1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <wtf/ParkingLot.h>
#include <mutex>
#include <wtf/DataLog.h>
#include <wtf/FixedVector.h>
#include <wtf/HashFunctions.h>
#include <wtf/StringPrintStream.h>
#include <wtf/ThreadSpecific.h>
#include <wtf/Threading.h>
#include <wtf/Vector.h>
#include <wtf/WeakRandom.h>
#include <wtf/WordLock.h>
namespace WTF {
namespace {
static constexpr bool verbose = false;
template<typename... Types>
static void dataLogForCurrentThread(const Types&... values)
{
StringPrintStream stream;
SUPPRESS_UNCOUNTED_ARG stream.print(Thread::current());
stream.print(values...);
dataLog(stream.toString());
}
struct ThreadData : public ThreadSafeRefCounted<ThreadData> {
WTF_MAKE_FAST_ALLOCATED;
public:
ThreadData();
~ThreadData();
Ref<Thread> thread;
Mutex parkingLock;
ThreadCondition parkingCondition;
const void* address { nullptr };
RefPtr<ThreadData> nextInQueue;
intptr_t token { 0 };
};
enum class DequeueResult {
Ignore,
RemoveAndContinue,
RemoveAndStop
};
struct Bucket {
WTF_MAKE_FAST_ALLOCATED;
public:
Bucket()
: random(static_cast<unsigned>(std::bit_cast<intptr_t>(this))) // Cannot use default seed since that recurses into Lock.
{
}
void enqueue(ThreadData* data)
{
if (verbose)
dataLogForCurrentThread(": enqueueing ", RawPointer(data), " with address = ", RawPointer(data->address), " onto ", RawPointer(this), "\n");
ASSERT(data->address);
ASSERT(!data->nextInQueue);
if (queueTail) {
queueTail->nextInQueue = data;
queueTail = data;
return;
}
queueHead = data;
queueTail = data;
}
template<typename Functor>
void genericDequeue(const Functor& functor)
{
if (verbose)
dataLogForCurrentThread(": dequeueing from bucket at ", RawPointer(this), "\n");
if (!queueHead) {
if (verbose)
dataLogForCurrentThread(": empty.\n");
return;
}
// This loop is a very clever abomination. The induction variables are the pointer to the
// pointer to the current node, and the pointer to the previous node. This gives us everything
// we need to both proceed forward to the next node, and to remove nodes while maintaining the
// queueHead/queueTail and all of the nextInQueue links. For example, when we are at the head
// element, then removal means rewiring queueHead, and if it was also equal to queueTail, then
// we'd want queueTail to be set to nullptr. This works because:
//
// currentPtr == &queueHead
// previous == nullptr
//
// We remove by setting *currentPtr = (*currentPtr)->nextInQueue, i.e. changing the pointer
// that used to point to this node to instead point to this node's successor. Another example:
// if we were at the second node in the queue, then we'd have:
//
// currentPtr == &queueHead->nextInQueue
// previous == queueHead
//
// If this node is not equal to queueTail, then removing it simply means making
// queueHead->nextInQueue point to queueHead->nextInQueue->nextInQueue (which the algorithm
// achieves by mutating *currentPtr). If this node is equal to queueTail, then we want to set
// queueTail to previous, which in this case is queueHead - thus making the queue look like a
// proper one-element queue with queueHead == queueTail.
