1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
/*
* Copyright (C) 2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* License header from dragonbox
* https://github.com/jk-jeon/dragonbox/blob/master/LICENSE-Boost
* https://github.com/jk-jeon/dragonbox/blob/master/LICENSE-Apache2-LLVM
*/
#pragma once
#include <wtf/dragonbox/detail/bits.h>
#include <wtf/dragonbox/detail/div.h>
#include <wtf/dragonbox/detail/policy_holder.h>
#include <wtf/dragonbox/detail/util.h>
#include <wtf/dragonbox/ieee754_format.h>
namespace WTF {
namespace dragonbox {
namespace detail {
////////////////////////////////////////////////////////////////////////////////////////
// The main algorithm.
////////////////////////////////////////////////////////////////////////////////////////
template<class Float, class FloatTraits>
struct impl : private FloatTraits, private FloatTraits::format {
using format = typename FloatTraits::format;
using carrier_uint = typename FloatTraits::carrier_uint;
using FloatTraits::carrier_bits;
using format::decimal_digits;
using format::exponent_bias;
using format::max_exponent;
using format::min_exponent;
using format::significand_bits;
static constexpr int32_t kappa = std::is_same<format, ieee754_binary32>::value ? 1 : 2;
static_assert(kappa >= 1, "");
static_assert(carrier_bits >= significand_bits + 2 + log::floor_log2_pow10(kappa + 1), "");
static constexpr int32_t min(int32_t x, int32_t y) noexcept { return x < y ? x : y; }
static constexpr int32_t max(int32_t x, int32_t y) noexcept { return x > y ? x : y; }
static constexpr int32_t min_k = min(
-log::floor_log10_pow2_minus_log10_4_over_3(static_cast<int32_t>(max_exponent - significand_bits)),
-log::floor_log10_pow2(static_cast<int32_t>(max_exponent - significand_bits)) + kappa);
static_assert(min_k >= cache_holder<format>::min_k, "");
// We do invoke shorter_interval_case for exponent == min_exponent case,
// so we should not add 1 here.
static constexpr int32_t max_k = max(
-log::floor_log10_pow2_minus_log10_4_over_3(static_cast<int32_t>(min_exponent - significand_bits /*+ 1*/)),
-log::floor_log10_pow2(static_cast<int32_t>(min_exponent - significand_bits)) + kappa);
static_assert(max_k <= cache_holder<format>::max_k, "");
using cache_entry_type = typename cache_holder<format>::cache_entry_type;
static constexpr auto cache_bits = cache_holder<format>::cache_bits;
static constexpr int32_t case_shorter_interval_left_endpoint_lower_threshold = 2;
static constexpr int32_t case_shorter_interval_left_endpoint_upper_threshold = 2 + log::floor_log2(compute_power<count_factors<5>((carrier_uint(1) << (significand_bits + 2)) - 1) + 1>(10) / 3);
static constexpr int32_t case_shorter_interval_right_endpoint_lower_threshold = 0;
static constexpr int32_t case_shorter_interval_right_endpoint_upper_threshold = 2 + log::floor_log2(compute_power<count_factors<5>((carrier_uint(1) << (significand_bits + 1)) + 1) + 1>(10) / 3);
static constexpr int32_t shorter_interval_tie_lower_threshold = -log::floor_log5_pow2_minus_log5_3(significand_bits + 4) - 2 - significand_bits;
static constexpr int32_t shorter_interval_tie_upper_threshold = -log::floor_log5_pow2(significand_bits + 2) - 2 - significand_bits;
struct compute_mul_result {
carrier_uint integer_part;
bool is_integer;
};
struct compute_mul_parity_result {
bool parity;
bool is_integer;
};
template<class FloatFormat, class Dummy = void>
struct compute_mul_impl;
//// The main algorithm assumes the input is a normal/subnormal finite number
template<class ReturnType, class IntervalType, class TrailingZeroPolicy, class BinaryToDecimalRoundingPolicy, class CachePolicy, class... AdditionalArgs>
ALWAYS_INLINE static constexpr ReturnType compute_nearest_normal(carrier_uint const two_fc, int32_t const binary_exponent, AdditionalArgs... additional_args) noexcept
{
//////////////////////////////////////////////////////////////////////
// Step 1: Schubfach multiplier calculation
//////////////////////////////////////////////////////////////////////
IntervalType interval_type { additional_args... };
// Compute k and beta.
