1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/*
* Copyright (C) 2013-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <wtf/Dominators.h>
namespace WTF {
template<typename Graph>
class NaturalLoops;
template<typename Graph>
class NaturalLoop {
WTF_MAKE_FAST_ALLOCATED;
public:
NaturalLoop()
: m_graph(nullptr)
, m_header(nullptr)
, m_outerLoopIndex(UINT_MAX)
{
}
NaturalLoop(Graph& graph, typename Graph::Node header, unsigned index)
: m_graph(&graph)
, m_header(header)
, m_outerLoopIndex(UINT_MAX)
, m_index(index)
{
}
Graph* graph() const { return m_graph; }
typename Graph::Node header() const { return m_header; }
unsigned size() const { return m_body.size(); }
typename Graph::Node at(unsigned i) const { return m_body[i]; }
typename Graph::Node operator[](unsigned i) const { return at(i); }
// This is the slower, but simpler, way of asking if a block belongs to
// a natural loop. It's faster to call NaturalLoops::belongsTo(), which
// tries to be O(loop depth) rather than O(loop size). Loop depth is
// almost always smaller than loop size. A *lot* smaller.
bool contains(typename Graph::Node block) const
{
for (unsigned i = m_body.size(); i--;) {
if (m_body[i] == block)
return true;
}
ASSERT(block != header()); // Header should be contained.
return false;
}
// The index of this loop in NaturalLoops.
unsigned index() const { return m_index; }
bool isOuterMostLoop() const { return m_outerLoopIndex == UINT_MAX; }
void dump(PrintStream& out) const
{
if (!m_graph) {
out.print("<null>");
return;
}
out.print("[Header: ", m_graph->dump(header()), ", Body:");
for (unsigned i = 0; i < m_body.size(); ++i)
out.print(" ", m_graph->dump(m_body[i]));
out.print("]");
}
private:
template<typename>
friend class NaturalLoops;
void addBlock(typename Graph::Node block)
{
ASSERT(!m_body.contains(block)); // The NaturalLoops algorithm relies on blocks being unique in this vector.
m_body.append(block);
}
Graph* m_graph;
typename Graph::Node m_header;
Vector<typename Graph::Node, 4> m_body;
unsigned m_outerLoopIndex;
unsigned m_index;
};
template<typename Graph>
class NaturalLoops {
WTF_MAKE_FAST_ALLOCATED;
public:
typedef std::array<unsigned, 2> InnerMostLoopIndices;
NaturalLoops(Graph& graph, Dominators<Graph>& dominators, bool selfCheck = false)
: m_graph(graph)
, m_innerMostLoopIndices(graph.template newMap<InnerMostLoopIndices>())
{
// Implement the classic dominator-based natural loop finder. The first
// step is to find all control flow edges A -> B where B dominates A.
// Then B is a loop header and A is a backward branching block. We will
// then accumulate, for each loop header, multiple backward branching
// blocks. Then we backwards graph search from the backward branching
// blocks to their loop headers, which gives us all of the blocks in the
// loop body.
static constexpr bool verbose = false;
if (verbose) {
dataLog("Dominators:\n");
dominators.dump(WTF::dataFile());
}
m_loops.shrink(0);
for (unsigned blockIndex = graph.numNodes(); blockIndex--;) {
typename Graph::Node header = graph.node(blockIndex);
if (!header)
continue;
for (unsigned i = graph.predecessors(header).size(); i--;) {
typename Graph::Node footer = graph.predecessors(header)[i];
if (!dominators.dominates(header, footer))
continue;
// At this point, we've proven 'header' is actually a loop header and
// that 'footer' is a loop footer.
bool found = false;
for (unsigned j = m_loops.size(); j--;) {
if (m_loops[j].header() == header) {
m_loops[j].addBlock(footer);
found = true;
break;
}
}
if (found)
continue;
NaturalLoop<Graph> loop(graph, header, m_loops.size());
loop.addBlock(footer);
m_loops.append(loop);
}
}
if (verbose)
dataLog("After bootstrap: ", *this, "\n");
FastBitVector seenBlocks;
Vector<typename Graph::Node, 4> blockWorklist;
seenBlocks.resize(graph.numNodes());
for (unsigned i = m_loops.size(); i--;) {
NaturalLoop<Graph>& loop = m_loops[i];
seenBlocks.clearAll();
ASSERT(blockWorklist.isEmpty());
if (verbose)
dataLog("Dealing with loop ", loop, "\n");
for (unsigned j = loop.size(); j--;) {
seenBlocks[graph.index(loop[j])] = true;
blockWorklist.append(loop[j]);
}
while (!blockWorklist.isEmpty()) {
typename Graph::Node block = blockWorklist.takeLast();
if (verbose)
dataLog(" Dealing with ", graph.dump(block), "\n");
if (block == loop.header())
continue;
for (unsigned j = graph.predecessors(block).size(); j--;) {
typename Graph::Node predecessor = graph.predecessors(block)[j];
if (seenBlocks[graph.index(predecessor)])
continue;
loop.addBlock(predecessor);
blockWorklist.append(predecessor);
seenBlocks[graph.index(predecessor)] = true;
}
}
}
// Figure out reverse mapping from blocks to loops.
