1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
/*
* Copyright (C) 2024 Samuel Weinig <sam@webkit.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <array>
#include <span>
#include <wtf/VariantExtras.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace WTF {
using VariantListIndex = unsigned;
struct VariantListItemMetadata {
size_t size; // sizeof(T)
size_t alignment; // alignof(T)
};
// Utility concepts for constraining VariantList based on the underlying std::variant.
template<typename> struct VariantListItemMetadataTable;
template<typename... Ts> struct VariantListItemMetadataTable<std::variant<Ts...>> {
static constexpr auto table = std::array { VariantListItemMetadata { sizeof(Ts), alignof(Ts) }... };
};
template<typename Variant> struct VariantListOperations {
// MARK: - Value alignment.
// Returns a new span with the start position updated to the aligned start of the value.
static std::span<std::byte> alignBufferForValue(std::span<std::byte>, size_t alignment);
static std::span<const std::byte> alignBufferForValue(std::span<const std::byte>, size_t alignment);
template<typename T> static std::span<std::byte> alignBufferForValue(std::span<std::byte>);
template<typename T> static std::span<const std::byte> alignBufferForValue(std::span<const std::byte>);
// MARK: - Index reading & writing
static VariantListIndex readIndex(std::span<std::byte>);
static VariantListIndex readIndex(std::span<const std::byte>);
static std::span<std::byte> writeIndex(VariantListIndex, std::span<std::byte>);
// MARK: - Value reading & writing
template<typename T> static T& readValue(std::span<std::byte>);
template<typename T> static const T& readValue(std::span<const std::byte>);
template<typename T, typename U> static std::span<std::byte> writeValue(U&&, std::span<std::byte>);
// MARK: - Value+Index writing
template<typename T> static size_t sizeRequiredToWriteAt(std::byte* buffer);
template<typename T> static size_t sizeRequiredToWriteAt(const std::byte* buffer);
template<typename T, typename U> static std::span<std::byte> write(U&&, std::span<std::byte> buffer);
// MARK: - Value visiting.
template<typename... F> static auto visitValue(std::span<std::byte>, F&&...);
template<typename... F> static auto visitValue(std::span<const std::byte>, F&&...);
// MARK: - Value iteration.
// Returns a new span with the start position updated to the start of the next index.
//
// Requires the type of the element to already be known. Useful for internal cases where `typeForIndex` is already
// being called.
template<typename T> static std::span<std::byte> nextKnownType(std::span<std::byte>);
template<typename T> static std::span<const std::byte> nextKnownType(std::span<const std::byte>);
// Returns a new span with the start position updated to the start of the next index.
//
// Uses constexpr metadata table to lookup size and alignment information for the next element by index. Used by
// external iterators to avoid duplicate calls to `typeForIndex()`.
static std::span<std::byte> next(std::span<std::byte>);
static std::span<const std::byte> next(std::span<const std::byte>);
static constexpr VariantListItemMetadata lookupMetadataByIndex(VariantListIndex);
// MARK: - List operations.
