1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (C) 2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <wtf/GetPtr.h>
#include <wtf/HashTraits.h>
#include <wtf/SingleThreadIntegralWrapper.h>
#include <wtf/ThreadSafeRefCounted.h>
#include <wtf/Threading.h>
#include <wtf/TypeCasts.h>
#include <wtf/TypeTraits.h>
#include <wtf/WeakPtrImpl.h>
namespace WTF {
// Classes that offer weak pointers should also offer RefPtr or CheckedPtr. Please do not add new exceptions.
template<typename T> struct IsDeprecatedWeakRefSmartPointerException : std::false_type { };
enum class EnableWeakPtrThreadingAssertions : bool { No, Yes };
// Similar to a WeakPtr but it is an error for it to become null. It is useful for hardening when replacing
// things like `Foo& m_foo`. It is similar to CheckedRef but it generates crashes that are more actionable.
template<typename T, typename WeakPtrImpl>
class WeakRef {
public:
template<typename = std::enable_if_t<!IsSmartPtr<T>::value && !std::is_pointer_v<T>>>
WeakRef(const T& object, EnableWeakPtrThreadingAssertions shouldEnableAssertions = EnableWeakPtrThreadingAssertions::Yes)
: m_impl(object.weakImpl())
#if ASSERT_ENABLED
, m_shouldEnableAssertions(shouldEnableAssertions == EnableWeakPtrThreadingAssertions::Yes)
#endif
{
UNUSED_PARAM(shouldEnableAssertions);
}
explicit WeakRef(Ref<WeakPtrImpl>&& impl, EnableWeakPtrThreadingAssertions shouldEnableAssertions = EnableWeakPtrThreadingAssertions::Yes)
: m_impl(WTFMove(impl))
#if ASSERT_ENABLED
, m_shouldEnableAssertions(shouldEnableAssertions == EnableWeakPtrThreadingAssertions::Yes)
#endif
{
UNUSED_PARAM(shouldEnableAssertions);
}
WeakRef(HashTableDeletedValueType) : m_impl(HashTableDeletedValue) { }
WeakRef(HashTableEmptyValueType) : m_impl(HashTableEmptyValue) { }
bool isHashTableDeletedValue() const { return m_impl.isHashTableDeletedValue(); }
bool isHashTableEmptyValue() const { return m_impl.isHashTableEmptyValue(); }
WeakPtrImpl& impl() const { return m_impl; }
Ref<WeakPtrImpl> releaseImpl() { return WTFMove(m_impl); }
T* ptrAllowingHashTableEmptyValue() const
{
static_assert(
HasRefPtrMemberFunctions<T>::value || HasCheckedPtrMemberFunctions<T>::value || IsDeprecatedWeakRefSmartPointerException<std::remove_cv_t<T>>::value,
"Classes that offer weak pointers should also offer RefPtr or CheckedPtr. Please do not add new exceptions.");
return !m_impl.isHashTableEmptyValue() ? static_cast<T*>(m_impl->template get<T>()) : nullptr;
}
T* ptr() const
{
static_assert(
HasRefPtrMemberFunctions<T>::value || HasCheckedPtrMemberFunctions<T>::value || IsDeprecatedWeakRefSmartPointerException<std::remove_cv_t<T>>::value,
"Classes that offer weak pointers should also offer RefPtr or CheckedPtr. Please do not add new exceptions.");
auto* ptr = static_cast<T*>(m_impl->template get<T>());
RELEASE_ASSERT(ptr);
return ptr;
}
T& get() const
{
static_assert(
HasRefPtrMemberFunctions<T>::value || HasCheckedPtrMemberFunctions<T>::value || IsDeprecatedWeakRefSmartPointerException<std::remove_cv_t<T>>::value,
"Classes that offer weak pointers should also offer RefPtr or CheckedPtr. Please do not add new exceptions.");
auto* ptr = static_cast<T*>(m_impl->template get<T>());
RELEASE_ASSERT(ptr);
return *ptr;
}
operator T&() const { return get(); }
T* operator->() const
{
ASSERT(canSafelyBeUsed());
return ptr();
}
EnableWeakPtrThreadingAssertions enableWeakPtrThreadingAssertions() const
{
#if ASSERT_ENABLED
return m_shouldEnableAssertions ? EnableWeakPtrThreadingAssertions::Yes : EnableWeakPtrThreadingAssertions::No;
#else
return EnableWeakPtrThreadingAssertions::No;
#endif
}
private:
#if ASSERT_ENABLED
inline bool canSafelyBeUsed() const
{
// FIXME: Our GC threads currently need to get opaque pointers from WeakPtrs and have to be special-cased.