int32_t const minus_k = log::floor_log10_pow2(binary_exponent) - kappa;
auto const cache = CachePolicy::template get_cache<format>(-minus_k);
int32_t const beta = binary_exponent + log::floor_log2_pow10(-minus_k);
// Compute zi and deltai.
// 10^kappa <= deltai < 10^(kappa + 1)
auto const deltai = compute_mul_impl<format>::compute_delta(cache, beta);
// For the case of binary32, the result of integer check is not correct for
// 29711844 * 2^-82
// = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18
// and 29711844 * 2^-81
// = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17,
// and they are the unique counterexamples. However, since 29711844 is even,
// this does not cause any problem for the endpoints calculations; it can only
// cause a problem when we need to perform integer check for the center.
// Fortunately, with these inputs, that branch is never executed, so we are
// fine.
auto const z_result = compute_mul_impl<format>::compute_mul((two_fc | 1) << beta, cache);
//////////////////////////////////////////////////////////////////////
// Step 2: Try larger divisor; remove trailing zeros if necessary
//////////////////////////////////////////////////////////////////////
constexpr auto big_divisor = compute_power<kappa + 1>(static_cast<uint32_t>(10));
constexpr auto small_divisor = compute_power<kappa>(static_cast<uint32_t>(10));
// Using an upper bound on zi, we might be able to optimize the division
// better than the compiler; we are computing zi / big_divisor here.
carrier_uint decimal_significand = div::divide_by_pow10<kappa + 1, carrier_uint, (carrier_uint(1) << (significand_bits + 1)) * big_divisor - 1>(z_result.integer_part);
auto r = static_cast<uint32_t>(z_result.integer_part - big_divisor * decimal_significand);
do {
if (r < deltai) {
// Exclude the right endpoint if necessary.
if (!r && (z_result.is_integer & !interval_type.include_right_endpoint())) {
if constexpr (BinaryToDecimalRoundingPolicy::tag == policy_impl::binary_to_decimal_rounding::tag_t::do_not_care) {
decimal_significand *= 10;
--decimal_significand;
return TrailingZeroPolicy::template no_trailing_zeros<impl,
ReturnType>(
decimal_significand, minus_k + kappa);
} else {
--decimal_significand;
r = big_divisor;
break;
}
}
} else if (r > deltai)
break;
else {
// r == deltai; compare fractional parts.
auto const x_result = compute_mul_impl<format>::compute_mul_parity(two_fc - 1, cache, beta);
if (!(x_result.parity | (x_result.is_integer & interval_type.include_left_endpoint())))
break;
}
// We may need to remove trailing zeros.
return TrailingZeroPolicy::template on_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k + kappa + 1);
} while (false);
//////////////////////////////////////////////////////////////////////
// Step 3: Find the significand with the smaller divisor
//////////////////////////////////////////////////////////////////////
decimal_significand *= 10;
if constexpr (BinaryToDecimalRoundingPolicy::tag == policy_impl::binary_to_decimal_rounding::tag_t::do_not_care) {
// Normally, we want to compute
// significand += r / small_divisor
// and return, but we need to take care of the case that the resulting
// value is exactly the right endpoint, while that is not included in the
// interval.
if (!interval_type.include_right_endpoint()) {
// Is r divisible by 10^kappa?
if (z_result.is_integer && div::check_divisibility_and_divide_by_pow10<kappa>(r)) {
// This should be in the interval.
decimal_significand += r - 1;
} else
decimal_significand += r;
} else
decimal_significand += div::small_division_by_pow10<kappa>(r);
} else {
auto dist = r - (deltai / 2) + (small_divisor / 2);
bool const approx_y_parity = (dist ^ (small_divisor / 2)) & 1;
// Is dist divisible by 10^kappa?
bool const divisible_by_small_divisor = div::check_divisibility_and_divide_by_pow10<kappa>(dist);
// Add dist / 10^kappa to the significand.
decimal_significand += dist;
if (divisible_by_small_divisor) {
// Check z^(f) >= epsilon^(f).