static bool compare(std::span<const std::byte> bufferA, std::span<const std::byte> bufferB);
static void destruct(std::span<std::byte>);
static void copy(std::span<std::byte> newBuffer, std::span<const std::byte> oldBuffer);
static void move(std::span<std::byte> newBuffer, std::span<std::byte> oldBuffer);
};
template<typename V> std::span<std::byte> VariantListOperations<V>::alignBufferForValue(std::span<std::byte> buffer, size_t alignment)
{
return alignedBytes(buffer, alignment);
}
template<typename V> std::span<const std::byte> VariantListOperations<V>::alignBufferForValue(std::span<const std::byte> buffer, size_t alignment)
{
return alignedBytes(buffer, alignment);
}
template<typename V> template<typename T> std::span<std::byte> VariantListOperations<V>::alignBufferForValue(std::span<std::byte> buffer)
{
return alignBufferForValue(buffer, alignof(T));
}
template<typename V> template<typename T> std::span<const std::byte> VariantListOperations<V>::alignBufferForValue(std::span<const std::byte> buffer)
{
return alignBufferForValue(buffer, alignof(T));
}
template<typename V> auto VariantListOperations<V>::readIndex(std::span<std::byte> buffer) -> VariantListIndex
{
VariantListIndex value;
memcpy(&value, buffer.data(), sizeof(VariantListIndex));
return value;
}
template<typename V> auto VariantListOperations<V>::readIndex(std::span<const std::byte> buffer) -> VariantListIndex
{
VariantListIndex value;
memcpy(&value, buffer.data(), sizeof(VariantListIndex));
return value;
}
template<typename V> auto VariantListOperations<V>::writeIndex(VariantListIndex index, std::span<std::byte> buffer) -> std::span<std::byte>
{
memcpy(buffer.data(), &index, sizeof(VariantListIndex));
return buffer.subspan(sizeof(VariantListIndex));
}
template<typename V> template<typename T> T& VariantListOperations<V>::readValue(std::span<std::byte> buffer)
{
constexpr auto indexFromType = alternativeIndexV<T, V>;
ASSERT_UNUSED(indexFromType, indexFromType == readIndex(buffer));
return reinterpretCastSpanStartTo<T>(alignBufferForValue<T>(buffer.subspan(sizeof(VariantListIndex))));
}
template<typename V> template<typename T> const T& VariantListOperations<V>::readValue(std::span<const std::byte> buffer)
{
constexpr auto indexFromType = alternativeIndexV<T, V>;
ASSERT_UNUSED(indexFromType, indexFromType == readIndex(buffer));
return reinterpretCastSpanStartTo<T>(alignBufferForValue<T>(buffer.subspan(sizeof(VariantListIndex))));
}
template<typename V> template<typename T, typename U> auto VariantListOperations<V>::writeValue(U&& value, std::span<std::byte> buffer) -> std::span<std::byte>
{
new (NotNull, buffer.data()) T(std::forward<U>(value));
return buffer.subspan(sizeof(T));
}
template<typename V> template<typename... F> auto VariantListOperations<V>::visitValue(std::span<std::byte> buffer, F&& ...f)
{
auto visitor = makeVisitor(std::forward<F>(f)...);
return typeForIndex<V>(readIndex(buffer), [&]<typename T>() {
return std::invoke(visitor, readValue<T>(buffer));
});
}
template<typename V> template<typename... F> auto VariantListOperations<V>::visitValue(std::span<const std::byte> buffer, F&& ...f)
{
auto visitor = makeVisitor(std::forward<F>(f)...);
return typeForIndex<V>(readIndex(buffer), [&]<typename T>() {
return std::invoke(visitor, readValue<T>(buffer));
});
}
template<typename V> template<typename T> std::span<std::byte> VariantListOperations<V>::nextKnownType(std::span<std::byte> buffer)
{
return alignBufferForValue<T>(buffer.subspan(sizeof(VariantListIndex))).subspan(sizeof(T));
}
template<typename V> template<typename T> std::span<const std::byte> VariantListOperations<V>::nextKnownType(std::span<const std::byte> buffer)
