1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
|
/*
* Copyright (C) 2008-2024 Apple Inc. All Rights Reserved.
* Copyright (C) 2024 Samuel Weinig <sam@webkit.org>
* Copyright (C) 2013 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <algorithm>
#include <bit>
#include <climits>
#include <concepts>
#include <cstring>
#include <functional>
#include <memory>
#include <span>
#include <type_traits>
#include <utility>
#include <variant>
#include <wtf/Assertions.h>
#include <wtf/Brigand.h>
#include <wtf/CheckedArithmetic.h>
#include <wtf/Compiler.h>
#include <wtf/GetPtr.h>
#include <wtf/IterationStatus.h>
#include <wtf/NotFound.h>
#include <wtf/StringExtras.h>
#include <wtf/TypeCasts.h>
#include <wtf/TypeTraits.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
#define SINGLE_ARG(...) __VA_ARGS__ // useful when a macro argument includes a comma
// Use this macro to declare and define a debug-only global variable that may have a
// non-trivial constructor and destructor. When building with clang, this will suppress
// warnings about global constructors and exit-time destructors.
#define DEFINE_GLOBAL_FOR_LOGGING(type, name, arguments) \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Wglobal-constructors\"") \
_Pragma("clang diagnostic ignored \"-Wexit-time-destructors\"") \
static type name arguments; \
_Pragma("clang diagnostic pop")
#ifndef NDEBUG
#if COMPILER(CLANG)
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) DEFINE_GLOBAL_FOR_LOGGING(type, name, arguments)
#else
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) \
static type name arguments;
#endif // COMPILER(CLANG)
#else
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments)
#endif // NDEBUG
#if COMPILER(CLANG)
// We have to use __builtin_offsetof directly here instead of offsetof because otherwise Clang will drop
// our pragma and we'll still get the warning.
#define OBJECT_OFFSETOF(class, field) \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Winvalid-offsetof\"") \
__builtin_offsetof(class, field) \
_Pragma("clang diagnostic pop")
#elif COMPILER(GCC)
// It would be nice to silence this warning locally like we do on Clang but GCC complains about `error: ‘#pragma’ is not allowed here`
#pragma GCC diagnostic ignored "-Winvalid-offsetof"
#define OBJECT_OFFSETOF(class, field) offsetof(class, field)
#endif
// The magic number 0x4000 is insignificant. We use it to avoid using NULL, since
// NULL can cause compiler problems, especially in cases of multiple inheritance.
#define CAST_OFFSET(from, to) (reinterpret_cast<uintptr_t>(static_cast<to>((reinterpret_cast<from>(0x4000)))) - 0x4000)
// STRINGIZE: Can convert any value to quoted string, even expandable macros
#define STRINGIZE(exp) #exp
#define STRINGIZE_VALUE_OF(exp) STRINGIZE(exp)
// WTF_CONCAT: concatenate two symbols into one, even expandable macros
#define WTF_CONCAT_INTERNAL_DONT_USE(a, b) a ## b
#define WTF_CONCAT(a, b) WTF_CONCAT_INTERNAL_DONT_USE(a, b)
/*
* The reinterpret_cast<Type1*>([pointer to Type2]) expressions - where
* sizeof(Type1) > sizeof(Type2) - cause the following warning on ARM with GCC:
* increases required alignment of target type.
*
* An implicit or an extra static_cast<void*> bypasses the warning.
* For more info see the following bugzilla entries:
* - https://bugs.webkit.org/show_bug.cgi?id=38045
* - http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43976
*/
#if CPU(ARM) || CPU(MIPS) || CPU(RISCV64)
template<typename Type>
inline bool isPointerTypeAlignmentOkay(Type* ptr)
{
return !(reinterpret_cast<intptr_t>(ptr) % __alignof__(Type));
}
template<typename TypePtr>
inline TypePtr reinterpret_cast_ptr(void* ptr)
{
ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr)));
return reinterpret_cast<TypePtr>(ptr);
}
template<typename TypePtr>
inline TypePtr reinterpret_cast_ptr(const void* ptr)
{
ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr)));
return reinterpret_cast<TypePtr>(ptr);
}
#else
template<typename Type>
inline bool isPointerTypeAlignmentOkay(Type*)
{
return true;
}
#define reinterpret_cast_ptr reinterpret_cast
#endif
namespace WTF {
enum CheckMoveParameterTag { CheckMoveParameter };
static constexpr size_t KB = 1024;
static constexpr size_t MB = 1024 * 1024;
static constexpr size_t GB = 1024 * 1024 * 1024;
inline bool isPointerAligned(void* p)
{
return !((intptr_t)(p) & (sizeof(char*) - 1));
}
inline bool is8ByteAligned(void* p)
{
return !((uintptr_t)(p) & (sizeof(double) - 1));
}
inline std::byte* alignedBytes(std::byte* pointer, size_t alignment)
{
return reinterpret_cast<std::byte*>((reinterpret_cast<uintptr_t>(pointer) - 1u + alignment) & -alignment);
}
inline const std::byte* alignedBytes(const std::byte* pointer, size_t alignment)
{
return reinterpret_cast<const std::byte*>((reinterpret_cast<uintptr_t>(pointer) - 1u + alignment) & -alignment);
}
inline size_t alignedBytesCorrection(std::span<std::byte> buffer, size_t alignment)
{
return reinterpret_cast<std::byte*>((reinterpret_cast<uintptr_t>(buffer.data()) - 1u + alignment) & -alignment) - buffer.data();
}
inline size_t alignedBytesCorrection(std::span<const std::byte> buffer, size_t alignment)
{
return reinterpret_cast<const std::byte*>((reinterpret_cast<uintptr_t>(buffer.data()) - 1u + alignment) & -alignment) - buffer.data();
}
inline std::span<std::byte> alignedBytes(std::span<std::byte> buffer, size_t alignment)
{
return buffer.subspan(alignedBytesCorrection(buffer, alignment));
}
inline std::span<const std::byte> alignedBytes(std::span<const std::byte> buffer, size_t alignment)
{
return buffer.subspan(alignedBytesCorrection(buffer, alignment));
}
template<typename ToType, typename FromType>
inline ToType safeCast(FromType value)
{
RELEASE_ASSERT(isInBounds<ToType>(value));
return static_cast<ToType>(value);
}
// Returns a count of the number of bits set in 'bits'.
inline size_t bitCount(unsigned bits)
{
bits = bits - ((bits >> 1) & 0x55555555);
bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
return (((bits + (bits >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}
inline size_t bitCount(uint64_t bits)
{
return bitCount(static_cast<unsigned>(bits)) + bitCount(static_cast<unsigned>(bits >> 32));
}
inline constexpr bool isPowerOfTwo(size_t size) { return !(size & (size - 1)); }
template<typename T> constexpr T mask(T value, uintptr_t mask)
{
static_assert(sizeof(T) == sizeof(uintptr_t), "sizeof(T) must be equal to sizeof(uintptr_t).");
return static_cast<T>(static_cast<uintptr_t>(value) & mask);
}
template<typename T> inline T* mask(T* value, uintptr_t mask)
{
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(value) & mask);
}
template<typename T, typename U>
ALWAYS_INLINE constexpr T roundUpToMultipleOfImpl(U divisor, T x)
{
T remainderMask = static_cast<T>(divisor) - 1;
return (x + remainderMask) & ~remainderMask;
}
// Efficient implementation that takes advantage of powers of two.
