File: MathExtras.h

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (825 lines) | stat: -rw-r--r-- 26,868 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
/*
 * Copyright (C) 2006-2024 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#pragma once

#include <algorithm>
#include <climits>
#include <cmath>
#include <float.h>
#include <limits>
#include <stdint.h>
#include <stdlib.h>
#include <wtf/StdLibExtras.h>

#if OS(OPENBSD)
#include <sys/types.h>
#include <machine/ieee.h>
#endif

#ifndef M_PI
constexpr double piDouble = 3.14159265358979323846;
constexpr float piFloat = 3.14159265358979323846f;
#else
constexpr double piDouble = M_PI;
constexpr float piFloat = static_cast<float>(M_PI);
#endif

#ifndef M_PI_2
constexpr double piOverTwoDouble = 1.57079632679489661923;
constexpr float piOverTwoFloat = 1.57079632679489661923f;
#else
constexpr double piOverTwoDouble = M_PI_2;
constexpr float piOverTwoFloat = static_cast<float>(M_PI_2);
#endif

#ifndef M_PI_4
constexpr double piOverFourDouble = 0.785398163397448309616;
constexpr float piOverFourFloat = 0.785398163397448309616f;
#else
constexpr double piOverFourDouble = M_PI_4;
constexpr float piOverFourFloat = static_cast<float>(M_PI_4);
#endif

#ifndef M_SQRT2
constexpr double sqrtOfTwoDouble = 1.41421356237309504880;
constexpr float sqrtOfTwoFloat = 1.41421356237309504880f;
#else
constexpr double sqrtOfTwoDouble = M_SQRT2;
constexpr float sqrtOfTwoFloat = static_cast<float>(M_SQRT2);
#endif

#ifndef M_E
constexpr double eDouble = 2.71828182845904523536028747135266250;
constexpr float eFloat = 2.71828182845904523536028747135266250f;
#else
constexpr double eDouble = M_E;
constexpr float eFloat = static_cast<float>(M_E);
#endif

#if OS(WINDOWS)

// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
extern "C" inline double wtf_atan2(double x, double y)
{
    double posInf = std::numeric_limits<double>::infinity();
    double negInf = -std::numeric_limits<double>::infinity();
    double nan = std::numeric_limits<double>::quiet_NaN();

    double result = nan;

    if (x == posInf && y == posInf)
        result = piOverFourDouble;
    else if (x == posInf && y == negInf)
        result = 3 * piOverFourDouble;
    else if (x == negInf && y == posInf)
        result = -piOverFourDouble;
    else if (x == negInf && y == negInf)
        result = -3 * piOverFourDouble;
    else
        result = ::atan2(x, y);

    return result;
}

#define atan2(x, y) wtf_atan2(x, y)

#endif // OS(WINDOWS)

constexpr double radiansPerDegreeDouble = piDouble / 180.0;
constexpr double degreesPerRadianDouble = 180.0 / piDouble;
constexpr double gradientsPerDegreeDouble = 400.0 / 360.0;
constexpr double degreesPerGradientDouble = 360.0 / 400.0;
constexpr double turnsPerDegreeDouble = 1.0 / 360.0;
constexpr double degreesPerTurnDouble = 360.0;
constexpr double radiansPerTurnDouble = 2.0f * piDouble;

constexpr double deg2rad(double d)  { return d * radiansPerDegreeDouble; }
constexpr double rad2deg(double r)  { return r * degreesPerRadianDouble; }
constexpr double deg2grad(double d) { return d * gradientsPerDegreeDouble; }
constexpr double grad2deg(double g) { return g * degreesPerGradientDouble; }
constexpr double deg2turn(double d) { return d * turnsPerDegreeDouble; }
constexpr double turn2deg(double t) { return t * degreesPerTurnDouble; }


// Note that these differ from the casting the double values above in their rounding errors.
constexpr float radiansPerDegreeFloat = piFloat / 180.0f;
constexpr float degreesPerRadianFloat = 180.0f / piFloat;
constexpr float gradientsPerDegreeFloat= 400.0f / 360.0f;
constexpr float degreesPerGradientFloat = 360.0f / 400.0f;
constexpr float turnsPerDegreeFloat = 1.0f / 360.0f;
constexpr float degreesPerTurnFloat = 360.0f;
constexpr float radiansPerTurnFloat = 2.0f * piFloat;

constexpr float deg2rad(float d)  { return d * radiansPerDegreeFloat; }
constexpr float rad2deg(float r)  { return r * degreesPerRadianFloat; }
constexpr float deg2grad(float d) { return d * gradientsPerDegreeFloat; }
constexpr float grad2deg(float g) { return g * degreesPerGradientFloat; }
constexpr float deg2turn(float d) { return d * turnsPerDegreeFloat; }
constexpr float turn2deg(float t) { return t * degreesPerTurnFloat; }