{
return alignBufferForValue<T>(buffer.subspan(sizeof(VariantListIndex))).subspan(sizeof(T));
}
template<typename V> constexpr VariantListItemMetadata VariantListOperations<V>::lookupMetadataByIndex(VariantListIndex index)
{
constexpr auto table = VariantListItemMetadataTable<V> { };
return table.table[index];
}
template<typename V> std::span<std::byte> VariantListOperations<V>::next(std::span<std::byte> buffer)
{
auto metadata = lookupMetadataByIndex(readIndex(buffer));
return alignBufferForValue(buffer.subspan(sizeof(VariantListIndex)), metadata.alignment).subspan(metadata.size);
}
template<typename V> std::span<const std::byte> VariantListOperations<V>::next(std::span<const std::byte> buffer)
{
auto metadata = lookupMetadataByIndex(readIndex(buffer));
return alignBufferForValue(buffer.subspan(sizeof(VariantListIndex)), metadata.alignment).subspan(metadata.size);
}
// MARK: - Value appending
template<typename V> template<typename T> size_t VariantListOperations<V>::sizeRequiredToWriteAt(std::byte* buffer)
{
auto* bufferPlusIndex = buffer + sizeof(VariantListIndex);
auto* bufferPlusIndexPlusAlignment = alignedBytes(bufferPlusIndex, alignof(T));
auto* bufferPlusIndexPlusAlignmentPlusValue = bufferPlusIndexPlusAlignment + sizeof(T);
return bufferPlusIndexPlusAlignmentPlusValue - buffer;
}
template<typename V> template<typename T> size_t VariantListOperations<V>::sizeRequiredToWriteAt(const std::byte* buffer)
{
auto* bufferPlusIndex = buffer + sizeof(VariantListIndex);
auto* bufferPlusIndexPlusAlignment = alignedBytes(bufferPlusIndex, alignof(T));
auto* bufferPlusIndexPlusAlignmentPlusValue = bufferPlusIndexPlusAlignment + sizeof(T);
return bufferPlusIndexPlusAlignmentPlusValue - buffer;
}
template<typename V> template<typename T, typename U> std::span<std::byte> VariantListOperations<V>::write(U&& value, std::span<std::byte> buffer)
{
static constexpr VariantListIndex indexValue = alternativeIndexV<T, V>;
buffer = writeIndex(indexValue, buffer);
buffer = alignBufferForValue<T>(buffer);
buffer = writeValue<T>(std::forward<U>(value), buffer);
return buffer;
}
// MARK: - List operations
template<typename V> bool VariantListOperations<V>::compare(std::span<const std::byte> bufferA, std::span<const std::byte> bufferB)
{
if ((bufferA.empty() && bufferB.empty()) || bufferA.data() == bufferB.data())
return true;
if (bufferA.empty() || bufferB.empty())
return false;
while (true) {
auto indexA = readIndex(bufferA);
auto indexB = readIndex(bufferB);
if (indexA != indexB)
return false;
bool equal = typeForIndex<V>(indexA, [&]<typename T>() {
if (readValue<T>(bufferA) != readValue<T>(bufferB))
return false;
bufferA = nextKnownType<T>(bufferA);
bufferB = nextKnownType<T>(bufferB);
return true;
});
if (!equal)
return false;
if (bufferA.empty() && bufferB.empty())
break;
if (bufferA.empty() || bufferB.empty())
return false;
}
return true;
}
template<typename V> void VariantListOperations<V>::destruct(std::span<std::byte> buffer)
{
while (!buffer.empty()) {
visitValue(buffer, [&]<typename T>(T& value) {
if constexpr (!std::is_trivially_destructible_v<T>)
value.~T();
buffer = nextKnownType<T>(buffer);
});
}
}
template<typename V> void VariantListOperations<V>::copy(std::span<std::byte> newBuffer, std::span<const std::byte> oldBuffer)
{
if constexpr (VariantAllAlternativesCanCopyWithMemcpy<V>)
memcpySpan(newBuffer, oldBuffer);
else {
while (!oldBuffer.empty()) {
// Copy index.
memcpySpan(newBuffer.first(sizeof(VariantListIndex)), oldBuffer.first(sizeof(VariantListIndex)));
// Copy value.