bool shouldContinue = true;
RefPtr<ThreadData>* currentPtr = &queueHead;
RefPtr<ThreadData> previous;
MonotonicTime time = MonotonicTime::now();
bool timeToBeFair = false;
if (time > nextFairTime)
timeToBeFair = true;
bool didDequeue = false;
while (shouldContinue) {
RefPtr current = *currentPtr;
if (verbose)
dataLogForCurrentThread(": got thread ", RawPointer(current.get()), "\n");
if (!current)
break;
DequeueResult result = functor(current.get(), timeToBeFair);
switch (result) {
case DequeueResult::Ignore:
if (verbose)
dataLogForCurrentThread(": currentPtr = ", RawPointer(currentPtr), ", *currentPtr = ", RawPointer((*currentPtr).get()), "\n");
previous = current;
currentPtr = &(*currentPtr)->nextInQueue;
break;
case DequeueResult::RemoveAndStop:
shouldContinue = false;
FALLTHROUGH;
case DequeueResult::RemoveAndContinue:
if (verbose)
dataLogForCurrentThread(": dequeueing ", RawPointer(current.get()), " from ", RawPointer(this), "\n");
if (current == queueTail)
queueTail = previous;
didDequeue = true;
*currentPtr = current->nextInQueue;
current->nextInQueue = nullptr;
break;
}
}
if (timeToBeFair && didDequeue)
nextFairTime = time + Seconds::fromMilliseconds(random.get());
ASSERT(!!queueHead == !!queueTail);
}
ThreadData* dequeue()
{
ThreadData* result = nullptr;
genericDequeue(
[&] (ThreadData* element, bool) -> DequeueResult {
result = element;
return DequeueResult::RemoveAndStop;
});
return result;
}
RefPtr<ThreadData> queueHead;
RefPtr<ThreadData> queueTail;
// This lock protects the entire bucket. Thou shall not make changes to Bucket without holding
// this lock.
WordLock lock;
MonotonicTime nextFairTime;
WeakRandom random;
// Put some distane between buckets in memory. This is one of several mitigations against false
// sharing.
char padding[64];
};
struct Hashtable;
// We track all allocated hashtables so that hashtable resizing doesn't anger leak detectors.
Vector<Hashtable*>* hashtables;
WordLock hashtablesLock;
struct Hashtable {
WTF_MAKE_STRUCT_FAST_ALLOCATED;
Hashtable(unsigned size)
: data(size)
{
ASSERT(size >= 1);
{
// This is not fast and it's not data-access parallel, but that's fine, because
// hashtable resizing is guaranteed to be rare and it will never happen in steady
// state.
Locker locker(hashtablesLock);
if (!hashtables)
hashtables = new Vector<Hashtable*>();
hashtables->append(this);
}
}
~Hashtable()
{
{
// This is not fast, but that's OK. See comment in create().
Locker locker(hashtablesLock);
hashtables->removeFirst(this);
}
}
FixedVector<Atomic<Bucket*>> data;
};
Atomic<Hashtable*> hashtable;
Atomic<unsigned> numThreads;
// With 64 bytes of padding per bucket, assuming a hashtable is fully populated with buckets, the
// memory usage per thread will still be less than 1KB.
const unsigned maxLoadFactor = 3;
const unsigned growthFactor = 2;
unsigned hashAddress(const void* address)
{
return WTF::PtrHash<const void*>::hash(address);
}
Hashtable* ensureHashtable()
{
for (;;) {
Hashtable* currentHashtable = hashtable.load();
if (currentHashtable)
return currentHashtable;
if (!currentHashtable) {
auto currentHashtable = makeUnique<Hashtable>(maxLoadFactor);
if (hashtable.compareExchangeWeak(nullptr, currentHashtable.get())) {
if (verbose)
dataLogForCurrentThread(": created initial hashtable ", RawPointer(currentHashtable.get()), "\n");
return currentHashtable.release(); // Leak the hash table.
}
}
}
}
// Locks the hashtable. This reloops in case of rehashing, so the current hashtable may be different
// after this returns than when you called it. Guarantees that there is a hashtable. This is pretty
// slow and not scalable, so it's only used during thread creation and for debugging/testing.
Vector<Bucket*> lockHashtable()
{
for (;;) {
Hashtable* currentHashtable = ensureHashtable();
ASSERT(currentHashtable);
// Now find all of the buckets. This makes sure that the hashtable is full of buckets so that
// we can lock all of the buckets, not just the ones that are materialized.