// Treat these as conversions through the canonical unit for angles, which is degrees.
constexpr double rad2grad(double r) { return deg2grad(rad2deg(r)); }
constexpr double grad2rad(double g) { return deg2rad(grad2deg(g)); }
constexpr double turn2grad(double t) { return deg2grad(turn2deg(t)); }
constexpr double grad2turn(double g) { return deg2turn(grad2deg(g)); }
constexpr double turn2rad(double t) { return deg2rad(turn2deg(t)); }
constexpr double rad2turn(double r) { return deg2turn(rad2deg(r)); }
constexpr float rad2grad(float r) { return deg2grad(rad2deg(r)); }
constexpr float grad2rad(float g) { return deg2rad(grad2deg(g)); }
constexpr float turn2grad(float t) { return deg2grad(turn2deg(t)); }
constexpr float grad2turn(float g) { return deg2turn(grad2deg(g)); }
constexpr float turn2rad(float t) { return deg2rad(turn2deg(t)); }
constexpr float rad2turn(float r) { return deg2turn(rad2deg(r)); }

inline double roundTowardsPositiveInfinity(double value) { return std::floor(value + 0.5); }
inline float roundTowardsPositiveInfinity(float value) { return std::floor(value + 0.5f); }

// std::numeric_limits<T>::min() returns the smallest positive value for floating point types
template<typename T> constexpr T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
template<> constexpr float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
template<> constexpr double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
template<typename T> constexpr T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }

// Same type in and out.
template<typename TargetType, typename SourceType>
typename std::enable_if<std::is_same<TargetType, SourceType>::value, TargetType>::type
clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>())
{
    if (value >= max)
        return max;
    if (value <= min)
        return min;
    return value;
}

// Floating point source.
template<typename TargetType, typename SourceType>
typename std::enable_if<!std::is_same<TargetType, SourceType>::value
    && std::is_floating_point<SourceType>::value
    && !(std::is_floating_point<TargetType>::value && sizeof(TargetType) > sizeof(SourceType)), TargetType>::type
clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>())
{
    if (value >= static_cast<SourceType>(max))
        return max;
    // This will return min if value is NaN.
    if (!(value > static_cast<SourceType>(min)))
        return min;
    return static_cast<TargetType>(value);
}

template<typename TargetType, typename SourceType>
typename std::enable_if<!std::is_same<TargetType, SourceType>::value
    && std::is_floating_point<SourceType>::value
    && std::is_floating_point<TargetType>::value
    && (sizeof(TargetType) > sizeof(SourceType)), TargetType>::type
clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>())
{
    TargetType convertedValue = static_cast<TargetType>(value);
    if (convertedValue >= max)
        return max;
    if (convertedValue <= min)
        return min;
    return convertedValue;
}

// Source and Target have the same sign and Source is larger or equal to Target
template<typename TargetType, typename SourceType>
typename std::enable_if<!std::is_same<TargetType, SourceType>::value
    && std::numeric_limits<SourceType>::is_integer
    && std::numeric_limits<TargetType>::is_integer
    && std::numeric_limits<TargetType>::is_signed == std::numeric_limits<SourceType>::is_signed
    && sizeof(SourceType) >= sizeof(TargetType), TargetType>::type
clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>())
{
    if (value >= static_cast<SourceType>(max))
        return max;
    if (value <= static_cast<SourceType>(min))
        return min;
    return static_cast<TargetType>(value);
}

// Clamping a unsigned integer to the max signed value.
template<typename TargetType, typename SourceType>
typename std::enable_if<!std::is_same<TargetType, SourceType>::value
    && std::numeric_limits<SourceType>::is_integer
    && std::numeric_limits<TargetType>::is_integer
    && std::numeric_limits<TargetType>::is_signed
    && !std::numeric_limits<SourceType>::is_signed
    && sizeof(SourceType) >= sizeof(TargetType), TargetType>::type
clampTo(SourceType value)
{
    TargetType max = std::numeric_limits<TargetType>::max();
    if (value >= static_cast<SourceType>(max))
        return max;
    return static_cast<TargetType>(value);
}