for (unsigned blockIndex = graph.numNodes(); blockIndex--;) {
typename Graph::Node block = graph.node(blockIndex);
if (!block)
continue;
for (unsigned i = std::tuple_size<InnerMostLoopIndices>::value; i--;)
m_innerMostLoopIndices[block][i] = UINT_MAX;
}
for (unsigned loopIndex = m_loops.size(); loopIndex--;) {
NaturalLoop<Graph>& loop = m_loops[loopIndex];
for (unsigned blockIndexInLoop = loop.size(); blockIndexInLoop--;) {
typename Graph::Node block = loop[blockIndexInLoop];
for (unsigned i = 0; i < std::tuple_size<InnerMostLoopIndices>::value; ++i) {
unsigned thisIndex = m_innerMostLoopIndices[block][i];
if (thisIndex == UINT_MAX || loop.size() < m_loops[thisIndex].size()) {
insertIntoBoundedVector(
m_innerMostLoopIndices[block], std::tuple_size<InnerMostLoopIndices>::value,
loopIndex, i);
break;
}
}
}
}
// Now each block knows its inner-most loop and its next-to-inner-most loop. Use
// this to figure out loop parenting.
for (unsigned i = m_loops.size(); i--;) {
NaturalLoop<Graph>& loop = m_loops[i];
RELEASE_ASSERT(m_innerMostLoopIndices[loop.header()][0] == i);
loop.m_outerLoopIndex = m_innerMostLoopIndices[loop.header()][1];
}
if (selfCheck) {
// Do some self-verification that we've done some of this correctly.
for (unsigned blockIndex = graph.numNodes(); blockIndex--;) {
typename Graph::Node block = graph.node(blockIndex);
if (!block)
continue;
Vector<const NaturalLoop<Graph>*> simpleLoopsOf;
for (unsigned i = m_loops.size(); i--;) {
if (m_loops[i].contains(block))
simpleLoopsOf.append(&m_loops[i]);
}
Vector<const NaturalLoop<Graph>*> fancyLoopsOf = loopsOf(block);
std::sort(simpleLoopsOf.begin(), simpleLoopsOf.end());
std::sort(fancyLoopsOf.begin(), fancyLoopsOf.end());
RELEASE_ASSERT(simpleLoopsOf == fancyLoopsOf);
}
}
if (verbose)
dataLog("Results: ", *this, "\n");
}
Graph& graph() { return m_graph; }
unsigned numLoops() const
{
return m_loops.size();
}
const NaturalLoop<Graph>& loop(unsigned i) const
{
return m_loops[i];
}
// Return either null if the block isn't a loop header, or the
// loop it belongs to.
const NaturalLoop<Graph>* headerOf(typename Graph::Node block) const
{
const NaturalLoop<Graph>* loop = innerMostLoopOf(block);
if (!loop)
return nullptr;
if (loop->header() == block)
return loop;
if (ASSERT_ENABLED) {
for (; loop; loop = innerMostOuterLoop(*loop))
ASSERT(loop->header() != block);
}
return nullptr;
}
const NaturalLoop<Graph>* innerMostLoopOf(typename Graph::Node block) const
{
unsigned index = m_innerMostLoopIndices[block][0];
if (index == UINT_MAX)
return nullptr;
return &m_loops[index];
}
const NaturalLoop<Graph>* innerMostOuterLoop(const NaturalLoop<Graph>& loop) const
{
if (loop.m_outerLoopIndex == UINT_MAX)
return nullptr;
return &m_loops[loop.m_outerLoopIndex];
}
bool belongsTo(typename Graph::Node block, const NaturalLoop<Graph>& candidateLoop) const
{
// It's faster to do this test using the loop itself, if it's small.
if (candidateLoop.size() < 4)
return candidateLoop.contains(block);
for (const NaturalLoop<Graph>* loop = innerMostLoopOf(block); loop; loop = innerMostOuterLoop(*loop)) {
if (loop == &candidateLoop)
return true;
}
return false;
}
unsigned loopDepth(typename Graph::Node block) const
{
unsigned depth = 0;
for (const NaturalLoop<Graph>* loop = innerMostLoopOf(block); loop; loop = innerMostOuterLoop(*loop))
depth++;
return depth;
}
// Return all loops this belongs to. The first entry in the vector is the innermost loop. The last is the
// outermost loop.
Vector<const NaturalLoop<Graph>*> loopsOf(typename Graph::Node block) const
{
Vector<const NaturalLoop<Graph>*> result;
for (const NaturalLoop<Graph>* loop = innerMostLoopOf(block); loop; loop = innerMostOuterLoop(*loop))
result.append(loop);
return result;
}
void dump(PrintStream& out) const
{
out.print("NaturalLoops:{"_s);
CommaPrinter comma;
for (unsigned i = 0; i < m_loops.size(); ++i)
out.print(comma, m_loops[i]);
out.print("}"_s);
}
private:
Graph& m_graph;
// If we ever had a scalability problem in our natural loop finder, we could
// use some HashMap's here. But it just feels a heck of a lot less convenient.
Vector<NaturalLoop<Graph>, 4> m_loops;
typename Graph::template Map<InnerMostLoopIndices> m_innerMostLoopIndices;
};
} // namespace WTF
using WTF::NaturalLoop;
using WTF::NaturalLoops;
|