Vector<Bucket*> buckets;
for (unsigned i = currentHashtable->data.size(); i--;) {
Atomic<Bucket*>& bucketPointer = currentHashtable->data[i];
for (;;) {
Bucket* bucket = bucketPointer.load();
if (!bucket) {
bucket = new Bucket();
if (!bucketPointer.compareExchangeWeak(nullptr, bucket)) {
delete bucket;
continue;
}
}
buckets.append(bucket);
break;
}
}
// Now lock the buckets in the right order.
std::sort(buckets.begin(), buckets.end());
for (Bucket* bucket : buckets)
bucket->lock.lock();
// If the hashtable didn't change (wasn't rehashed) while we were locking it, then we own it
// now.
if (hashtable.load() == currentHashtable)
return buckets;
// The hashtable rehashed. Unlock everything and try again.
for (Bucket* bucket : buckets)
bucket->lock.unlock();
}
}
void unlockHashtable(const Vector<Bucket*>& buckets)
{
for (Bucket* bucket : buckets)
bucket->lock.unlock();
}
// Rehash the hashtable to handle numThreads threads.
void ensureHashtableSize(unsigned numThreads)
{
// We try to ensure that the size of the hashtable used for thread queues is always large enough
// to avoid collisions. So, since we started a new thread, we may need to increase the size of the
// hashtable. This does just that. Note that we never free the old spine, since we never lock
// around spine accesses (i.e. the "hashtable" global variable).
// First do a fast check to see if rehashing is needed.
Hashtable* oldHashtable = hashtable.load();
if (oldHashtable && static_cast<double>(oldHashtable->data.size()) / static_cast<double>(numThreads) >= maxLoadFactor) {
if (verbose)
dataLogForCurrentThread(": no need to rehash because ", oldHashtable->data.size(), " / ", numThreads, " >= ", maxLoadFactor, "\n");
return;
}
// Seems like we *might* have to rehash, so lock the hashtable and try again.
Vector<Bucket*> bucketsToUnlock = lockHashtable();
// Check again, since the hashtable could have rehashed while we were locking it. Also,
// lockHashtable() creates an initial hashtable for us.
oldHashtable = hashtable.load();
RELEASE_ASSERT(oldHashtable);
if (static_cast<double>(oldHashtable->data.size()) / static_cast<double>(numThreads) >= maxLoadFactor) {
if (verbose)
dataLogForCurrentThread(": after locking, no need to rehash because ", oldHashtable->data.size(), " / ", numThreads, " >= ", maxLoadFactor, "\n");
unlockHashtable(bucketsToUnlock);
return;
}
Vector<Bucket*> reusableBuckets = bucketsToUnlock;
// OK, now we resize. First we gather all thread datas from the old hashtable. These thread datas
// are placed into the vector in queue order.
Vector<RefPtr<ThreadData>> threadDatas;
for (Bucket* bucket : reusableBuckets) {
while (RefPtr threadData = bucket->dequeue())
threadDatas.append(WTFMove(threadData));
}
unsigned newSize = numThreads * growthFactor * maxLoadFactor;
RELEASE_ASSERT(newSize > oldHashtable->data.size());
auto newHashtable = makeUnique<Hashtable>(newSize);
if (verbose)
dataLogForCurrentThread(": created new hashtable: ", RawPointer(newHashtable.get()), "\n");
for (auto& threadData : threadDatas) {
if (verbose)
dataLogForCurrentThread(": rehashing thread data ", RawPointer(threadData.get()), " with address = ", RawPointer(threadData->address), "\n");
unsigned hash = hashAddress(threadData->address);
unsigned index = hash % newHashtable->data.size();
if (verbose)
dataLogForCurrentThread(": index = ", index, "\n");
Bucket* bucket = newHashtable->data[index].load();
if (!bucket) {
if (reusableBuckets.isEmpty())
bucket = new Bucket();
else
bucket = reusableBuckets.takeLast();
newHashtable->data[index].store(bucket);
}
bucket->enqueue(threadData.get());
}
// At this point there may be some buckets left unreused. This could easily happen if the
// number of enqueued threads right now is low but the high watermark of the number of threads
// enqueued was high. We place these buckets into the hashtable basically at random, just to
// make sure we don't leak them.
for (unsigned i = 0; i < newHashtable->data.size() && !reusableBuckets.isEmpty(); ++i) {
Atomic<Bucket*>& bucketPtr = newHashtable->data[i];
if (bucketPtr.load())
continue;
bucketPtr.store(reusableBuckets.takeLast());
}
// Since we increased the size of the hashtable, we should have exhausted our preallocated
// buckets by now.