// Clamping a signed integer into a valid unsigned integer.
template<typename TargetType, typename SourceType>
typename std::enable_if<!std::is_same<TargetType, SourceType>::value
    && std::numeric_limits<SourceType>::is_integer
    && std::numeric_limits<TargetType>::is_integer
    && !std::numeric_limits<TargetType>::is_signed
    && std::numeric_limits<SourceType>::is_signed
    && sizeof(SourceType) == sizeof(TargetType), TargetType>::type
clampTo(SourceType value)
{
    if (value < 0)
        return 0;
    return static_cast<TargetType>(value);
}

template<typename TargetType, typename SourceType>
typename std::enable_if<!std::is_same<TargetType, SourceType>::value
    && std::numeric_limits<SourceType>::is_integer
    && std::numeric_limits<TargetType>::is_integer
    && !std::numeric_limits<TargetType>::is_signed
    && std::numeric_limits<SourceType>::is_signed
    && (sizeof(SourceType) > sizeof(TargetType)), TargetType>::type
clampTo(SourceType value)
{
    if (value < 0)
        return 0;
    TargetType max = std::numeric_limits<TargetType>::max();
    if (value >= static_cast<SourceType>(max))
        return max;
    return static_cast<TargetType>(value);
}

inline int clampToInteger(double value)
{
    return clampTo<int>(value);
}

inline unsigned clampToUnsigned(double value)
{
    return clampTo<unsigned>(value);
}

inline float clampToFloat(double value)
{
    return clampTo<float>(value);
}

inline int clampToPositiveInteger(double value)
{
    return clampTo<int>(value, 0);
}

inline int clampToInteger(float value)
{
    return clampTo<int>(value);
}

template<typename T>
inline int clampToInteger(T x)
{
    static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");

    const T intMax = static_cast<unsigned>(std::numeric_limits<int>::max());

    if (x >= intMax)
        return std::numeric_limits<int>::max();
    return static_cast<int>(x);
}

// Explicitly accept 64bit result when clamping double value.
// Keep in mind that double can only represent 53bit integer precisely.
template<typename T> constexpr T clampToAccepting64(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
{
    return (value >= static_cast<double>(max)) ? max : ((value <= static_cast<double>(min)) ? min : static_cast<T>(value));
}

inline bool isWithinIntRange(float x)
{
    return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
}

inline float normalizedFloat(float value)
{
    if (value > 0 && value < std::numeric_limits<float>::min())
        return std::numeric_limits<float>::min();
    if (value < 0 && value > -std::numeric_limits<float>::min())
        return -std::numeric_limits<float>::min();
    return value;
}

template<typename T> constexpr bool hasOneBitSet(T value)
{
    return !((value - 1) & value) && value;
}

template<typename T> constexpr bool hasZeroOrOneBitsSet(T value)
{
    return !((value - 1) & value);
}

template<typename T> constexpr bool hasTwoOrMoreBitsSet(T value)
{
    return !hasZeroOrOneBitsSet(value);
}

template<typename T> inline T divideRoundedUp(T a, T b)
{
    return (a + b - 1) / b;
}

template<typename T> inline T timesThreePlusOneDividedByTwo(T value)
{
    // Mathematically equivalent to:
    //   (value * 3 + 1) / 2;
    // or:
    //   (unsigned)ceil(value * 1.5));
    // This form is not prone to internal overflow.
    return value + (value >> 1) + (value & 1);
}

template<typename T> inline bool isNotZeroAndOrdered(T value)
{
    return value > 0.0 || value < 0.0;
}

template<typename T> inline bool isZeroOrUnordered(T value)
{
    return !isNotZeroAndOrdered(value);
}

template<typename T> inline bool isGreaterThanNonZeroPowerOfTwo(T value, unsigned power)
{
    // The crazy way of testing of index >= 2 ** power
    // (where I use ** to denote pow()).
    return !!((value >> 1) >> (power - 1));
}

template<typename T> constexpr bool isLessThan(const T& a, const T& b) { return a < b; }
template<typename T> constexpr bool isLessThanEqual(const T& a, const T& b) { return a <= b; }
template<typename T> constexpr bool isGreaterThan(const T& a, const T& b) { return a > b; }
template<typename T> constexpr bool isGreaterThanEqual(const T& a, const T& b) { return a >= b; }
template<typename T> constexpr bool isInRange(const T& a, const T& min, const T& max) { return a >= min && a <= max; }

