1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
/*
* Copyright (C) 2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* SIMD::count algorithm is derived from https://github.com/llogiq/bytecount
* MIT License
*
* Copyright (c) 2017 The bytecount Developers
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include <wtf/Compiler.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
#include <bit>
#include <optional>
#include <wtf/StdLibExtras.h>
#include <wtf/simde/simde.h>
namespace WTF::SIMD {
template<typename LaneType>
struct LaneToVector;
template<>
struct LaneToVector<uint8_t> {
using Type = simde_uint8x16_t;
};
template<>
struct LaneToVector<uint16_t> {
using Type = simde_uint16x8_t;
};
template<>
struct LaneToVector<uint32_t> {
using Type = simde_uint32x4_t;
};
template<>
struct LaneToVector<uint64_t> {
using Type = simde_uint64x2_t;
};
template<typename LaneType>
using VectorType = typename LaneToVector<LaneType>::Type;
template<typename LaneType>
inline constexpr size_t stride = 16 / sizeof(LaneType);
constexpr simde_uint8x16_t splat8(uint8_t code)
{
return simde_uint8x16_t { code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code };
}
constexpr simde_uint16x8_t splat16(uint16_t code)
{
return simde_uint16x8_t { code, code, code, code, code, code, code, code };
}
constexpr simde_uint32x4_t splat32(uint32_t code)
{
return simde_uint32x4_t { code, code, code, code };
}
constexpr simde_uint64x2_t splat64(uint64_t code)
{
return simde_uint64x2_t { code, code };
}
template<typename LaneType>
ALWAYS_INLINE constexpr decltype(auto) splat(LaneType lane)
{
if constexpr (sizeof(LaneType) == sizeof(uint8_t))
return splat8(static_cast<uint8_t>(lane));
else if constexpr (sizeof(LaneType) == sizeof(uint16_t))
return splat16(static_cast<uint16_t>(lane));
else if constexpr (sizeof(LaneType) == sizeof(uint32_t))
return splat32(static_cast<uint32_t>(lane));
else {
static_assert(sizeof(LaneType) == sizeof(uint64_t));
return splat64(static_cast<uint64_t>(lane));
}
}
ALWAYS_INLINE simde_uint8x16_t load(const uint8_t* ptr)
{
return simde_vld1q_u8(ptr);
}
ALWAYS_INLINE simde_uint16x8_t load(const uint16_t* ptr)
{
return simde_vld1q_u16(ptr);
}
ALWAYS_INLINE simde_uint32x4_t load(const uint32_t* ptr)
{
return simde_vld1q_u32(ptr);
}
ALWAYS_INLINE simde_uint64x2_t load(const uint64_t* ptr)
{
return simde_vld1q_u64(ptr);
}
ALWAYS_INLINE void store(simde_uint8x16_t value, uint8_t* ptr)
{
return simde_vst1q_u8(ptr, value);
}
ALWAYS_INLINE void store(simde_uint16x8_t value, uint16_t* ptr)
{
return simde_vst1q_u16(ptr, value);
}
ALWAYS_INLINE void store(simde_uint32x4_t value, uint32_t* ptr)
{
return simde_vst1q_u32(ptr, value);
}
ALWAYS_INLINE void store(simde_uint64x2_t value, uint64_t* ptr)
{
return simde_vst1q_u64(ptr, value);
}
ALWAYS_INLINE simde_uint8x16x4_t load4x(const uint8_t* ptr)
{
return simde_vld4q_u8(ptr);
}
ALWAYS_INLINE simde_uint16x8x4_t load4x(const uint16_t* ptr)
{
return simde_vld4q_u16(ptr);
}
ALWAYS_INLINE simde_uint32x4x4_t load4x(const uint32_t* ptr)
{
return simde_vld4q_u32(ptr);
}
ALWAYS_INLINE simde_uint64x2x4_t load4x(const uint64_t* ptr)
{
return simde_vld4q_u64(ptr);