template<typename T, typename U>
inline constexpr T roundUpToMultipleOf(U divisor, T x)
{
ASSERT_UNDER_CONSTEXPR_CONTEXT(divisor && isPowerOfTwo(divisor));
return roundUpToMultipleOfImpl<T, U>(divisor, x);
}
template<size_t divisor> constexpr size_t roundUpToMultipleOf(size_t x)
{
static_assert(divisor && isPowerOfTwo(divisor));
return roundUpToMultipleOfImpl(divisor, x);
}
template<size_t divisor, typename T> inline constexpr T* roundUpToMultipleOf(T* x)
{
static_assert(sizeof(T*) == sizeof(size_t));
return reinterpret_cast<T*>(roundUpToMultipleOf<divisor>(reinterpret_cast<size_t>(x)));
}
template<typename T, typename U>
inline constexpr T roundUpToMultipleOfNonPowerOfTwo(U divisor, T x)
{
T remainder = x % divisor;
if (!remainder)
return x;
return x + static_cast<T>(divisor - remainder);
}
template<typename T, typename C>
inline constexpr Checked<T, C> roundUpToMultipleOfNonPowerOfTwo(Checked<T, C> divisor, Checked<T, C> x)
{
if (x.hasOverflowed() || divisor.hasOverflowed())
return ResultOverflowed;
T remainder = x % divisor;
if (!remainder)
return x;
return x + static_cast<T>(divisor.value() - remainder);
}
template<typename T, typename U>
inline constexpr T roundDownToMultipleOf(U divisor, T x)
{
ASSERT_UNDER_CONSTEXPR_CONTEXT(divisor && isPowerOfTwo(divisor));
static_assert(sizeof(T) == sizeof(uintptr_t), "sizeof(T) must be equal to sizeof(uintptr_t).");
return static_cast<T>(mask(static_cast<uintptr_t>(x), ~(divisor - 1ul)));
}
template<typename T> inline constexpr T* roundDownToMultipleOf(size_t divisor, T* x)
{
ASSERT_UNDER_CONSTEXPR_CONTEXT(isPowerOfTwo(divisor));
return reinterpret_cast<T*>(mask(reinterpret_cast<uintptr_t>(x), ~(divisor - 1ul)));
}
template<size_t divisor, typename T> constexpr T roundDownToMultipleOf(T x)
{
static_assert(isPowerOfTwo(divisor), "'divisor' must be a power of two.");
return roundDownToMultipleOf(divisor, x);
}
template<typename IntType>
constexpr IntType toTwosComplement(IntType integer)
{
using UnsignedIntType = typename std::make_unsigned_t<IntType>;
return static_cast<IntType>((~static_cast<UnsignedIntType>(integer)) + static_cast<UnsignedIntType>(1));
}
enum BinarySearchMode {
KeyMustBePresentInArray,
KeyMightNotBePresentInArray,
ReturnAdjacentElementIfKeyIsNotPresent
};
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey, BinarySearchMode mode>
inline ArrayElementType* binarySearchImpl(ArrayType& array, size_t size, KeyType key, const ExtractKey& extractKey = ExtractKey())
{
size_t offset = 0;
while (size > 1) {
size_t pos = (size - 1) >> 1;
auto val = extractKey(&array[offset + pos]);
if (val == key)
return &array[offset + pos];
// The item we are looking for is smaller than the item being check; reduce the value of 'size',
// chopping off the right hand half of the array.
if (key < val)
size = pos;
// Discard all values in the left hand half of the array, up to and including the item at pos.
else {
size -= (pos + 1);
offset += (pos + 1);
}
ASSERT(mode != KeyMustBePresentInArray || size);
}
if (mode == KeyMightNotBePresentInArray && !size)
return 0;
ArrayElementType* result = &array[offset];
if (mode == KeyMightNotBePresentInArray && key != extractKey(result))
return 0;
if (mode == KeyMustBePresentInArray) {
ASSERT(size == 1);
ASSERT(key == extractKey(result));
}
return result;
}
// If the element is not found, crash if asserts are enabled, and behave like approximateBinarySearch in release builds.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* binarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(array, size, key, extractKey);
}
// Return zero if the element is not found.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* tryBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(array, size, key, extractKey);
}
// Return the element that is either to the left, or the right, of where the element would have been found.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* approximateBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(array, size, key, extractKey);
}
// Variants of the above that use const.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* binarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* tryBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* approximateBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename VectorType, typename ElementType>
inline void insertIntoBoundedVector(VectorType& vector, size_t size, const ElementType& element, size_t index)
{
for (size_t i = size; i-- > index + 1;)
vector[i] = vector[i - 1];
vector[index] = element;
}
// This is here instead of CompilationThread.h to prevent that header from being included
// everywhere. The fact that this method, and that header, exist outside of JSC is a bug.
// https://bugs.webkit.org/show_bug.cgi?id=131815
WTF_EXPORT_PRIVATE bool isCompilationThread();
template<typename Func>
constexpr bool isStatelessLambda()
{
return std::is_empty<Func>::value;
}
template<typename ResultType, typename Func, typename... ArgumentTypes>
ResultType callStatelessLambda(ArgumentTypes&&... arguments)
{
uint64_t data[(sizeof(Func) + sizeof(uint64_t) - 1) / sizeof(uint64_t)];
memset(data, 0, sizeof(data));
return (*reinterpret_cast<Func*>(data))(std::forward<ArgumentTypes>(arguments)...);
}
template<typename T, typename U>
bool checkAndSet(T& left, U right)
{
if (left == right)
return false;
left = right;
return true;
}
template<typename T>
inline unsigned ctz(T value); // Clients will also need to #include MathExtras.h
template<typename T>
bool findBitInWord(T word, size_t& startOrResultIndex, size_t endIndex, bool value)
{
static_assert(std::is_unsigned<T>::value, "Type used in findBitInWord must be unsigned");
constexpr size_t bitsInWord = sizeof(word) * CHAR_BIT;
ASSERT_UNUSED(bitsInWord, startOrResultIndex <= bitsInWord && endIndex <= bitsInWord);
size_t index = startOrResultIndex;
word >>= index;
#if CPU(X86_64) || CPU(ARM64)
// We should only use ctz() when we know that ctz() is implementated using
// a fast hardware instruction. Otherwise, this will actually result in
// worse performance.
word ^= (static_cast<T>(value) - 1);
index += ctz(word);
if (index < endIndex) {
startOrResultIndex = index;
return true;
}
#else
while (index < endIndex) {
if ((word & 1) == static_cast<T>(value)) {
startOrResultIndex = index;
return true;
}
index++;
word >>= 1;
}
#endif
startOrResultIndex = endIndex;
return false;
}
// Used to check if a variadic list of compile time predicates are all true.
template<bool... Bs> inline constexpr bool all =
std::is_same_v<std::integer_sequence<bool, true, Bs...>,
std::integer_sequence<bool, Bs..., true>>;
// Visitor adapted from http://stackoverflow.com/questions/25338795/is-there-a-name-for-this-tuple-creation-idiom
template<class A, class... B> struct Visitor : Visitor<A>, Visitor<B...> {
Visitor(A a, B... b)
: Visitor<A>(a)
, Visitor<B...>(b...)
{
}
using Visitor<A>::operator ();
using Visitor<B...>::operator ();
};
template<class A> struct Visitor<A> : A {
Visitor(A a)
: A(a)
{
}
using A::operator();
};
template<class... F> ALWAYS_INLINE Visitor<F...> makeVisitor(F... f)
{
return Visitor<F...>(f...);
}
// Macros to implement switching over an integer range in chunks of 32.