// decompose 'number' to its sign, exponent, and mantissa components.
// The result is interpreted as:
//     (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52))
inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa)
{
    ASSERT(std::isfinite(number));

    sign = std::signbit(number);

    uint64_t bits = std::bit_cast<uint64_t>(number);
    exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
    mantissa = bits & 0xFFFFFFFFFFFFFull;

    // Check for zero/denormal values; if so, adjust the exponent,
    // if not insert the implicit, omitted leading 1 bit.
    if (exponent == -0x3ff)
        exponent = mantissa ? -0x3fe : 0;
    else
        mantissa |= 0x10000000000000ull;
}

template<typename T> constexpr unsigned countOfBits = sizeof(T) * CHAR_BIT;
template<typename T> constexpr unsigned countOfMagnitudeBits = countOfBits<T> - std::is_signed_v<T>;

constexpr float powerOfTwo(unsigned e)
{
    float p = 1;
    while (e--)
        p *= 2;
    return p;
}

template<typename T> constexpr float maxPlusOne = powerOfTwo(countOfMagnitudeBits<T>);

// Calculate d % 2^{64}.
inline void doubleToInteger(double d, unsigned long long& value)
{
    if (std::isnan(d) || std::isinf(d))
        value = 0;
    else {
        // -2^{64} < fmodValue < 2^{64}.
        double fmodValue = fmod(trunc(d), maxPlusOne<unsigned long long>);
        if (fmodValue >= 0) {
            // 0 <= fmodValue < 2^{64}.
            // 0 <= value < 2^{64}. This cast causes no loss.
            value = static_cast<unsigned long long>(fmodValue);
        } else {
            // -2^{64} < fmodValue < 0.
            // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
            unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
            // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
            // 0 < value < 2^{64}.
            value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
        }
    }
}

namespace WTF {

// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
constexpr uint32_t roundUpToPowerOfTwo(uint32_t v)
{
    v--;
    v |= v >> 1;
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    v++;
    return v;
}

constexpr unsigned maskForSize(unsigned size)
{
    if (!size)
        return 0;
    return roundUpToPowerOfTwo(size) - 1;
}

inline constexpr unsigned fastLog2(unsigned i)
{
    unsigned log2 = 0;
    if (i & (i - 1))
        log2 += 1;
    if (i >> 16) {
        log2 += 16;
        i >>= 16;
    }
    if (i >> 8) {
        log2 += 8;
        i >>= 8;
    }
    if (i >> 4) {
        log2 += 4;
        i >>= 4;
    }
    if (i >> 2) {
        log2 += 2;
        i >>= 2;
    }
    if (i >> 1)
        log2 += 1;
    return log2;
}

inline constexpr unsigned fastLog2(uint64_t value)
{
    unsigned high = static_cast<unsigned>(value >> 32);
    if (high)
        return fastLog2(high) + 32;
    return fastLog2(static_cast<unsigned>(value));
}

template <typename T>
inline typename std::enable_if<std::is_floating_point<T>::value, T>::type safeFPDivision(T u, T v)
{
    // Protect against overflow / underflow.
    if (v < 1 && u > v * std::numeric_limits<T>::max())
        return std::numeric_limits<T>::max();
    if (v > 1 && u < v * std::numeric_limits<T>::min())
        return 0;
    return u / v;
}

// Floating point numbers comparison:
// u is "essentially equal" [1][2] to v if: | u - v | / |u| <= e and | u - v | / |v| <= e
//
// [1] Knuth, D. E. "Accuracy of Floating Point Arithmetic." The Art of Computer Programming. 3rd ed. Vol. 2.
//     Boston: Addison-Wesley, 1998. 229-45.
// [2] http://www.boost.org/doc/libs/1_34_0/libs/test/doc/components/test_tools/floating_point_comparison.html
template <typename T>
inline typename std::enable_if<std::is_floating_point<T>::value, bool>::type areEssentiallyEqual(T u, T v, T epsilon = std::numeric_limits<T>::epsilon())
{
    if (u == v)
        return true;

    const T delta = std::abs(u - v);
    return safeFPDivision(delta, std::abs(u)) <= epsilon && safeFPDivision(delta, std::abs(v)) <= epsilon;
}

// Match behavior of Math.min, where NaN is returned if either argument is NaN.
template <typename T>
inline typename std::enable_if<std::is_floating_point<T>::value, T>::type nanPropagatingMin(T a, T b)
{
    return std::isnan(a) || std::isnan(b) ? std::numeric_limits<T>::quiet_NaN() : std::min(a, b);
}