}
ALWAYS_INLINE void store4x(simde_uint8x16x4_t value, uint8_t* ptr)
{
return simde_vst4q_u8(ptr, value);
}
ALWAYS_INLINE void store4x(simde_uint16x8x4_t value, uint16_t* ptr)
{
return simde_vst4q_u16(ptr, value);
}
ALWAYS_INLINE void store4x(simde_uint32x4x4_t value, uint32_t* ptr)
{
return simde_vst4q_u32(ptr, value);
}
ALWAYS_INLINE void store4x(simde_uint64x2x4_t value, uint64_t* ptr)
{
return simde_vst4q_u64(ptr, value);
}
ALWAYS_INLINE uint16_t sum(simde_uint8x16_t value)
{
return simde_vaddlvq_u8(value);
}
ALWAYS_INLINE uint32_t sum(simde_uint16x8_t value)
{
return simde_vaddlvq_u16(value);
}
ALWAYS_INLINE uint64_t sum(simde_uint32x4_t value)
{
return simde_vaddlvq_u32(value);
}
ALWAYS_INLINE simde_uint8x16_t sub(simde_uint8x16_t left, simde_uint8x16_t right)
{
return simde_vsubq_u8(left, right);
}
ALWAYS_INLINE simde_uint16x8_t sub(simde_uint16x8_t left, simde_uint16x8_t right)
{
return simde_vsubq_u16(left, right);
}
ALWAYS_INLINE simde_uint32x4_t sub(simde_uint32x4_t left, simde_uint32x4_t right)
{
return simde_vsubq_u32(left, right);
}
ALWAYS_INLINE simde_uint64x2_t sub(simde_uint64x2_t left, simde_uint64x2_t right)
{
return simde_vsubq_u64(left, right);
}
ALWAYS_INLINE simde_uint8x16_t merge2(simde_uint8x16_t accumulated, simde_uint8x16_t input)
{
return simde_vorrq_u8(accumulated, input);
}
ALWAYS_INLINE simde_uint16x8_t merge2(simde_uint16x8_t accumulated, simde_uint16x8_t input)
{
return simde_vorrq_u16(accumulated, input);
}
ALWAYS_INLINE simde_uint32x4_t merge2(simde_uint32x4_t accumulated, simde_uint32x4_t input)
{
return simde_vorrq_u32(accumulated, input);
}
ALWAYS_INLINE simde_uint64x2_t merge2(simde_uint64x2_t accumulated, simde_uint64x2_t input)
{
return simde_vorrq_u64(accumulated, input);
}
ALWAYS_INLINE simde_uint8x16_t bitOr2(simde_uint8x16_t accumulated, simde_uint8x16_t input)
{
return simde_vorrq_u8(accumulated, input);
}
ALWAYS_INLINE simde_uint16x8_t bitOr2(simde_uint16x8_t accumulated, simde_uint16x8_t input)
{
return simde_vorrq_u16(accumulated, input);
}
ALWAYS_INLINE simde_uint32x4_t bitOr2(simde_uint32x4_t accumulated, simde_uint32x4_t input)
{
return simde_vorrq_u32(accumulated, input);
}
ALWAYS_INLINE simde_uint64x2_t bitOr2(simde_uint64x2_t accumulated, simde_uint64x2_t input)
{
return simde_vorrq_u64(accumulated, input);
}
ALWAYS_INLINE simde_uint8x16_t bitAnd2(simde_uint8x16_t accumulated, simde_uint8x16_t input)
{
return simde_vandq_u8(accumulated, input);
}
ALWAYS_INLINE simde_uint16x8_t bitAnd2(simde_uint16x8_t accumulated, simde_uint16x8_t input)
{
return simde_vandq_u16(accumulated, input);
}
ALWAYS_INLINE simde_uint32x4_t bitAnd2(simde_uint32x4_t accumulated, simde_uint32x4_t input)
{
return simde_vandq_u32(accumulated, input);
}
ALWAYS_INLINE simde_uint64x2_t bitAnd2(simde_uint64x2_t accumulated, simde_uint64x2_t input)
{
return simde_vandq_u64(accumulated, input);
}
template<typename VectorType, typename... Args>
ALWAYS_INLINE decltype(auto) merge(VectorType a0, VectorType a1, Args... args)
{
if constexpr (!sizeof...(args))
return merge2(a0, a1);
else
return merge2(a0, merge(a1, std::forward<Args>(args)...));
}