ASSERT(reusableBuckets.isEmpty());
// OK, right now the old hashtable is locked up and the new hashtable is ready to rock and
// roll. After we install the new hashtable, we can release all bucket locks.
bool result = hashtable.compareExchangeStrong(oldHashtable, newHashtable.release()) == oldHashtable; // Leak the hash table.
RELEASE_ASSERT(result);
unlockHashtable(bucketsToUnlock);
}
ThreadData::ThreadData()
: thread(Thread::current())
{
unsigned currentNumThreads;
for (;;) {
unsigned oldNumThreads = numThreads.load();
currentNumThreads = oldNumThreads + 1;
if (numThreads.compareExchangeWeak(oldNumThreads, currentNumThreads))
break;
}
ensureHashtableSize(currentNumThreads);
}
ThreadData::~ThreadData()
{
for (;;) {
unsigned oldNumThreads = numThreads.load();
if (numThreads.compareExchangeWeak(oldNumThreads, oldNumThreads - 1))
break;
}
}
ThreadData* myThreadData()
{
static ThreadSpecific<RefPtr<ThreadData>, CanBeGCThread::True>* threadData;
static std::once_flag initializeOnce;
std::call_once(
initializeOnce,
[] {
threadData = new ThreadSpecific<RefPtr<ThreadData>, CanBeGCThread::True>();
});
RefPtr<ThreadData>& result = **threadData;
if (!result)
result = adoptRef(new ThreadData());
return result.get();
}
template<typename Functor>
bool enqueue(const void* address, NOESCAPE const Functor& functor)
{
unsigned hash = hashAddress(address);
for (;;) {
Hashtable* myHashtable = ensureHashtable();
unsigned index = hash % myHashtable->data.size();
Atomic<Bucket*>& bucketPointer = myHashtable->data[index];
Bucket* bucket;
for (;;) {
bucket = bucketPointer.load();
if (!bucket) {
bucket = new Bucket();
if (!bucketPointer.compareExchangeWeak(nullptr, bucket)) {
delete bucket;
continue;
}
}
break;
}
if (verbose)
dataLogForCurrentThread(": enqueueing onto bucket ", RawPointer(bucket), " with index ", index, " for address ", RawPointer(address), " with hash ", hash, "\n");
bucket->lock.lock();
// At this point the hashtable could have rehashed under us.
if (hashtable.load() != myHashtable) {
bucket->lock.unlock();
continue;
}
RefPtr<ThreadData> threadData = functor();
bool result;
if (threadData) {
if (verbose)
dataLogForCurrentThread(": proceeding to enqueue ", RawPointer(threadData.get()), "\n");
bucket->enqueue(threadData.get());
result = true;
} else
result = false;
bucket->lock.unlock();
return result;
}
}
enum class BucketMode {
EnsureNonEmpty,
IgnoreEmpty
};
template<typename DequeueFunctor, typename FinishFunctor>
bool dequeue(
const void* address, BucketMode bucketMode, const DequeueFunctor& dequeueFunctor,
const FinishFunctor& finishFunctor)
{
unsigned hash = hashAddress(address);
for (;;) {
Hashtable* myHashtable = ensureHashtable();
unsigned index = hash % myHashtable->data.size();
Atomic<Bucket*>& bucketPointer = myHashtable->data[index];
Bucket* bucket = bucketPointer.load();
if (!bucket) {
if (bucketMode == BucketMode::IgnoreEmpty)
return false;
for (;;) {
bucket = bucketPointer.load();
if (!bucket) {
bucket = new Bucket();
if (!bucketPointer.compareExchangeWeak(nullptr, bucket)) {
delete bucket;
continue;
}
}
break;
}
}
bucket->lock.lock();
// At this point the hashtable could have rehashed under us.