visitValue(oldBuffer, [&]<typename T>(const T& value) {
oldBuffer = alignBufferForValue<T>(oldBuffer.subspan(sizeof(VariantListIndex)));
newBuffer = alignBufferForValue<T>(newBuffer.subspan(sizeof(VariantListIndex)));
if constexpr (VectorTraits<T>::canCopyWithMemcpy) {
memcpySpan(newBuffer.first(sizeof(T)), oldBuffer.first(sizeof(T)));
} else {
new (NotNull, newBuffer.data()) T(value);
}
oldBuffer = oldBuffer.subspan(sizeof(T));
newBuffer = newBuffer.subspan(sizeof(T));
});
}
}
}
template<typename V> void VariantListOperations<V>::move(std::span<std::byte> newBuffer, std::span<std::byte> oldBuffer)
{
if constexpr (VariantAllAlternativesCanMoveWithMemcpy<V>)
memcpySpan(newBuffer, oldBuffer);
else {
while (!oldBuffer.empty()) {
// Move index.
memcpySpan(newBuffer.first(sizeof(VariantListIndex)), oldBuffer.first(sizeof(VariantListIndex)));
// Move value.
visitValue(oldBuffer, [&]<typename T>(T& value) {
oldBuffer = alignBufferForValue<T>(oldBuffer.subspan(sizeof(VariantListIndex)));
newBuffer = alignBufferForValue<T>(newBuffer.subspan(sizeof(VariantListIndex)));
if constexpr (VectorTraits<T>::canMoveWithMemcpy) {
memcpySpan(newBuffer.first(sizeof(T)), oldBuffer.first(sizeof(T)));
} else {
new (NotNull, newBuffer.data()) T(WTFMove(value));
value.~T();
}
oldBuffer = oldBuffer.subspan(sizeof(T));
newBuffer = newBuffer.subspan(sizeof(T));
});
}
}
}
// `VariantListProxy` acts as a replacement for a real `std::variant`, for use when
// iterating a `VariantList`, allowing access to elements without incurring the cost of
// copying into a `std::variant`. If a `std::variant` is needed, the `asVariant` function
// will perform the conversion.
template<typename V> struct VariantListProxy {
using Variant = V;
using Operations = VariantListOperations<Variant>;
explicit VariantListProxy(std::span<const std::byte> buffer)
: buffer { buffer }
{
}
template<typename T> bool holds_alternative() const
{
return Operations::readIndex(buffer) == alternativeIndexV<T, Variant>;
}
template<size_t I> bool holds_alternative() const
{
static_assert(I <= std::variant_size_v<Variant>);
return Operations::readIndex(buffer) == I;
}
template<typename... F> auto switchOn(F&& ...f) const
{
return Operations::visitValue(buffer, std::forward<F>(f)...);
}
Variant asVariant() const
{
return switchOn([](const auto& alternative) -> Variant { return alternative; });
}
bool operator==(const VariantListProxy& other) const
{
auto index = Operations::readIndex(buffer);
auto otherIndex = Operations::readIndex(other.buffer);
if (index != otherIndex)
return false;
return typeForIndex<V>(index, [&]<typename T>() {
return Operations::template readValue<T>(buffer) == Operations::template readValue<T>(other.buffer);
});
}
std::span<const std::byte> buffer;
};
// The `VariantListSizer` can be used to emulate adding elements, by type, to a `VariantList`
// in order to calculate the exact size requirements. This can then be passed to a `VariantList`
// to expand the capacity to the required amount.
template<typename V> struct VariantListSizer {
using Variant = V;
unsigned size { 0 };
// Emulate appending a value of type `Arg` to the VariantList.
template<typename Arg> void append()
requires std::constructible_from<V, Arg>
{
using T = typename VariantBestMatch<V, Arg>::type;
unsigned currentOffset = size;
unsigned currentOffsetPlusIndex = currentOffset + sizeof(VariantListIndex);
unsigned currentOffsetPlusIndexPlusAlignment = (currentOffsetPlusIndex - 1u + alignof(T)) & -alignof(T);
unsigned currentOffsetPlusIndexPlusAlignmentPlusSize = currentOffsetPlusIndexPlusAlignment + sizeof(T);
size = currentOffsetPlusIndexPlusAlignmentPlusSize;
}
};
} // namespace WTF
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|