template<typename VectorType, typename... Args>
ALWAYS_INLINE decltype(auto) bitOr(VectorType a0, VectorType a1, Args... args)
{
if constexpr (!sizeof...(args))
return bitOr2(a0, a1);
else
return bitOr2(a0, bitOr(a1, std::forward<Args>(args)...));
}
template<typename VectorType, typename... Args>
ALWAYS_INLINE decltype(auto) bitAnd(VectorType a0, VectorType a1, Args... args)
{
if constexpr (!sizeof...(args))
return bitAnd2(a0, a1);
else
return bitAnd2(a0, bitAnd(a1, std::forward<Args>(args)...));
}
ALWAYS_INLINE simde_uint8x16_t bitNot(simde_uint8x16_t input)
{
return simde_vmvnq_u8(input);
}
ALWAYS_INLINE simde_uint16x8_t bitNot(simde_uint16x8_t input)
{
return simde_vmvnq_u16(input);
}
ALWAYS_INLINE simde_uint32x4_t bitNot(simde_uint32x4_t input)
{
return simde_vmvnq_u32(input);
}
ALWAYS_INLINE simde_uint64x2_t bitNot(simde_uint64x2_t input)
{
return simde_vreinterpretq_u64_u32(simde_vmvnq_u32(simde_vreinterpretq_u32_u64(input)));
}
ALWAYS_INLINE bool isNonZero(simde_uint8x16_t accumulated)
{
#if CPU(X86_64)
auto raw = simde_uint8x16_to_m128i(accumulated);
return !simde_mm_test_all_zeros(raw, raw);
#else
return simde_vmaxvq_u8(accumulated);
#endif
}
ALWAYS_INLINE bool isNonZero(simde_uint16x8_t accumulated)
{
#if CPU(X86_64)
auto raw = simde_uint16x8_to_m128i(accumulated);
return !simde_mm_test_all_zeros(raw, raw);
#else
return simde_vmaxvq_u16(accumulated);
#endif
}
ALWAYS_INLINE bool isNonZero(simde_uint32x4_t accumulated)
{
#if CPU(X86_64)
auto raw = simde_uint32x4_to_m128i(accumulated);
return !simde_mm_test_all_zeros(raw, raw);
#else
return simde_vmaxvq_u32(accumulated);
#endif
}
ALWAYS_INLINE bool isNonZero(simde_uint64x2_t accumulated)
{
#if CPU(X86_64)
auto raw = simde_uint64x2_to_m128i(accumulated);
return !simde_mm_test_all_zeros(raw, raw);
#else
// There is no simde_vmaxvq_u64, so using simde_vmaxvq_u8.
// But this is fine since it only just checks if the input is all-zeros.
return simde_vmaxvq_u32(simde_vreinterpretq_u32_u64(accumulated));
#endif
}
ALWAYS_INLINE std::optional<uint8_t> findFirstNonZeroIndex(simde_uint8x16_t value)
{
#if CPU(X86_64)
auto raw = simde_uint8x16_to_m128i(value);
uint16_t mask = simde_mm_movemask_epi8(raw);
if (!mask)
return std::nullopt;
return std::countr_zero(mask);
#else
if (!isNonZero(value))
return std::nullopt;
constexpr simde_uint8x16_t indexMask { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
return simde_vminvq_u8(simde_vornq_u8(indexMask, value));
#endif
}
ALWAYS_INLINE std::optional<uint8_t> findFirstNonZeroIndex(simde_uint16x8_t value)
{
#if CPU(X86_64)
auto raw = simde_uint16x8_to_m128i(value);
uint16_t mask = simde_mm_movemask_epi8(raw);
if (!mask)
return std::nullopt;
return std::countr_zero(mask) >> 1;
#else
// Incoming value is a comparison result, where each vector element is either all 1s or 0s.
if (!isNonZero(value))
return std::nullopt;
constexpr simde_uint16x8_t indexMask { 0, 1, 2, 3, 4, 5, 6, 7 };
// Found elements are all-1 and the other elements are 0. But it is possible that this vector
// includes multiple found characters. We perform [0, 1, 2, 3, 4, 5, 6, 7] OR-NOT with this value,
// to assign the index to found characters.