// Useful for efficient implementations of variant and tuple type visiting.
// Adapted from https://www.reddit.com/r/cpp/comments/kst2pu/comment/giilcxv/.
#define WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, Min, Max, N) \
case Min + N: \
{ \
if constexpr (Min + N < Max) { \
return CASE(Min, Max, N); \
} else { \
WTF_UNREACHABLE(); \
} \
} \
#define WTF_UNROLLED_32_CASE_VISIT_SWITCH(INDEX, MIN, MAX, CASE, NEXT) \
switch (INDEX) { \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 0) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 1) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 2) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 3) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 4) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 5) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 6) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 7) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 8) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 9) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 10) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 11) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 12) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 13) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 14) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 15) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 16) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 17) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 18) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 19) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 20) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 21) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 22) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 23) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 24) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 25) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 26) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 27) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 28) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 29) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 30) \
WTF_UNROLLED_CASE_VISIT_SWITCH_CASE(CASE, MIN, MAX, 31) \
} \
\
constexpr auto nextMin = std::min(MIN + 32, MAX); \
if constexpr (nextMin < MAX) \
return NEXT(nextMin, MAX); \
WTF_UNREACHABLE();
// Calls a zero argument functor with a non-type template argument set to the index.
//
// e.g.
// visitAtIndex<0 /* minimum */, 10 /* maximum */>(7,
// []<size_t I>() {
// if constexpr (I == 7) {
// print("will be called");
// } else {
// print("will not be called");
// }
// }
// );
//
template<size_t Minimum, size_t Maximum, class F> ALWAYS_INLINE decltype(auto) visitAtIndex(size_t index, NOESCAPE F&& f)
{
#define WTF_INDEX_VISIT_CASE(Min, Max, N) f.template operator()<Min + N>()
#define WTF_INDEX_VISIT_NEXT(Min, Max) visitAtIndex<Min, Max>(index, std::forward<F>(f))
WTF_UNROLLED_32_CASE_VISIT_SWITCH(index, Minimum, Maximum, WTF_INDEX_VISIT_CASE, WTF_INDEX_VISIT_NEXT)
#undef WTF_INDEX_VISIT_NEXT
#undef WTF_INDEX_VISIT_CASE
}
// `asVariant` is used to allow subclasses of std::variant to work with `switchOn`.
template<class... Ts> ALWAYS_INLINE constexpr std::variant<Ts...>& asVariant(std::variant<Ts...>& v)
{
return v;
}
template<class... Ts> ALWAYS_INLINE constexpr const std::variant<Ts...>& asVariant(const std::variant<Ts...>& v)
{
return v;
}
template<class... Ts> ALWAYS_INLINE constexpr std::variant<Ts...>&& asVariant(std::variant<Ts...>&& v)
{
return std::move(v);
}
template<class... Ts> ALWAYS_INLINE constexpr const std::variant<Ts...>&& asVariant(const std::variant<Ts...>&& v)
{
return std::move(v);
}
template<typename T> concept HasSwitchOn = requires(T t) {
t.switchOn([](const auto&) {});
};
#ifdef _LIBCPP_VERSION
// Single-variant switch-based visit function adapted from https://www.reddit.com/r/cpp/comments/kst2pu/comment/giilcxv/.
// Works around bad code generation for std::visit with one std::variant by some standard library / compilers that
// lead to excessive binary size growth. Currently only needed by libc++. See https://webkit.org/b/279498.
template<size_t Minimum = 0, class F, class V> ALWAYS_INLINE decltype(auto) visitOneVariant(NOESCAPE F&& f, V&& v)
{
constexpr auto Maximum = std::variant_size_v<std::remove_cvref_t<V>>;
#define WTF_INDEX_VISIT_CASE(Min, Max, N) f(std::get<Min + N>(std::forward<V>(v)))
#define WTF_INDEX_VISIT_NEXT(Min, Max) visitOneVariant<Min>(std::forward<F>(f), std::forward<V>(v))
WTF_UNROLLED_32_CASE_VISIT_SWITCH(v.index(), Minimum, Maximum, WTF_INDEX_VISIT_CASE, WTF_INDEX_VISIT_NEXT)
#undef WTF_INDEX_VISIT_NEXT
#undef WTF_INDEX_VISIT_CASE
}
template<class V, class... F> requires (!HasSwitchOn<V>) ALWAYS_INLINE auto switchOn(V&& v, F&&... f) -> decltype(visitOneVariant(makeVisitor(std::forward<F>(f)...), asVariant(std::forward<V>(v))))
{
return visitOneVariant(makeVisitor(std::forward<F>(f)...), asVariant(std::forward<V>(v)));
}
#else
template<class V, class... F> requires (!HasSwitchOn<V>) ALWAYS_INLINE auto switchOn(V&& v, F&&... f) -> decltype(std::visit(makeVisitor(std::forward<F>(f)...), asVariant(std::forward<V>(v))))
{
return std::visit(makeVisitor(std::forward<F>(f)...), asVariant(std::forward<V>(v)));
}
#endif
template<class V, class... F> requires (HasSwitchOn<V>) ALWAYS_INLINE auto switchOn(V&& v, F&&... f) -> decltype(v.switchOn(std::forward<F>(f)...))
{
return v.switchOn(std::forward<F>(f)...);
}
// Implementation of std::variant_alternative_index from https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2527r3.html.
namespace detail {
template<size_t, class, class> struct alternative_index_helper;
template<size_t index, class Type, class T>
struct alternative_index_helper<index, Type, std::variant<T>> {
static constexpr size_t count = std::is_same_v<Type, T>;
static constexpr size_t value = index;
};
template<size_t index, class Type, class T, class... Types>
struct alternative_index_helper<index, Type, std::variant<T, Types...>> {
static constexpr size_t count = std::is_same_v<Type, T> + alternative_index_helper<index + 1, Type, std::variant<Types...>>::count;
static constexpr size_t value = std::is_same_v<Type, T> ? index : alternative_index_helper<index + 1, Type, std::variant<Types...>>::value;
};
} // namespace detail
template<class T, class Variant> struct variant_alternative_index;
template<class T, class... Types> struct variant_alternative_index<T, std::variant<Types...>>
: std::integral_constant<size_t, detail::alternative_index_helper<0, T, std::variant<Types...>>::value> {
static_assert(detail::alternative_index_helper<0, T, std::remove_cv_t<std::variant<Types...>>>::count == 1);
};
template<class T, class Variant> constexpr std::size_t alternativeIndexV = variant_alternative_index<T, Variant>::value;
// `holdsAlternative<T/I>` are WTF namespaced versions of `std::holds_alternative<T/I>` that work with any "variant-like".