// Match behavior of Math.max, where NaN is returned if either argument is NaN.
template <typename T>
inline typename std::enable_if<std::is_floating_point<T>::value, T>::type nanPropagatingMax(T a, T b)
{
    return std::isnan(a) || std::isnan(b) ? std::numeric_limits<T>::quiet_NaN() : std::max(a, b);
}

inline bool isIntegral(float value)
{
    return static_cast<int>(value) == value;
}

template<typename T>
inline void incrementWithSaturation(T& value)
{
    if (value != std::numeric_limits<T>::max())
        value++;
}

template<typename T>
inline T leftShiftWithSaturation(T value, unsigned shiftAmount, T max = std::numeric_limits<T>::max())
{
    T result = value << shiftAmount;
    // We will have saturated if shifting right doesn't recover the original value.
    if (result >> shiftAmount != value)
        return max;
    if (result > max)
        return max;
    return result;
}

// Check if two ranges overlap assuming that neither range is empty.
template<typename T>
inline bool nonEmptyRangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax)
{
    ASSERT(leftMin < leftMax);
    ASSERT(rightMin < rightMax);

    return leftMax > rightMin && rightMax > leftMin;
}

// Pass ranges with the min being inclusive and the max being exclusive. For example, this should
// return false:
//
//     rangesOverlap(0, 8, 8, 16)
template<typename T>
inline bool rangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax)
{
    ASSERT(leftMin <= leftMax);
    ASSERT(rightMin <= rightMax);
    
    // Empty ranges interfere with nothing.
    if (leftMin == leftMax)
        return false;
    if (rightMin == rightMax)
        return false;

    return nonEmptyRangesOverlap(leftMin, leftMax, rightMin, rightMax);
}

template<typename VectorType, typename RandomFunc>
void shuffleVector(VectorType& vector, size_t size, const RandomFunc& randomFunc)
{
    for (size_t i = 0; i + 1 < size; ++i)
        std::swap(vector[i], vector[i + randomFunc(size - i)]);
}

template<typename VectorType, typename RandomFunc>
void shuffleVector(VectorType& vector, const RandomFunc& randomFunc)
{
    shuffleVector(vector, vector.size(), randomFunc);
}

template <typename T>
constexpr unsigned clzConstexpr(T value)
{
    constexpr unsigned bitSize = sizeof(T) * CHAR_BIT;

    using UT = typename std::make_unsigned<T>::type;
    UT uValue = value;

    unsigned zeroCount = 0;
    for (int i = bitSize - 1; i >= 0; i--) {
        if (uValue >> i)
            break;
        zeroCount++;
    }
    return zeroCount;
}

template<typename T>
inline unsigned clz(T value)
{
    constexpr unsigned bitSize = sizeof(T) * CHAR_BIT;

    using UT = typename std::make_unsigned<T>::type;
    UT uValue = value;

    constexpr unsigned bitSize64 = sizeof(uint64_t) * CHAR_BIT;
    if (uValue)
        return __builtin_clzll(uValue) - (bitSize64 - bitSize);
    return bitSize;
}

template <typename T>
constexpr unsigned ctzConstexpr(T value)
{
    constexpr unsigned bitSize = sizeof(T) * CHAR_BIT;

    using UT = typename std::make_unsigned<T>::type;
    UT uValue = value;

    unsigned zeroCount = 0;
    for (unsigned i = 0; i < bitSize; i++) {
        if (uValue & 1)
            break;

        zeroCount++;
        uValue >>= 1;
    }
    return zeroCount;
}

template<typename T>
inline unsigned ctz(T value)
{
    constexpr unsigned bitSize = sizeof(T) * CHAR_BIT;

    using UT = typename std::make_unsigned<T>::type;
    UT uValue = value;

    if (uValue)
        return __builtin_ctzll(uValue);
    return bitSize;
}

template<typename T>
inline unsigned getLSBSet(T t)
{
    ASSERT(t);
    return ctz(t);
}

template<typename T>
constexpr unsigned getLSBSetConstexpr(T t)
{
    ASSERT_UNDER_CONSTEXPR_CONTEXT(t);
    return ctzConstexpr(t);
}

template<typename T>
inline unsigned getMSBSet(T t)
{
    constexpr unsigned bitSize = sizeof(T) * CHAR_BIT;
    ASSERT(t);
    return bitSize - 1 - clz(t);
}