// Find the smallest value. Because of [0, 1, 2, 3, 4, 5, 6, 7], the value should be index in this vector.
// If the index less than length, it is within the requested pointer. Otherwise, nullptr.
//
// Example
// value |0|0|0|X|0|X|0|0| (X is all-one)
// not-value |X|X|X|0|X|0|X|X|
// index-value |0|1|2|3|4|5|6|7|
// ranked |X|X|X|3|X|5|X|X|
// index 3, the smallest number from this vector, and it is the same to the index.
return simde_vminvq_u16(simde_vornq_u16(indexMask, value));
#endif
}
ALWAYS_INLINE std::optional<uint8_t> findFirstNonZeroIndex(simde_uint32x4_t value)
{
#if CPU(X86_64)
auto raw = simde_uint32x4_to_m128i(value);
uint16_t mask = simde_mm_movemask_epi8(raw);
if (!mask)
return std::nullopt;
return std::countr_zero(mask) >> 2;
#else
if (!isNonZero(value))
return std::nullopt;
constexpr simde_uint32x4_t indexMask { 0, 1, 2, 3 };
return simde_vminvq_u32(simde_vornq_u32(indexMask, value));
#endif
}
ALWAYS_INLINE std::optional<uint8_t> findFirstNonZeroIndex(simde_uint64x2_t value)
{
#if CPU(X86_64)
auto raw = simde_uint64x2_to_m128i(value);
uint16_t mask = simde_mm_movemask_epi8(raw);
if (!mask)
return std::nullopt;
return std::countr_zero(mask) >> 3;
#else
simde_uint32x2_t reducedMask = simde_vmovn_u64(value);
if (!simde_vget_lane_u64(simde_vreinterpret_u64_u32(reducedMask), 0))
return std::nullopt;
constexpr simde_uint32x2_t indexMask { 0, 1 }; // It is intentionally uint32x2_t.
return simde_vminv_u32(simde_vorn_u32(indexMask, reducedMask));
#endif
}
template<LChar character, LChar... characters>
ALWAYS_INLINE simde_uint8x16_t equal(simde_uint8x16_t input)
{
auto result = simde_vceqq_u8(input, simde_vmovq_n_u8(character));
if constexpr (!sizeof...(characters))
return result;
else
return merge(result, equal<characters...>(input));
}
template<UChar character, UChar... characters>
ALWAYS_INLINE simde_uint16x8_t equal(simde_uint16x8_t input)
{
auto result = simde_vceqq_u16(input, simde_vmovq_n_u16(character));
if constexpr (!sizeof...(characters))
return result;
else
return merge(result, equal<characters...>(input));
}
ALWAYS_INLINE simde_uint8x16_t equal(simde_uint8x16_t lhs, simde_uint8x16_t rhs)
{
return simde_vceqq_u8(lhs, rhs);
}
ALWAYS_INLINE simde_uint16x8_t equal(simde_uint16x8_t lhs, simde_uint16x8_t rhs)
{
return simde_vceqq_u16(lhs, rhs);
}
ALWAYS_INLINE simde_uint32x4_t equal(simde_uint32x4_t lhs, simde_uint32x4_t rhs)
{
return simde_vceqq_u32(lhs, rhs);
}
ALWAYS_INLINE simde_uint64x2_t equal(simde_uint64x2_t lhs, simde_uint64x2_t rhs)
{
return simde_vceqq_u64(lhs, rhs);
}
ALWAYS_INLINE simde_uint8x16_t lessThan(simde_uint8x16_t lhs, simde_uint8x16_t rhs)
{
return simde_vcltq_u8(lhs, rhs);
}
ALWAYS_INLINE simde_uint16x8_t lessThan(simde_uint16x8_t lhs, simde_uint16x8_t rhs)
{
return simde_vcltq_u16(lhs, rhs);
}
ALWAYS_INLINE simde_uint32x4_t lessThan(simde_uint32x4_t lhs, simde_uint32x4_t rhs)
{
return simde_vcltq_u32(lhs, rhs);
}
ALWAYS_INLINE simde_uint64x2_t lessThan(simde_uint64x2_t lhs, simde_uint64x2_t rhs)
{
