}
constexpr bool operator<=(Int128Impl lhs, Int128Impl rhs) { return !(lhs > rhs); }
constexpr bool operator>=(Int128Impl lhs, Int128Impl rhs) { return !(lhs < rhs); }
// Unary operators.
constexpr Int128Impl operator-(Int128Impl v) {
return MakeInt128(~Int128High64(v) + (Int128Low64(v) == 0),
~Int128Low64(v) + 1);
}
constexpr bool operator!(Int128Impl v) {
return !Int128Low64(v) && !Int128High64(v);
}
constexpr Int128Impl operator~(Int128Impl val) {
return MakeInt128(~Int128High64(val), ~Int128Low64(val));
}
// Arithmetic operators.
namespace int128_internal {
constexpr Int128Impl SignedAddResult(Int128Impl result, Int128Impl lhs) {
// check for carry
return (Int128Low64(result) < Int128Low64(lhs))
? MakeInt128(Int128High64(result) + 1, Int128Low64(result))
: result;
}
} // namespace int128_internal
constexpr Int128Impl operator+(Int128Impl lhs, Int128Impl rhs) {
return int128_internal::SignedAddResult(
MakeInt128(Int128High64(lhs) + Int128High64(rhs),
Int128Low64(lhs) + Int128Low64(rhs)),
lhs);
}
namespace int128_internal {
constexpr Int128Impl SignedSubstructResult(Int128Impl result, Int128Impl lhs, Int128Impl rhs) {
// check for carry
return (Int128Low64(lhs) < Int128Low64(rhs))
? MakeInt128(Int128High64(result) - 1, Int128Low64(result))
: result;
}
} // namespace int128_internal
constexpr Int128Impl operator-(Int128Impl lhs, Int128Impl rhs) {
return int128_internal::SignedSubstructResult(
MakeInt128(Int128High64(lhs) - Int128High64(rhs),
Int128Low64(lhs) - Int128Low64(rhs)),
lhs, rhs);
}
constexpr Int128Impl operator*(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(
int128_internal::BitCastToSigned(UInt128High64(UInt128Impl(lhs) * rhs)),
UInt128Low64(UInt128Impl(lhs) * rhs));
}
inline Int128Impl Int128Impl::operator++(int) {
Int128Impl tmp(*this);
*this += 1;
return tmp;
}
inline Int128Impl Int128Impl::operator--(int) {
Int128Impl tmp(*this);
*this -= 1;
return tmp;
}
inline Int128Impl& Int128Impl::operator++() {
*this += 1;
return *this;
}
inline Int128Impl& Int128Impl::operator--() {
*this -= 1;
return *this;
}
constexpr Int128Impl operator|(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(Int128High64(lhs) | Int128High64(rhs),
Int128Low64(lhs) | Int128Low64(rhs));
}
constexpr Int128Impl operator&(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(Int128High64(lhs) & Int128High64(rhs),
Int128Low64(lhs) & Int128Low64(rhs));
}
constexpr Int128Impl operator^(Int128Impl lhs, Int128Impl rhs) {
return MakeInt128(Int128High64(lhs) ^ Int128High64(rhs),
Int128Low64(lhs) ^ Int128Low64(rhs));
}
constexpr Int128Impl operator<<(Int128Impl lhs, int amount) {
// int64_t shifts of >= 64 are undefined, so we need some special-casing.
return amount >= 64
? MakeInt128(
static_cast<int64_t>(Int128Low64(lhs) << (amount - 64)), 0)
: amount == 0
? lhs
: MakeInt128(
(Int128High64(lhs) << amount) |
static_cast<int64_t>(Int128Low64(lhs) >> (64 - amount)),
Int128Low64(lhs) << amount);
}
constexpr Int128Impl operator>>(Int128Impl lhs, int amount) {
// int64_t shifts of >= 64 are undefined, so we need some special-casing.
// The (Int128High64(lhs) >> 32) >> 32 "trick" causes the the most significant
// int64 to be inititialized with all zeros or all ones correctly. It takes
// into account whether the number is negative or positive, and whether the
// current architecture does arithmetic or logical right shifts for negative
// numbers.
return amount >= 64
? MakeInt128(
(Int128High64(lhs) >> 32) >> 32,
static_cast<uint64_t>(Int128High64(lhs) >> (amount - 64)))
: amount == 0
? lhs
: MakeInt128(Int128High64(lhs) >> amount,
(Int128Low64(lhs) >> amount) |
(static_cast<uint64_t>(Int128High64(lhs))
<< (64 - amount)));
}
#if HAVE(INT128_T)
#if COMPILER(MSVC) // Workaround for a clang-cl bug <https://webkit.org/b/274765>
typedef __uint128_t UInt128 __attribute__((aligned(16)));
typedef __int128_t Int128 __attribute__((aligned(16)));
#else
using UInt128 = __uint128_t;
using Int128 = __int128_t;
#endif
#else
using UInt128 = UInt128Impl;
using Int128 = Int128Impl;
#endif
WTF_EXPORT_PRIVATE void printInternal(PrintStream&, UInt128);
WTF_EXPORT_PRIVATE void printInternal(PrintStream&, Int128);
} // namespace WTF
using WTF::Int128;
using WTF::UInt128;
|