1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <wtf/ForbidHeapAllocation.h>
namespace WTF {
// You can use ScopedLambda to efficiently pass lambdas without allocating memory or requiring
// template specialization of the callee. The callee should be declared as:
//
// void foo(const ScopedLambda<MyThings* (int, Stuff&)>&);
//
// The caller just does:
//
// void foo(scopedLambda<MyThings* (int, Stuff&)>([&] (int x, Stuff& y) -> MyThings* { blah }));
//
// Note that this relies on foo() not escaping the lambda. The lambda is only valid while foo() is
// on the stack - hence the name ScopedLambda.
template<typename FunctionType> class ScopedLambda;
template<typename ResultType, typename... ArgumentTypes>
class ScopedLambda<ResultType (ArgumentTypes...)> {
WTF_FORBID_HEAP_ALLOCATION;
public:
ScopedLambda(ResultType (*impl)(void* arg, ArgumentTypes...) = nullptr, void* arg = nullptr)
: m_impl(impl)
, m_arg(arg)
{
}
template<typename... PassedArgumentTypes>
ResultType operator()(PassedArgumentTypes&&... arguments) const
{
return m_impl(m_arg, std::forward<PassedArgumentTypes>(arguments)...);
}
private:
ResultType (*m_impl)(void* arg, ArgumentTypes...);
void *m_arg;
};
template<typename FunctionType, typename Functor> class ScopedLambdaFunctor;
template<typename ResultType, typename... ArgumentTypes, typename Functor>
class ScopedLambdaFunctor<ResultType (ArgumentTypes...), Functor> : public ScopedLambda<ResultType (ArgumentTypes...)> {
public:
template<typename PassedFunctor>
ScopedLambdaFunctor(PassedFunctor&& functor)
: ScopedLambda<ResultType (ArgumentTypes...)>(implFunction, this)
, m_functor(std::forward<PassedFunctor>(functor))
{
}
// We need to make sure that copying and moving ScopedLambdaFunctor results in a ScopedLambdaFunctor
// whose ScopedLambda supertype still points to this rather than other.
ScopedLambdaFunctor(const ScopedLambdaFunctor& other)
: ScopedLambda<ResultType (ArgumentTypes...)>(implFunction, this)
, m_functor(other.m_functor)
{
}
ScopedLambdaFunctor(ScopedLambdaFunctor&& other)
: ScopedLambda<ResultType (ArgumentTypes...)>(implFunction, this)
, m_functor(WTFMove(other.m_functor))
{
}
ScopedLambdaFunctor& operator=(const ScopedLambdaFunctor& other)
{
m_functor = other.m_functor;
return *this;
}
ScopedLambdaFunctor& operator=(ScopedLambdaFunctor&& other)
{
m_functor = WTFMove(other.m_functor);
return *this;
}
private:
static ResultType implFunction(void* argument, ArgumentTypes... arguments)
{
return static_cast<ScopedLambdaFunctor*>(argument)->m_functor(arguments...);
}
Functor m_functor;
};
// Can't simply rely on perfect forwarding because then the ScopedLambdaFunctor would point to the functor
// by const reference. This would be surprising in situations like:
//
// auto scopedLambda = scopedLambda<Foo(Bar)>([&] (Bar) -> Foo { ... });
//
// We expected scopedLambda to be valid for its entire lifetime, but if it computed the lambda by reference
// then it would be immediately invalid.
template<typename FunctionType, typename Functor>
ScopedLambdaFunctor<FunctionType, Functor> scopedLambda(const Functor& functor)
{
return ScopedLambdaFunctor<FunctionType, Functor>(functor);
}
template<typename FunctionType, typename Functor>
ScopedLambdaFunctor<FunctionType, Functor> scopedLambda(Functor&& functor)
{
return ScopedLambdaFunctor<FunctionType, Functor>(std::forward<Functor>(functor));
}
template<typename FunctionType, typename Functor> class ScopedLambdaRefFunctor;
template<typename ResultType, typename... ArgumentTypes, typename Functor>
class ScopedLambdaRefFunctor<ResultType (ArgumentTypes...), Functor> : public ScopedLambda<ResultType (ArgumentTypes...)> {
public:
ScopedLambdaRefFunctor(const Functor& functor)
: ScopedLambda<ResultType (ArgumentTypes...)>(implFunction, this)
, m_functor(&functor)
{
}
// We need to make sure that copying and moving ScopedLambdaRefFunctor results in a
// ScopedLambdaRefFunctor whose ScopedLambda supertype still points to this rather than
// other.
ScopedLambdaRefFunctor(const ScopedLambdaRefFunctor& other)
: ScopedLambda<ResultType (ArgumentTypes...)>(implFunction, this)
, m_functor(other.m_functor)
{
}
ScopedLambdaRefFunctor(ScopedLambdaRefFunctor&& other)
: ScopedLambda<ResultType (ArgumentTypes...)>(implFunction, this)
, m_functor(other.m_functor)
{
}
ScopedLambdaRefFunctor& operator=(const ScopedLambdaRefFunctor& other)
{
m_functor = other.m_functor;
return *this;
}
ScopedLambdaRefFunctor& operator=(ScopedLambdaRefFunctor&& other)
{
m_functor = other.m_functor;
return *this;
}
private:
static ResultType implFunction(void* argument, ArgumentTypes... arguments)
{
return (*static_cast<ScopedLambdaRefFunctor*>(argument)->m_functor)(arguments...);
}
const Functor* m_functor;
};
// This is for when you already refer to a functor by reference, and you know its lifetime is
// good. This just creates a ScopedLambda that points to your functor.
//
// Note that this is always wrong:
//
// auto ref = scopedLambdaRef([...] (...) {...});
//
// Because the scopedLambdaRef will refer to the lambda by reference, and the lambda will die after the
// semicolon. Use scopedLambda() in that case.
template<typename FunctionType, typename Functor>
ScopedLambdaRefFunctor<FunctionType, Functor> scopedLambdaRef(const Functor& functor)
{
return ScopedLambdaRefFunctor<FunctionType, Functor>(functor);
}
} // namespace WTF
using WTF::ScopedLambda;
using WTF::scopedLambda;
using WTF::scopedLambdaRef;
|