return !m_impl
|| !m_shouldEnableAssertions
|| (m_impl->wasConstructedOnMainThread() && Thread::mayBeGCThread())
|| m_impl->wasConstructedOnMainThread() == isMainThread();
}
#endif
Ref<WeakPtrImpl> m_impl;
#if ASSERT_ENABLED
bool m_shouldEnableAssertions { true };
#endif
};
template<class T, typename = std::enable_if_t<!IsSmartPtr<T>::value && !std::is_pointer_v<T>>>
WeakRef(const T& value, EnableWeakPtrThreadingAssertions = EnableWeakPtrThreadingAssertions::Yes) -> WeakRef<T, typename T::WeakPtrImplType>;
template <typename T, typename WeakPtrImpl>
struct GetPtrHelper<WeakRef<T, WeakPtrImpl>> {
using PtrType = T*;
using UnderlyingType = T;
static T* getPtr(const WeakRef<T, WeakPtrImpl>& p) { return const_cast<T*>(p.ptr()); }
};
template <typename T, typename WeakPtrImpl>
struct IsSmartPtr<WeakRef<T, WeakPtrImpl>> {
static constexpr bool value = true;
static constexpr bool isNullable = false;
};
template<typename P, typename WeakPtrImpl> struct WeakRefHashTraits : SimpleClassHashTraits<WeakRef<P, WeakPtrImpl>> {
static constexpr bool emptyValueIsZero = true;
static WeakRef<P, WeakPtrImpl> emptyValue() { return HashTableEmptyValue; }
template <typename>
static void constructEmptyValue(WeakRef<P, WeakPtrImpl>& slot)
{
new (NotNull, std::addressof(slot)) WeakRef<P, WeakPtrImpl>(HashTableEmptyValue);
}
static constexpr bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const WeakRef<P, WeakPtrImpl>& value) { return value.isHashTableEmptyValue(); }
using PeekType = P*;
static PeekType peek(const WeakRef<P, WeakPtrImpl>& value) { return const_cast<PeekType>(value.ptrAllowingHashTableEmptyValue()); }
static PeekType peek(P* value) { return value; }
using TakeType = WeakPtr<P, WeakPtrImpl>;
static TakeType take(WeakRef<P, WeakPtrImpl>&& value) { return isEmptyValue(value) ? nullptr : WeakPtr<P, WeakPtrImpl>(WTFMove(value)); }
};
template<typename P, typename WeakPtrImpl> struct HashTraits<WeakRef<P, WeakPtrImpl>> : WeakRefHashTraits<P, WeakPtrImpl> { };
template<typename P, typename WeakPtrImpl> struct PtrHash<WeakRef<P, WeakPtrImpl>> : PtrHashBase<WeakRef<P, WeakPtrImpl>, IsSmartPtr<WeakRef<P, WeakPtrImpl>>::value> {
static constexpr bool safeToCompareToEmptyOrDeleted = false;
};
template<typename P, typename WeakPtrImpl> struct DefaultHash<WeakRef<P, WeakPtrImpl>> : PtrHash<WeakRef<P, WeakPtrImpl>> { };
template<typename T> using SingleThreadWeakRef = WeakRef<T, SingleThreadWeakPtrImpl>;
template<typename ExpectedType, typename ArgType, typename WeakPtrImpl>
inline bool is(WeakRef<ArgType, WeakPtrImpl>& source)
{
return is<ExpectedType>(source.get());
}
template<typename ExpectedType, typename ArgType, typename WeakPtrImpl>
inline bool is(const WeakRef<ArgType, WeakPtrImpl>& source)
{
return is<ExpectedType>(source.get());
}
template<typename Target, typename Source, typename WeakPtrImpl>
inline WeakRef<match_constness_t<Source, Target>, WeakPtrImpl> downcast(WeakRef<Source, WeakPtrImpl> source)
{
static_assert(!std::is_same_v<Source, Target>, "Unnecessary cast to same type");
static_assert(std::is_base_of_v<Source, Target>, "Should be a downcast");
RELEASE_ASSERT(is<Target>(source));
return WeakRef<match_constness_t<Source, Target>, WeakPtrImpl> { static_reference_cast<match_constness_t<Source, Target>>(source.releaseImpl()), source.enableWeakPtrThreadingAssertions() };
}
template<typename Target, typename Source, typename WeakPtrImpl>
inline WeakPtr<match_constness_t<Source, Target>, WeakPtrImpl> dynamicDowncast(WeakRef<Source, WeakPtrImpl> source)
{
static_assert(!std::is_same_v<Source, Target>, "Unnecessary cast to same type");
static_assert(std::is_base_of_v<Source, Target>, "Should be a downcast");
if (!is<Target>(source))
return nullptr;
return WeakPtr<match_constness_t<Source, Target>, WeakPtrImpl> { static_reference_cast<match_constness_t<Source, Target>>(source.releaseImpl()), source.enableWeakPtrThreadingAssertions() };
}
} // namespace WTF
using WTF::EnableWeakPtrThreadingAssertions;
using WTF::SingleThreadWeakRef;
using WTF::WeakRef;
|