// Default implementation expects "variant-like" to have "holdsAlternative" member functions.
template<typename V> struct HoldsAlternative {
template<typename T> static constexpr bool holdsAlternative(const V& v)
{
return v.template holdsAlternative<T>();
}
template<size_t I> static constexpr bool holdsAlternative(const V& v)
{
return v.template holdsAlternative<I>();
}
};
// Specialization for `std::variant`.
template<typename... Ts> struct HoldsAlternative<std::variant<Ts...>> {
template<typename T> static constexpr bool holdsAlternative(const std::variant<Ts...>& v)
{
return std::holds_alternative<T>(v);
}
template<size_t I> static constexpr bool holdsAlternative(const std::variant<Ts...>& v)
{
return std::holds_alternative<I>(v);
}
};
template<typename T, typename V> bool holdsAlternative(const V& v)
{
return HoldsAlternative<V>::template holdsAlternative<T>(v);
}
template<size_t I, typename V> bool holdsAlternative(const V& v)
{
return HoldsAlternative<V>::template holdsAlternative<I>(v);
}
// MARK: - Utility macro for wrapping a variant in a struct
#define FORWARD_VARIANT_FUNCTIONS(Self, name) \
size_t index() const \
{ \
return name.index(); \
} \
template<typename... F> decltype(auto) switchOn(F&&... f) const \
{ \
return WTF::switchOn(name, std::forward<F>(f)...); \
} \
template<typename... F> decltype(auto) switchOn(F&&... f) \
{ \
return WTF::switchOn(name, std::forward<F>(f)...); \
} \
template<typename T> bool holdsAlternative() const \
{ \
return WTF::holdsAlternative<T>(value); \
} \
template<typename T> friend T& get(Self& self) \
{ \
return std::get<T>(self.name); \
} \
template<typename T> friend T&& get(Self&& self) \
{ \
return std::get<T>(WTFMove(self.name)); \
} \
template<typename T> friend const T& get(const Self& self) \
{ \
return std::get<T>(self.name); \
} \
template<typename T> friend const T&& get(const Self&& self) \
{ \
return std::get<T>(WTFMove(self.name)); \
} \
template<typename T> friend std::add_pointer_t<T> get_if(Self* self) \
{ \
return std::get_if<T>(&self->name); \
} \
template<typename T> friend std::add_pointer_t<const T> get_if(const Self* self) \
{ \
return std::get_if<T>(&self->name); \
}
// MARK: - Utility types for working with std::variants in generic contexts
// Wraps a type list using a std::variant.
template<typename... Ts> using VariantWrapper = typename std::variant<Ts...>;
// Is conditionally either a single type, if the type list only has a single element, or a std::variant of the type list's contents.
template<typename TypeList> using VariantOrSingle = std::conditional_t<
brigand::size<TypeList>::value == 1,
brigand::front<TypeList>,
brigand::wrap<TypeList, VariantWrapper>
>;
// Concepts / traits for data structures that use std::in_place_type_t/std::in_place_index_t so that they can
// check that generic arguments in overloads are not std::in_place_type_t/std::in_place_index_t.
//
// e.g.
//
// struct Foo {
// template<typename U> constexpr Foo(U&& value)
// requires (!IsStdInPlaceTypeV<std::remove_cvref_t<U>>)
// && (!IsStdInPlaceIndexV<std::remove_cvref_t<U>>)
// {
// ...
// }
//
// template<typename T, typename... Args> constexpr Foo(std::in_place_type_t<T>, Args&&... args)
// {
// ...
// }
//
// template<size_t I, typename... Args> constexpr Foo(std::in_place_index_t<I>, Args&&... args)
// {
// ...
// }
//
// ...
// };
template<typename T> struct IsStdInPlaceTypeImpl : std::false_type {};
template<typename T> struct IsStdInPlaceTypeImpl<std::in_place_type_t<T>> : std::true_type {};
template<typename T> using IsStdInPlaceType = IsStdInPlaceTypeImpl<std::remove_cvref_t<T>>;
template<typename T> constexpr bool IsStdInPlaceTypeV = IsStdInPlaceType<T>::value;
template<typename T> struct IsStdInPlaceIndexImpl : std::false_type { };
template<size_t I> struct IsStdInPlaceIndexImpl<std::in_place_index_t<I>> : std::true_type { };
template<typename T> using IsStdInPlaceIndex = IsStdInPlaceIndexImpl<std::remove_cvref_t<T>>;
template<typename T> constexpr bool IsStdInPlaceIndexV = IsStdInPlaceIndex<T>::value;
// MARK: - Runtime get<> for std::tuple and "Tuple-like" types
// Example usage:
//
// std::tuple<int, float> foo = std::make_tuple(1, 2.0f);
// switchOnTupleAtIndex(0,
// [](const int& value) {
// print("we got an int"); <--- this will get called
// },
// [](const int& value) {
// print("we got an int"); <--- this will NOT get called
// },
// );
template<class F, class Tuple> ALWAYS_INLINE constexpr decltype(auto) visitTupleElementAtIndex(F&& f, size_t index, Tuple&& tuple)
{
return visitAtIndex<0, std::tuple_size_v<std::remove_cvref_t<Tuple>>>(
index,
[&]<size_t I>() ALWAYS_INLINE_LAMBDA {
return std::invoke(std::forward<F>(f), std::get<I>(std::forward<Tuple>(tuple)));
}
);
}
template<typename Tuple, typename... F> ALWAYS_INLINE constexpr auto switchOnTupleAtIndex(size_t index, Tuple&& tuple, F&&... f) -> decltype(visitTupleElementAtIndex(index, WTF::makeVisitor(std::forward<F>(f)...), std::forward<Tuple>(tuple)))
{
return visitTupleElementAtIndex(WTF::makeVisitor(std::forward<F>(f)...), index, std::forward<Tuple>(tuple));
}
namespace Detail
{
template <typename, template <typename...> class>
struct IsTemplate_ : std::false_type
{
};
template <typename... Ts, template <typename...> class C>
struct IsTemplate_<C<Ts...>, C> : std::true_type
{
};
}
template <typename T, template <typename...> class Template>
struct IsTemplate : public std::integral_constant<bool, Detail::IsTemplate_<T, Template>::value> {};
namespace Detail
{
template <template <typename...> class Base, typename Derived>
struct IsBaseOfTemplateImpl
{
template <typename... Args>
static std::true_type test(Base<Args...>*);
static std::false_type test(void*);
static constexpr const bool value = decltype(test(std::declval<typename std::remove_cv<Derived>::type*>()))::value;
};
}
template <template <typename...> class Base, typename Derived>
struct IsBaseOfTemplate : public std::integral_constant<bool, Detail::IsBaseOfTemplateImpl<Base, Derived>::value> {};
// Based on 'Detecting in C++ whether a type is defined, part 3: SFINAE and incomplete types'
// <https://devblogs.microsoft.com/oldnewthing/20190710-00/?p=102678>
template<typename, typename = void> inline constexpr bool IsTypeComplete = false;
template<typename T> inline constexpr bool IsTypeComplete<T, std::void_t<decltype(sizeof(T))>> = true;
template<typename IteratorTypeLeft, typename IteratorTypeRight, typename IteratorTypeDst>
IteratorTypeDst mergeDeduplicatedSorted(IteratorTypeLeft leftBegin, IteratorTypeLeft leftEnd, IteratorTypeRight rightBegin, IteratorTypeRight rightEnd, IteratorTypeDst dstBegin)
{
IteratorTypeLeft leftIter = leftBegin;
IteratorTypeRight rightIter = rightBegin;
IteratorTypeDst dstIter = dstBegin;
if (leftIter < leftEnd && rightIter < rightEnd) {
for (;;) {
auto left = *leftIter;
auto right = *rightIter;
if (left < right) {
*dstIter++ = left;
leftIter++;
if (leftIter >= leftEnd)
break;
} else if (left == right) {
*dstIter++ = left;
leftIter++;
rightIter++;
if (leftIter >= leftEnd || rightIter >= rightEnd)
break;
} else {
*dstIter++ = right;
rightIter++;
if (rightIter >= rightEnd)
break;
}
}
}
while (leftIter < leftEnd)
*dstIter++ = *leftIter++;
while (rightIter < rightEnd)
*dstIter++ = *rightIter++;
return dstIter;
}
// libstdc++5 does not have constexpr std::tie. Since we cannot redefine std::tie with constexpr, we define WTF::tie instead.