if (hashtable.load() != myHashtable) {
bucket->lock.unlock();
continue;
}
bucket->genericDequeue(dequeueFunctor);
bool result = !!bucket->queueHead;
finishFunctor(result);
bucket->lock.unlock();
return result;
}
}
} // anonymous namespace
NEVER_INLINE ParkingLot::ParkResult ParkingLot::parkConditionallyImpl(
const void* address,
const ScopedLambda<bool()>& validation,
const ScopedLambda<void()>& beforeSleep,
const TimeWithDynamicClockType& timeout)
{
if (verbose)
dataLogForCurrentThread(": parking.\n");
RefPtr me = myThreadData();
me->token = 0;
// Guard against someone calling parkConditionally() recursively from beforeSleep().
RELEASE_ASSERT(!me->address);
bool enqueueResult = enqueue(
address,
[&] () -> ThreadData* {
if (!validation())
return nullptr;
me->address = address;
return me.get();
});
if (!enqueueResult)
return ParkResult();
beforeSleep();
bool didGetDequeued;
{
MutexLocker locker(me->parkingLock);
while (me->address && timeout.nowWithSameClock() < timeout) {
me->parkingCondition.timedWait(me->parkingLock, timeout.approximateWallTime());
// It's possible for the OS to decide not to wait. If it does that then it will also
// decide not to release the lock. If there's a bug in the time math, then this could
// result in a deadlock. Flashing the lock means that at worst it's just a CPU-eating
// spin.
me->parkingLock.unlock();
me->parkingLock.lock();
}
ASSERT(!me->address || me->address == address);
didGetDequeued = !me->address;
}
if (didGetDequeued) {
// Great! We actually got dequeued rather than the timeout expiring.
ParkResult result;
result.wasUnparked = true;
result.token = me->token;
return result;
}
// Have to remove ourselves from the queue since we timed out and nobody has dequeued us yet.
bool didDequeue = false;
dequeue(
address, BucketMode::IgnoreEmpty,
[&] (ThreadData* element, bool) {
if (element == me) {
didDequeue = true;
return DequeueResult::RemoveAndStop;
}
return DequeueResult::Ignore;
},
[] (bool) { });
// If didDequeue is true, then we dequeued ourselves. This means that we were not unparked.
// If didDequeue is false, then someone unparked us.
RELEASE_ASSERT(!me->nextInQueue);
// Make sure that no matter what, me->address is null after this point.
{
MutexLocker locker(me->parkingLock);
if (!didDequeue) {
// If we did not dequeue ourselves, then someone else did. They will set our address to
// null. We don't want to proceed until they do this, because otherwise, they may set
// our address to null in some distant future when we're already trying to wait for
// other things.
while (me->address)
me->parkingCondition.wait(me->parkingLock);
}
me->address = nullptr;
}
ParkResult result;
result.wasUnparked = !didDequeue;
if (!didDequeue) {
// If we were unparked then there should be a token.
result.token = me->token;
}
return result;
}
NEVER_INLINE ParkingLot::UnparkResult ParkingLot::unparkOne(const void* address)
{
if (verbose)
dataLogForCurrentThread(": unparking one.\n");
UnparkResult result;
RefPtr<ThreadData> threadData;
result.mayHaveMoreThreads = dequeue(
address,
// Why is this here?
// FIXME: It seems like this could be IgnoreEmpty, but I switched this to EnsureNonEmpty
// without explanation in r199760. We need it to use EnsureNonEmpty if we need to perform
// some operation while holding the bucket lock, which usually goes into the finish func.
// But if that operation is a no-op, then it's not clear why we need this.