return simde_vcltq_u64(lhs, rhs);
}
ALWAYS_INLINE simde_uint8x16_t lessThanOrEqual(simde_uint8x16_t lhs, simde_uint8x16_t rhs)
{
return simde_vcleq_u8(lhs, rhs);
}
ALWAYS_INLINE simde_uint16x8_t lessThanOrEqual(simde_uint16x8_t lhs, simde_uint16x8_t rhs)
{
return simde_vcleq_u16(lhs, rhs);
}
ALWAYS_INLINE simde_uint32x4_t lessThanOrEqual(simde_uint32x4_t lhs, simde_uint32x4_t rhs)
{
return simde_vcleq_u32(lhs, rhs);
}
ALWAYS_INLINE simde_uint64x2_t lessThanOrEqual(simde_uint64x2_t lhs, simde_uint64x2_t rhs)
{
return simde_vcleq_u64(lhs, rhs);
}
ALWAYS_INLINE simde_uint8x16_t greaterThan(simde_uint8x16_t lhs, simde_uint8x16_t rhs)
{
return simde_vcgtq_u8(lhs, rhs);
}
ALWAYS_INLINE simde_uint16x8_t greaterThan(simde_uint16x8_t lhs, simde_uint16x8_t rhs)
{
return simde_vcgtq_u16(lhs, rhs);
}
ALWAYS_INLINE simde_uint32x4_t greaterThan(simde_uint32x4_t lhs, simde_uint32x4_t rhs)
{
return simde_vcgtq_u32(lhs, rhs);
}
ALWAYS_INLINE simde_uint64x2_t greaterThan(simde_uint64x2_t lhs, simde_uint64x2_t rhs)
{
return simde_vcgtq_u64(lhs, rhs);
}
ALWAYS_INLINE simde_uint8x16_t greaterThanOrEqual(simde_uint8x16_t lhs, simde_uint8x16_t rhs)
{
return simde_vcgeq_u8(lhs, rhs);
}
ALWAYS_INLINE simde_uint16x8_t greaterThanOrEqual(simde_uint16x8_t lhs, simde_uint16x8_t rhs)
{
return simde_vcgeq_u16(lhs, rhs);
}
ALWAYS_INLINE simde_uint32x4_t greaterThanOrEqual(simde_uint32x4_t lhs, simde_uint32x4_t rhs)
{
return simde_vcgeq_u32(lhs, rhs);
}
ALWAYS_INLINE simde_uint64x2_t greaterThanOrEqual(simde_uint64x2_t lhs, simde_uint64x2_t rhs)
{
return simde_vcgeq_u64(lhs, rhs);
}
template<typename CharacterType, size_t threshold = SIMD::stride<CharacterType>>
ALWAYS_INLINE const CharacterType* find(std::span<const CharacterType> span, const auto& vectorMatch, const auto& scalarMatch)
{
constexpr size_t stride = SIMD::stride<CharacterType>;
using UnsignedType = std::make_unsigned_t<CharacterType>;
static_assert(threshold >= stride);
const auto* cursor = span.data();
const auto* end = span.data() + span.size();
if (span.size() >= threshold) {
for (; cursor + stride <= end; cursor += stride) {
if (auto index = vectorMatch(SIMD::load(std::bit_cast<const UnsignedType*>(cursor))))
return cursor + index.value();
}
if (cursor < end) {
if (auto index = vectorMatch(SIMD::load(std::bit_cast<const UnsignedType*>(end - stride))))
return end - stride + index.value();
}
return end;
}
for (; cursor != end; ++cursor) {
auto character = *cursor;
if (scalarMatch(character))
return cursor;
}
return end;
}
template<typename CharacterType, size_t threshold = SIMD::stride<CharacterType> * 2>
requires(sizeof(CharacterType) == 2)
ALWAYS_INLINE const CharacterType* findInterleaved(std::span<const CharacterType> span, const auto& vectorMatch, const auto& scalarMatch)
{
constexpr size_t stride = SIMD::stride<CharacterType> * 2;
static_assert(threshold >= stride);
const auto* cursor = span.data();
const auto* end = span.data() + span.size();
if (span.size() >= threshold) {
for (; cursor + stride <= end; cursor += stride) {