// This workaround can be removed after 2019-04 and all users of WTF::tie can be converted to std::tie
// For more info see: https://bugs.webkit.org/show_bug.cgi?id=180692 and https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65978
template <class ...Args>
constexpr std::tuple<Args&...> tie(Args&... values)
{
return std::tuple<Args&...>(values...);
}
} // namespace WTF
// This version of placement new omits a 0 check.
enum NotNullTag { NotNull };
inline void* operator new(size_t, NotNullTag, void* location)
{
ASSERT(location);
return location;
}
namespace std {
template<WTF::CheckMoveParameterTag, typename T>
ALWAYS_INLINE constexpr typename remove_reference<T>::type&& move(T&& value)
{
static_assert(is_lvalue_reference<T>::value, "T is not an lvalue reference; move() is unnecessary.");
using NonRefQualifiedType = typename remove_reference<T>::type;
static_assert(!is_const<NonRefQualifiedType>::value, "T is const qualified.");
return move(forward<T>(value));
}
} // namespace std
namespace WTF {
template<class T, class... Args>
ALWAYS_INLINE decltype(auto) makeUnique(Args&&... args)
{
static_assert(std::is_same<typename T::WTFIsFastMallocAllocated, int>::value, "T should use FastMalloc (WTF_MAKE_FAST_ALLOCATED)");
static_assert(!HasRefPtrMemberFunctions<T>::value, "T should not be RefCounted");
return std::make_unique<T>(std::forward<Args>(args)...);
}
template<class T, class... Args>
ALWAYS_INLINE decltype(auto) makeUniqueWithoutRefCountedCheck(Args&&... args)
{
static_assert(std::is_same<typename T::WTFIsFastMallocAllocated, int>::value, "T should use FastMalloc (WTF_MAKE_FAST_ALLOCATED)");
return std::make_unique<T>(std::forward<Args>(args)...);
}
template<class T, class... Args>
ALWAYS_INLINE decltype(auto) makeUniqueWithoutFastMallocCheck(Args&&... args)
{
static_assert(!HasRefPtrMemberFunctions<T>::value, "T should not be RefCounted");
return std::make_unique<T>(std::forward<Args>(args)...);
}
template <typename ResultType, size_t... Is, typename ...Args>
constexpr auto constructFixedSizeArrayWithArgumentsImpl(std::index_sequence<Is...>, Args&&... args) -> std::array<ResultType, sizeof...(Is)>
{
return { ((void)Is, ResultType { std::forward<Args>(args)... })... };
}
// Construct an std::array with N elements of ResultType, passing Args to each of the N constructors.
template<typename ResultType, size_t N, typename ...Args>
constexpr auto constructFixedSizeArrayWithArguments(Args&&... args) -> decltype(auto)
{
auto tuple = std::make_index_sequence<N>();
return constructFixedSizeArrayWithArgumentsImpl<ResultType>(tuple, std::forward<Args>(args)...);
}
template<typename OptionalType> typename OptionalType::value_type valueOrCompute(OptionalType optional, NOESCAPE const std::invocable<> auto& callback)
{
return optional ? *optional : callback();
}
template<typename OptionalType> auto valueOrDefault(OptionalType&& optionalValue)
{
return optionalValue ? *std::forward<OptionalType>(optionalValue) : std::remove_reference_t<decltype(*optionalValue)> { };
}
// Less preferred helper function for converting an imported API into a span.
// Use this when we can't edit the imported API and it doesn't offer
// begin() / end() or a span accessor.
template<typename T, std::size_t Extent = std::dynamic_extent>
inline constexpr auto unsafeMakeSpan(T* ptr, size_t size)
{
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
return std::span<T, Extent> { ptr, size };
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
template<typename T, std::size_t Extent, typename U>
constexpr std::span<T, Extent == std::dynamic_extent ? std::dynamic_extent : (sizeof(U) * Extent) / sizeof(T)> spanReinterpretCast(std::span<U, Extent> span)
{
static_assert(std::is_const_v<T> || (!std::is_const_v<T> && !std::is_const_v<U>), "spanReinterpretCast will not remove constness from source");
if constexpr (Extent == std::dynamic_extent) {
if constexpr (sizeof(U) < sizeof(T) || sizeof(U) % sizeof(T))
RELEASE_ASSERT_UNDER_CONSTEXPR_CONTEXT(!(span.size_bytes() % sizeof(T))); // Refuse to change size in bytes from source.
} else
static_assert(!((sizeof(U) * Extent) % sizeof(T)), "spanReinterpretCast will not change size in bytes from source");
using ReturnType = std::span<T, Extent == std::dynamic_extent ? std::dynamic_extent : (sizeof(U) * Extent) / sizeof(T)>;
return ReturnType { reinterpret_cast<T*>(const_cast<std::remove_const_t<U>*>(span.data())), span.size_bytes() / sizeof(T) };
}
#pragma GCC diagnostic pop
template<typename U, typename T, std::size_t Extent>
std::span<U, Extent> spanConstCast(std::span<T, Extent> span)
{
return std::span<U, Extent> { const_cast<U*>(span.data()), span.size() };
}
template<typename T, std::size_t Extent>
std::span<const uint8_t, Extent == std::dynamic_extent ? std::dynamic_extent: Extent * sizeof(T)> asBytes(std::span<T, Extent> span)
{
return std::span<const uint8_t, Extent == std::dynamic_extent ? std::dynamic_extent: Extent * sizeof(T)> { reinterpret_cast<const uint8_t*>(span.data()), span.size_bytes() };
}
template<typename T, std::size_t Extent>
std::span<uint8_t, Extent == std::dynamic_extent ? std::dynamic_extent: Extent * sizeof(T)> asWritableBytes(std::span<T, Extent> span)
{
return std::span<uint8_t, Extent == std::dynamic_extent ? std::dynamic_extent: Extent * sizeof(T)> { reinterpret_cast<uint8_t*>(span.data()), span.size_bytes() };
}
template<typename T>
std::span<T> singleElementSpan(T& object)
{
return unsafeMakeSpan(std::addressof(object), 1);
}
template<typename T, std::size_t Extent = std::dynamic_extent>
std::span<const uint8_t, Extent> asByteSpan(const T& input)
{
return unsafeMakeSpan<const uint8_t, Extent>(reinterpret_cast<const uint8_t*>(&input), sizeof(input));
}
template<typename T, std::size_t Extent>
std::span<const uint8_t> asByteSpan(std::span<T, Extent> input)
{
return unsafeMakeSpan(reinterpret_cast<const uint8_t*>(input.data()), input.size_bytes());
}
template<typename T, std::size_t Extent = std::dynamic_extent>
std::span<uint8_t, Extent> asMutableByteSpan(T& input)
{
static_assert(!std::is_const_v<T>);
return unsafeMakeSpan<uint8_t, Extent>(reinterpret_cast<uint8_t*>(std::addressof(input)), sizeof(input));
}
template<typename T, std::size_t Extent>
std::span<uint8_t> asMutableByteSpan(std::span<T, Extent> input)
{
static_assert(!std::is_const_v<T>);
return unsafeMakeSpan(reinterpret_cast<uint8_t*>(input.data()), input.size_bytes());
}
template<typename T, typename U, std::size_t Extent>
const T& reinterpretCastSpanStartTo(std::span<const U, Extent> span)
{
return spanReinterpretCast<const T>(asByteSpan(span).first(sizeof(T)))[0];
}
template<typename T, typename U, std::size_t Extent>
T& reinterpretCastSpanStartTo(std::span<U, Extent> span)
{
return spanReinterpretCast<T>(asMutableByteSpan(span).first(sizeof(T)))[0];
}
enum class IgnoreTypeChecks : bool { No, Yes };
template<IgnoreTypeChecks ignoreTypeChecks = IgnoreTypeChecks::No, typename T, std::size_t TExtent, typename U, std::size_t UExtent>
bool equalSpans(std::span<T, TExtent> a, std::span<U, UExtent> b)
{
static_assert(sizeof(T) == sizeof(U));
static_assert(ignoreTypeChecks == IgnoreTypeChecks::Yes || std::has_unique_object_representations_v<T>);
static_assert(ignoreTypeChecks == IgnoreTypeChecks::Yes || std::has_unique_object_representations_v<U>);