BucketMode::EnsureNonEmpty,
[&] (ThreadData* element, bool) {
if (element->address != address)
return DequeueResult::Ignore;
threadData = element;
result.didUnparkThread = true;
return DequeueResult::RemoveAndStop;
},
[] (bool) { });
if (!threadData) {
ASSERT(!result.didUnparkThread);
result.mayHaveMoreThreads = false;
return result;
}
ASSERT(threadData->address);
{
MutexLocker locker(threadData->parkingLock);
threadData->address = nullptr;
threadData->token = 0;
}
threadData->parkingCondition.signal();
return result;
}
NEVER_INLINE void ParkingLot::unparkOneImpl(
const void* address,
const ScopedLambda<intptr_t(ParkingLot::UnparkResult)>& callback)
{
if (verbose)
dataLogForCurrentThread(": unparking one the hard way.\n");
RefPtr<ThreadData> threadData;
bool timeToBeFair = false;
dequeue(
address,
BucketMode::EnsureNonEmpty,
[&] (ThreadData* element, bool passedTimeToBeFair) {
if (element->address != address)
return DequeueResult::Ignore;
threadData = element;
timeToBeFair = passedTimeToBeFair;
return DequeueResult::RemoveAndStop;
},
[&] (bool mayHaveMoreThreads) {
UnparkResult result;
result.didUnparkThread = !!threadData;
result.mayHaveMoreThreads = result.didUnparkThread && mayHaveMoreThreads;
if (timeToBeFair)
RELEASE_ASSERT(threadData);
result.timeToBeFair = timeToBeFair;
intptr_t token = callback(result);
if (threadData)
threadData->token = token;
});
if (!threadData)
return;
ASSERT(threadData->address);
{
MutexLocker locker(threadData->parkingLock);
threadData->address = nullptr;
}
// At this point, the threadData may die. Good thing we have a RefPtr<> on it.
threadData->parkingCondition.signal();
}
NEVER_INLINE unsigned ParkingLot::unparkCount(const void* address, unsigned count)
{
if (!count)
return 0;
if (verbose)
dataLogForCurrentThread(": unparking count = ", count, " from ", RawPointer(address), ".\n");
Vector<RefPtr<ThreadData>, 8> threadDatas;
dequeue(
address,
// FIXME: It seems like this ought to be EnsureNonEmpty if we follow what unparkOne() does,
// but that seems wrong.
BucketMode::IgnoreEmpty,
[&] (ThreadData* element, bool) {
if (verbose)
dataLogForCurrentThread(": Observing element with address = ", RawPointer(element->address), "\n");
if (element->address != address)
return DequeueResult::Ignore;
threadDatas.append(element);
if (threadDatas.size() == count)
return DequeueResult::RemoveAndStop;
return DequeueResult::RemoveAndContinue;
},
[] (bool) { });
for (auto& threadData : threadDatas) {
if (verbose)
dataLogForCurrentThread(": unparking ", RawPointer(threadData.get()), " with address ", RawPointer(threadData->address), "\n");
ASSERT(threadData->address);
{
MutexLocker locker(threadData->parkingLock);
threadData->address = nullptr;
}
threadData->parkingCondition.signal();
}
if (verbose)
dataLogForCurrentThread(": done unparking.\n");
return threadDatas.size();
}
NEVER_INLINE void ParkingLot::unparkAll(const void* address)
{
unparkCount(address, UINT_MAX);
}
NEVER_INLINE void ParkingLot::forEachImpl(const ScopedLambda<void(Thread&, const void*)>& callback)
{
Vector<Bucket*> bucketsToUnlock = lockHashtable();
Hashtable* currentHashtable = hashtable.load();
for (unsigned i = currentHashtable->data.size(); i--;) {
Bucket* bucket = currentHashtable->data[i].load();
if (!bucket)
continue;
for (RefPtr currentThreadData = bucket->queueHead; currentThreadData; currentThreadData = currentThreadData->nextInQueue)
callback(currentThreadData->thread.get(), currentThreadData->address);
}
unlockHashtable(bucketsToUnlock);
}
} // namespace WTF
|