template<typename T>
constexpr unsigned getMSBSetConstexpr(T t)
{
    constexpr unsigned bitSize = sizeof(T) * CHAR_BIT;
    ASSERT_UNDER_CONSTEXPR_CONTEXT(t);
    return bitSize - 1 - clzConstexpr(t);
}

inline uint32_t reverseBits32(uint32_t value)
{
#if CPU(ARM64)
    uint32_t result;
    asm ("rbit %w0, %w1"
        : "=r"(result)
        : "r"(value));
    return result;
#else
    value = ((value & 0xaaaaaaaa) >> 1) | ((value & 0x55555555) << 1);
    value = ((value & 0xcccccccc) >> 2) | ((value & 0x33333333) << 2);
    value = ((value & 0xf0f0f0f0) >> 4) | ((value & 0x0f0f0f0f) << 4);
    value = ((value & 0xff00ff00) >> 8) | ((value & 0x00ff00ff) << 8);
    return (value >> 16) | (value << 16);
#endif
}

// FIXME: Replace with std::isnan() once std::isnan() is constexpr. requires C++23
template<typename T> constexpr typename std::enable_if_t<std::is_floating_point_v<T>, bool> isNaNConstExpr(T value)
{
#if COMPILER_HAS_CLANG_BUILTIN(__builtin_isnan)
    return __builtin_isnan(value);
#else
    return value != value;
#endif
}

template<typename T> constexpr typename std::enable_if_t<std::is_integral_v<T>, bool> isNaNConstExpr(T)
{
    return false;
}

// FIXME: Replace with std::fabs() once std::fabs() is constexpr. requires C++23
template<typename T> constexpr T fabsConstExpr(T value)
{
    static_assert(std::is_floating_point_v<T>);
    if (value != value)
        return value;
    if (!value)
        return 0.0; // -0.0 should be converted to +0.0
    if (value < 0.0)
        return -value;
    return value;
}

// For use in places where we could negate std::numeric_limits<T>::min and would like to avoid UB.
template<typename T>
requires std::is_integral_v<T>
constexpr T negate(T v)
{
    return static_cast<T>(~static_cast<std::make_unsigned_t<T>>(v) + 1U);
}

template<typename BitsType, typename InputType>
inline bool isIdentical(InputType left, InputType right)
{
    BitsType leftBits = std::bit_cast<BitsType>(left);
    BitsType rightBits = std::bit_cast<BitsType>(right);
    return leftBits == rightBits;
}

inline bool isIdentical(int32_t left, int32_t right)
{
    return isIdentical<int32_t>(left, right);
}

inline bool isIdentical(int64_t left, int64_t right)
{
    return isIdentical<int64_t>(left, right);
}

inline bool isIdentical(double left, double right)
{
    return isIdentical<int64_t>(left, right);
}

inline bool isIdentical(float left, float right)
{
    return isIdentical<int32_t>(left, right);
}

template<typename ResultType, typename InputType, typename BitsType>
inline bool isRepresentableAsImpl(InputType originalValue)
{
    // Convert the original value to the desired result type.
    ResultType result = static_cast<ResultType>(originalValue);

    // Convert the converted value back to the original type. The original value is representable
    // using the new type if such round-tripping doesn't lose bits.
    InputType newValue = static_cast<InputType>(result);

    return isIdentical<BitsType>(originalValue, newValue);
}

template<typename ResultType>
inline bool isRepresentableAs(int32_t value)
{
    return isRepresentableAsImpl<ResultType, int32_t, int32_t>(value);
}

template<typename ResultType>
inline bool isRepresentableAs(int64_t value)
{
    return isRepresentableAsImpl<ResultType, int64_t, int64_t>(value);
}

template<typename ResultType>
inline bool isRepresentableAs(size_t value)
{
    return isRepresentableAsImpl<ResultType, size_t, size_t>(value);
}

template<typename ResultType>
inline bool isRepresentableAs(double value)
{
    return isRepresentableAsImpl<ResultType, double, int64_t>(value);
}

} // namespace WTF

using WTF::shuffleVector;
using WTF::clz;
using WTF::ctz;
using WTF::getLSBSet;
using WTF::getMSBSet;
using WTF::isNaNConstExpr;
using WTF::fabsConstExpr;
using WTF::reverseBits32;
using WTF::isIdentical;
using WTF::isRepresentableAs;