if (auto index = vectorMatch(simde_vld2q_u8(std::bit_cast<const uint8_t*>(cursor))))
return cursor + index.value();
}
if (cursor < end) {
if (auto index = vectorMatch(simde_vld2q_u8(std::bit_cast<const uint8_t*>(end - stride))))
return end - stride + index.value();
}
return end;
}
for (; cursor != end; ++cursor) {
auto character = *cursor;
if (scalarMatch(character))
return cursor;
}
return end;
}
template<typename CharacterType, size_t threshold = SIMD::stride<CharacterType>>
ALWAYS_INLINE size_t count(std::span<const CharacterType> span, const auto& vectorMatch, const auto& scalarMatch)
{
constexpr size_t stride = SIMD::stride<CharacterType>;
constexpr size_t bulkLoadCount = 4;
using UnsignedType = std::make_unsigned_t<CharacterType>;
static_assert(threshold >= stride);
const auto* cursor = span.data();
const auto* end = span.data() + span.size();
size_t result = 0;
// Per max * 4 * stride iteration (If CharacterType is uint8_t, it is 16320 (255 * 64)).
// We need to limit the each iteration up to std::numeric_limits<UnsignedType>::max() because count vector's lane will overflow.
for (; cursor + (bulkLoadCount * stride * std::numeric_limits<UnsignedType>::max()) <= end;) {
std::array<VectorType<UnsignedType>, bulkLoadCount> counts { };
for (size_t iteration = 0; iteration < std::numeric_limits<UnsignedType>::max(); ++iteration) {
auto vectorx4 = SIMD::load4x(std::bit_cast<const UnsignedType*>(cursor));
for (size_t i = 0; i < bulkLoadCount; ++i)
counts[i] = SIMD::sub(counts[i], vectorMatch(vectorx4.val[i]));
cursor += (bulkLoadCount * stride);
}
for (auto& count : counts)
result += SIMD::sum(count);
}
// Per 4 * stride iteration (If CharacterType is uint8_t, it is 64 (4 * 16)).
// At this point, the remaining size must be smaller than max * 4 * stride (If CharacterType is uint8_t, it is 16320 (255 * 64)).
// So we do not need to consider about counts lane's overflow. If it can be overflow, it is already handled in the previous loop.
{
std::array<VectorType<UnsignedType>, bulkLoadCount> counts { };
for (; cursor + (bulkLoadCount * stride) <= end; cursor += (bulkLoadCount * stride)) {
auto vectorx4 = SIMD::load4x(std::bit_cast<const UnsignedType*>(cursor));
for (size_t i = 0; i < bulkLoadCount; ++i)
counts[i] = SIMD::sub(counts[i], vectorMatch(vectorx4.val[i]));
}
for (auto& count : counts)
result += SIMD::sum(count);
}
// Per stride iteration (If CharacterType is uint8_t, it is 16).
// At this point, the remaining size must be smaller than 4 * stride (If CharacterType is uint8_t, it is 64).
{
auto count = SIMD::splat<UnsignedType>(0);
for (; cursor + stride <= end; cursor += stride) {
auto vector = SIMD::load(std::bit_cast<const UnsignedType*>(cursor));
count = SIMD::sub(count, vectorMatch(vector));
}
result += SIMD::sum(count);
}
for (; cursor < end; ++cursor)
result += !!scalarMatch(*std::bit_cast<const UnsignedType*>(cursor));
return result;
}
}
namespace SIMD = WTF::SIMD;
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|