if (a.size() != b.size())
return false;
return !memcmp(a.data(), b.data(), a.size_bytes()); // NOLINT
}
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
bool spanHasPrefix(std::span<T, TExtent> span, std::span<U, UExtent> prefix)
{
static_assert(sizeof(T) == sizeof(U));
static_assert(std::has_unique_object_representations_v<T>);
static_assert(std::has_unique_object_representations_v<U>);
if (span.size() < prefix.size())
return false;
return !memcmp(span.data(), prefix.data(), prefix.size_bytes()); // NOLINT
}
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
bool spanHasSuffix(std::span<T, TExtent> span, std::span<U, UExtent> suffix)
{
static_assert(sizeof(T) == sizeof(U));
static_assert(std::has_unique_object_representations_v<T>);
static_assert(std::has_unique_object_representations_v<U>);
if (span.size() < suffix.size())
return false;
return !memcmp(span.last(suffix.size()).data(), suffix.data(), suffix.size_bytes()); // NOLINT
}
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
int compareSpans(std::span<T, TExtent> a, std::span<U, UExtent> b)
{
static_assert(sizeof(T) == sizeof(U));
static_assert(std::has_unique_object_representations_v<T>);
static_assert(std::has_unique_object_representations_v<U>);
int result = memcmp(a.data(), b.data(), std::min(a.size_bytes(), b.size_bytes())); // NOLINT
if (!result && a.size() != b.size())
result = (a.size() > b.size()) ? 1 : -1;
return result;
}
// Returns the index of the first occurrence of |needed| in |haystack| or notFound if not present.
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
size_t find(std::span<T, TExtent> haystack, std::span<U, UExtent> needle)
{
static_assert(sizeof(T) == 1);
static_assert(sizeof(T) == sizeof(U));
auto* result = static_cast<T*>(memmem(haystack.data(), haystack.size(), needle.data(), needle.size())); // NOLINT
if (!result)
return notFound;
return result - haystack.data();
}
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
size_t contains(std::span<T, TExtent> haystack, std::span<U, UExtent> needle)
{
static_assert(sizeof(T) == 1);
static_assert(sizeof(T) == sizeof(U));
return !!memmem(haystack.data(), haystack.size(), needle.data(), needle.size()); // NOLINT
}
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
void memcpySpan(std::span<T, TExtent> destination, std::span<U, UExtent> source)
{
static_assert(sizeof(T) == sizeof(U));
static_assert(std::is_trivially_copyable_v<T> || std::is_floating_point_v<T>);
static_assert(std::is_trivially_copyable_v<U> || std::is_floating_point_v<U>);
RELEASE_ASSERT(destination.size() >= source.size());
memcpy(destination.data(), source.data(), source.size_bytes()); // NOLINT
}
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
void memmoveSpan(std::span<T, TExtent> destination, std::span<U, UExtent> source)
{
static_assert(sizeof(T) == sizeof(U));
static_assert(std::is_trivially_copyable_v<T> || std::is_floating_point_v<T>);
static_assert(std::is_trivially_copyable_v<U> || std::is_floating_point_v<U>);
RELEASE_ASSERT(destination.size() >= source.size());
memmove(destination.data(), source.data(), source.size_bytes()); // NOLINT
}
template<typename T, std::size_t Extent>
void memsetSpan(std::span<T, Extent> destination, uint8_t byte)
{
static_assert(std::is_trivially_copyable_v<T>);
memset(destination.data(), byte, destination.size_bytes()); // NOLINT
}
template<typename T, std::size_t Extent>
void zeroSpan(std::span<T, Extent> destination)
{
static_assert(std::is_trivially_copyable_v<T> || std::is_floating_point_v<T>);
memset(destination.data(), 0, destination.size_bytes()); // NOLINT
}
template<typename T>
void zeroBytes(T& object)
{
zeroSpan(asMutableByteSpan(object));
}
template<typename T, std::size_t Extent>
void secureMemsetSpan(std::span<T, Extent> destination, uint8_t byte)
{
static_assert(std::is_trivially_copyable_v<T>);
#ifdef __STDC_LIB_EXT1__
memset_s(destination.data(), byte, destination.size_bytes()); // NOLINT
#else
memset(destination.data(), byte, destination.size_bytes()); // NOLINT
#endif
}
template<typename T> void skip(std::span<T>& data, size_t amountToSkip)
{
data = data.subspan(amountToSkip);
}
template<typename T> void dropLast(std::span<T>& data, size_t amountToDrop = 1)
{
data = data.first(data.size() - amountToDrop);
}
template<typename T> T& consumeLast(std::span<T>& data)
{
auto* last = &data.back();
data = data.first(data.size() - 1);
return *last;
}
template<typename T> void clampedMoveCursorWithinSpan(std::span<T>& cursor, std::span<T> container, int delta)
{
ASSERT(cursor.data() >= container.data());
ASSERT(std::to_address(cursor.end()) == std::to_address(container.end()));
auto clampedNewIndex = std::clamp<int>(cursor.data() - container.data() + delta, 0, container.size());
cursor = container.subspan(clampedNewIndex);
}
template<typename T> std::span<T> consumeSpan(std::span<T>& data, size_t amountToConsume)
{
auto consumed = data.first(amountToConsume);
skip(data, amountToConsume);
return consumed;
}
template<typename T> T& consume(std::span<T>& data)
{
T& value = data[0];
skip(data, 1);
return value;
}
template<typename DestinationType, typename SourceType>
match_constness_t<SourceType, DestinationType>& consumeAndReinterpretCastTo(std::span<SourceType>& data) requires(sizeof(SourceType) == 1)
{
return spanReinterpretCast<match_constness_t<SourceType, DestinationType>>(consumeSpan(data, sizeof(DestinationType)))[0];
}
template<typename T, std::size_t TExtent, typename U, std::size_t UExtent>
bool spansOverlap(std::span<T, TExtent> a, std::span<U, UExtent> b)
{
return static_cast<const void*>(a.data()) < static_cast<const void*>(std::to_address(b.end()))
&& static_cast<const void*>(b.data()) < static_cast<const void*>(std::to_address(a.end()));
}
/* WTF_FOR_EACH */
// https://www.scs.stanford.edu/~dm/blog/va-opt.html
#define WTF_PARENS ()
#define WTF_EXPAND(...) WTF_EXPAND4(WTF_EXPAND4(WTF_EXPAND4(WTF_EXPAND4(__VA_ARGS__))))
#define WTF_EXPAND4(...) WTF_EXPAND3(WTF_EXPAND3(WTF_EXPAND3(WTF_EXPAND3(__VA_ARGS__))))
#define WTF_EXPAND3(...) WTF_EXPAND2(WTF_EXPAND2(WTF_EXPAND2(WTF_EXPAND2(__VA_ARGS__))))
#define WTF_EXPAND2(...) WTF_EXPAND1(WTF_EXPAND1(WTF_EXPAND1(WTF_EXPAND1(__VA_ARGS__))))
#define WTF_EXPAND1(...) __VA_ARGS__
#define WTF_FOR_EACH_HELPER(macro, a1, ...) macro(a1) __VA_OPT__(, WTF_FOR_EACH_AGAIN WTF_PARENS (macro, __VA_ARGS__))
#define WTF_FOR_EACH_AGAIN() WTF_FOR_EACH_HELPER
#define WTF_FOR_EACH(macro, ...) __VA_OPT__(WTF_EXPAND(WTF_FOR_EACH_HELPER(macro, __VA_ARGS__)))
/* SAFE_PRINTF */
// https://gist.github.com/sehe/3374327
template <class T> inline typename std::enable_if<std::is_integral<T>::value, T>::type safePrintfType(T arg) { return arg; }
template <class T> inline typename std::enable_if<std::is_floating_point<T>::value, T>::type safePrintfType(T arg) { return arg; }
template <class T> inline typename std::enable_if<std::is_pointer<T>::value, T>::type safePrintfType(T arg) {
static_assert(!std::is_same_v<std::remove_cv_t<std::remove_pointer_t<T>>, char>, "char* is not bounds safe; please use a null terminated string type");
return arg;
}
// These versions of printf reject char* but accept known null terminated
// string types, like ASCIILiteral and CString. A type can specialize
// 'safePrintfType' to advertise conversion to null terminated string.
// We do this as a macro so that we still get compile-time checking that our
// arguments match our format string.
#define SAFE_PRINTF_TYPE(...) WTF_FOR_EACH(WTF::safePrintfType, __VA_ARGS__)
#define SAFE_PRINTF(format, ...) \
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN \
printf(format __VA_OPT__(, SAFE_PRINTF_TYPE(__VA_ARGS__))) \
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#define SAFE_FPRINTF(file, format, ...) \
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN \
fprintf(file, format __VA_OPT__(, SAFE_PRINTF_TYPE(__VA_ARGS__))) \
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#define SAFE_SPRINTF(destinationSpan, format, ...) \
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN \
snprintf(destinationSpan.data(), destinationSpan.size_bytes(), format, SAFE_PRINTF_TYPE(__VA_ARGS__)) \
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
template<typename T> concept ByteType = sizeof(T) == 1 && ((std::is_integral_v<T> && !std::same_as<T, bool>) || std::same_as<T, std::byte>) && !std::is_const_v<T>;
template<typename> struct ByteCastTraits;
template<ByteType T> struct ByteCastTraits<T> {
template<ByteType U> static constexpr U cast(T character) { return static_cast<U>(character); }
};
template<ByteType T> struct ByteCastTraits<T*> {
template<ByteType U> static constexpr auto cast(T* pointer) { return std::bit_cast<U*>(pointer); }
};
template<ByteType T> struct ByteCastTraits<const T*> {
template<ByteType U> static constexpr auto cast(const T* pointer) { return std::bit_cast<const U*>(pointer); }
};
template<ByteType T, size_t Extent> struct ByteCastTraits<std::span<T, Extent>> {
template<ByteType U> static constexpr auto cast(std::span<T, Extent> span) { return spanReinterpretCast<U>(span); }
};
template<ByteType T, size_t Extent> struct ByteCastTraits<std::span<const T, Extent>> {
template<ByteType U> static constexpr auto cast(std::span<const T, Extent> span) { return spanReinterpretCast<const U>(span); }
};
template<ByteType T, typename U> constexpr auto byteCast(const U& value)
{
return ByteCastTraits<U>::template cast<T>(value);
}
// This is like std::invocable but it takes the expected signature rather than just the arguments.
template<typename Functor, typename Signature> concept Invocable = requires(std::decay_t<Functor>&& f, std::function<Signature> expected) {
{ expected = std::move(f) };
};
// Concept for constraining to user-defined "Tuple-like" types.
//
// Based on exposition-only text in https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2165r3.pdf
// and https://stackoverflow.com/questions/68443804/c20-concept-to-check-tuple-like-types.
template<class T, std::size_t N> concept HasTupleElement = requires(T t) {
typename std::tuple_element_t<N, std::remove_const_t<T>>;
{ get<N>(t) } -> std::convertible_to<std::tuple_element_t<N, T>&>;
};
template<class T> concept TupleLike = !std::is_reference_v<T>
&& requires(T t) {
typename std::tuple_size<T>::type;
requires std::derived_from<
std::tuple_size<T>,
std::integral_constant<std::size_t, std::tuple_size_v<T>>
>;
}
&& []<std::size_t... N>(std::index_sequence<N...>) {
return (HasTupleElement<T, N> && ...);
}(std::make_index_sequence<std::tuple_size_v<T>>());
// This is like std::apply, but works with user-defined "Tuple-like" types as well as the
// standard ones. The only real difference between its implementation and the standard one
// is the use of un-prefixed `get`.
//
// This should be something we can remove if P2165 (https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2165r3.pdf)
// is adopted and implemented.
template<class F, class T, size_t ...I>
constexpr decltype(auto) apply_impl(F&& functor, T&& tupleLike, std::index_sequence<I...>)
{
using std::get;
return std::invoke(std::forward<F>(functor), get<I>(std::forward<T>(tupleLike))...);
}
template<class F, class T>
constexpr decltype(auto) apply(F&& functor, T&& tupleLike)
{
return apply_impl(std::forward<F>(functor), std::forward<T>(tupleLike), std::make_index_sequence<std::tuple_size_v<std::remove_reference_t<T>>> { });
}
// Utility for "zippering" tuples and tuple-like objects. Implementation based off
// https://stackoverflow.com/questions/11322095/how-to-make-a-function-that-zips-two-tuples-in-c11-stl
// and extended to support tuple-like.
//
// Example usage:
//
// std::tuple<int, string, double> foo = { 1, "hello", 1.5 };
// std::tuple<double, char, float> bar = { 0.5, 'i', 0.1f };
// std::tuple<int, string, double> baz = { 2, "goodbye", 3.0 };
//
// auto result = WTF::tuple_zip(foo, bar, baz);
//
// This leaves result transposed and equal to:
//
// std::tuple {
// std::tuple<int, double, int> { 1, 0.5, 2 },
// std::tuple<string, char, string> { "hello", 'i', "goodbye" },
// std::tuple<double, float, double> { 1.5, 0.1f, 3.0 },
// }
namespace detail {
template<std::size_t I, typename... TupleLikes> using zip_tuple_at_index_t = std::tuple<std::tuple_element_t<I, std::decay_t<TupleLikes>>...>;
template<std::size_t I, typename... TupleLikes> auto zip_tuple_at_index(TupleLikes&&... tupleLikes)
{
return zip_tuple_at_index_t<I, TupleLikes...> { get<I>(std::forward<TupleLikes>(tupleLikes))... };
}
template<typename... TupleLikes, std::size_t... I> auto tuple_zip_impl(TupleLikes&& ... tupleLikes, std::index_sequence<I...>)
{
return std::tuple<zip_tuple_at_index_t<I, TupleLikes...>...> {
zip_tuple_at_index<I>(std::forward<TupleLikes>(tupleLikes)...)...
};
}
} // namespace detail
template<typename Head, typename... Tail> auto tuple_zip(Head&& head, Tail&& ...tail)
{
constexpr std::size_t size = std::tuple_size_v<std::decay_t<Head>>;
static_assert(((std::tuple_size_v<std::decay_t<Tail>> == size) && ...), "Tuple size mismatch, can not zip.");
return detail::tuple_zip_impl<Head, Tail...>(
std::forward<Head>(head),
std::forward<Tail>(tail)...,
std::make_index_sequence<size>()
);
}
template<typename WordType, typename Func>
ALWAYS_INLINE constexpr void forEachSetBit(std::span<const WordType> bits, const Func& func)
{
constexpr size_t wordSize = sizeof(WordType) * CHAR_BIT;
for (size_t i = 0; i < bits.size(); ++i) {
WordType word = bits[i];
if (!word)
continue;
size_t base = i * wordSize;
#if CPU(X86_64) || CPU(ARM64)
// We should only use ctz() when we know that ctz() is implemented using
// a fast hardware instruction. Otherwise, this will actually result in
// worse performance.
while (word) {
WordType temp = word & -word;
size_t offset = ctz(word);
if constexpr (std::is_same_v<IterationStatus, decltype(func(base + offset))>) {
if (func(base + offset) == IterationStatus::Done)
return;
} else
func(base + offset);
word ^= temp;
}
#else
for (size_t j = 0; j < wordSize; ++j) {
if (word & 1) {
if constexpr (std::is_same_v<IterationStatus, decltype(func(base + j))>) {
if (func(base + j) == IterationStatus::Done)
return;
} else
func(base + j);
}
word >>= 1;
}
#endif
}
}
template<typename WordType, typename Func>
ALWAYS_INLINE constexpr void forEachSetBit(std::span<const WordType> bits, size_t startIndex, const Func& func)
{
constexpr size_t wordSize = sizeof(WordType) * CHAR_BIT;
auto iterate = [&](WordType word, size_t i) ALWAYS_INLINE_LAMBDA {
size_t base = i * wordSize;
#if CPU(X86_64) || CPU(ARM64)
// We should only use ctz() when we know that ctz() is implementated using
// a fast hardware instruction. Otherwise, this will actually result in
// worse performance.
while (word) {
WordType temp = word & -word;
size_t offset = ctz(word);
if constexpr (std::is_same_v<IterationStatus, decltype(func(base + offset))>) {
if (func(base + offset) == IterationStatus::Done)
return;
} else
func(base + offset);
word ^= temp;
}
#else
for (size_t j = 0; j < wordSize; ++j) {
if (word & 1) {
if constexpr (std::is_same_v<IterationStatus, decltype(func(base + j))>) {
if (func(base + j) == IterationStatus::Done)
return;
} else
func(base + j);
}
word >>= 1;
}
#endif
};
size_t startWord = startIndex / wordSize;
if (startWord >= bits.size())
return;
WordType word = bits[startWord];
size_t startIndexInWord = startIndex - startWord * wordSize;
WordType masked = word & (~((static_cast<WordType>(1) << startIndexInWord) - 1));
if (masked)
iterate(masked, startWord);
for (size_t i = startWord + 1; i < bits.size(); ++i) {
WordType word = bits[i];
if (!word)
continue;
iterate(word, i);
}
}
template<typename Object, typename Allocator = FastMalloc, typename... Arguments> std::pair<Object*, void*> createWithTrailingBytes(size_t trailingBytesSize, Arguments... arguments)
{
Object* object = static_cast<Object*>(Allocator::malloc(sizeof(Object) + trailingBytesSize));
new (NotNull, object) Object(std::forward<Arguments>(arguments)...);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
return { object, object + 1 };
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}
template<typename Object> std::pair<Object*, void*> fromTrailingBytes(void* trailingBytes)
{
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
Object* object = static_cast<Object*>(trailingBytes) - 1;
return { object, object + 1 };
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}
template<typename Object, typename Allocator = FastMalloc> std::pair<Object*, void*> reallocWithTrailingBytes(Object* object, size_t newTrailingBytesSize)
{
size_t newAllocationSize = sizeof(Object) + newTrailingBytesSize;
object = static_cast<Object*>(Allocator::realloc(object, newAllocationSize));
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
return { object, object + 1 };
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}
template<typename Object, typename Allocator = FastMalloc> void destroyWithTrailingBytes(Object* object)
{
object->~Object();
Allocator::free(object);
}
template<typename T, typename U>
ALWAYS_INLINE void lazyInitialize(const std::unique_ptr<T>& ptr, std::unique_ptr<U>&& obj)
{
RELEASE_ASSERT(!ptr);
const_cast<std::unique_ptr<T>&>(ptr) = std::move(obj);
}
} // namespace WTF
#define WTFMove(value) std::move<WTF::CheckMoveParameter>(value)
namespace WTF {
namespace detail {
template<typename T, typename U> using copy_const = std::conditional_t<std::is_const_v<T>, const U, U>;
template<typename T, typename U> using override_ref = std::conditional_t<std::is_rvalue_reference_v<T>, std::remove_reference_t<U>&&, U&>;
template<typename T, typename U> using forward_like_impl = override_ref<T&&, copy_const<std::remove_reference_t<T>, std::remove_reference_t<U>>>;
} // namespace detail
template<typename T, typename U> constexpr auto forward_like(U&& value) -> detail::forward_like_impl<T, U> { return static_cast<detail::forward_like_impl<T, U>>(value); }
} // namespace WTF
using WTF::GB;
using WTF::KB;
using WTF::MB;
using WTF::approximateBinarySearch;
using WTF::asBytes;
using WTF::asByteSpan;
using WTF::asMutableByteSpan;
using WTF::asWritableBytes;
using WTF::binarySearch;
using WTF::byteCast;
using WTF::callStatelessLambda;
using WTF::checkAndSet;
using WTF::clampedMoveCursorWithinSpan;
using WTF::compareSpans;
using WTF::constructFixedSizeArrayWithArguments;
using WTF::consume;
using WTF::consumeAndReinterpretCastTo;
using WTF::consumeLast;
using WTF::consumeSpan;
using WTF::contains;
using WTF::dropLast;
using WTF::equalSpans;
using WTF::find;
using WTF::findBitInWord;
using WTF::insertIntoBoundedVector;
using WTF::is8ByteAligned;
using WTF::isCompilationThread;
using WTF::isPointerAligned;
using WTF::isStatelessLambda;
using WTF::lazyInitialize;
using WTF::makeUnique;
using WTF::makeUniqueWithoutFastMallocCheck;
using WTF::makeUniqueWithoutRefCountedCheck;
using WTF::memcpySpan;
using WTF::memmoveSpan;
using WTF::memsetSpan;
using WTF::mergeDeduplicatedSorted;
using WTF::reinterpretCastSpanStartTo;
using WTF::roundUpToMultipleOf;
using WTF::roundUpToMultipleOfNonPowerOfTwo;
using WTF::roundDownToMultipleOf;
using WTF::safeCast;
using WTF::secureMemsetSpan;
using WTF::singleElementSpan;
using WTF::skip;
using WTF::spanConstCast;
using WTF::spanHasPrefix;
using WTF::spanHasSuffix;
using WTF::spansOverlap;
using WTF::spanReinterpretCast;
using WTF::toTwosComplement;
using WTF::tryBinarySearch;
using WTF::unsafeMakeSpan;
using WTF::valueOrCompute;
using WTF::valueOrDefault;
using WTF::zeroBytes;
using WTF::zeroSpan;
using WTF::Invocable;
using WTF::VariantWrapper;
using WTF::VariantOrSingle;
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|