// We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
// where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f).
// Since there are only 2 possibilities, we only need to care about the
// parity. Also, zi and r should have the same parity since the divisor
// is an even number.
auto const y_result = compute_mul_impl<format>::compute_mul_parity(two_fc, cache, beta);
if (y_result.parity != approx_y_parity)
--decimal_significand;
else {
// If z^(f) >= epsilon^(f), we might have a tie
// when z^(f) == epsilon^(f), or equivalently, when y is an integer.
// For tie-to-up case, we can just choose the upper one.
if (BinaryToDecimalRoundingPolicy::prefer_round_down(decimal_significand) & y_result.is_integer)
--decimal_significand;
}
}
}
return TrailingZeroPolicy::template no_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k + kappa);
}
template<class ReturnType, class IntervalType, class TrailingZeroPolicy, class BinaryToDecimalRoundingPolicy, class CachePolicy, class... AdditionalArgs>
static constexpr ReturnType compute_nearest_shorter(int32_t const binary_exponent, AdditionalArgs... additional_args) noexcept
{
IntervalType interval_type { additional_args... };
// Compute k and beta.
int32_t const minus_k = log::floor_log10_pow2_minus_log10_4_over_3(binary_exponent);
int32_t const beta = binary_exponent + log::floor_log2_pow10(-minus_k);
// Compute xi and zi.
auto const cache = CachePolicy::template get_cache<format>(-minus_k);
auto xi = compute_mul_impl<format>::compute_left_endpoint_for_shorter_interval_case(cache, beta);
auto zi = compute_mul_impl<format>::compute_right_endpoint_for_shorter_interval_case(cache, beta);
// If we don't accept the right endpoint and
// if the right endpoint is an integer, decrease it.
if (!interval_type.include_right_endpoint() && is_right_endpoint_integer_shorter_interval(binary_exponent))
--zi;
// If we don't accept the left endpoint or
// if the left endpoint is not an integer, increase it.
if (!interval_type.include_left_endpoint() || !is_left_endpoint_integer_shorter_interval(binary_exponent))
++xi;
// Try bigger divisor.
carrier_uint decimal_significand = zi / 10;
// If succeed, remove trailing zeros if necessary and return.
if (decimal_significand * 10 >= xi)
return TrailingZeroPolicy::template on_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k + 1);
// Otherwise, compute the round-up of y.
decimal_significand = compute_mul_impl<format>::compute_round_up_for_shorter_interval_case(cache, beta);
// When tie occurs, choose one of them according to the rule.
if (BinaryToDecimalRoundingPolicy::prefer_round_down(decimal_significand) && binary_exponent >= shorter_interval_tie_lower_threshold && binary_exponent <= shorter_interval_tie_upper_threshold)
--decimal_significand;
else if (decimal_significand < xi)
++decimal_significand;
return TrailingZeroPolicy::template no_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k);
}
template<class ReturnType, class TrailingZeroPolicy, class CachePolicy>
ALWAYS_INLINE static constexpr ReturnType compute_left_closed_directed(carrier_uint const two_fc, int32_t binary_exponent) noexcept
{
//////////////////////////////////////////////////////////////////////
// Step 1: Schubfach multiplier calculation
//////////////////////////////////////////////////////////////////////
// Compute k and beta.
int32_t const minus_k = log::floor_log10_pow2(binary_exponent) - kappa;
auto const cache = CachePolicy::template get_cache<format>(-minus_k);
int32_t const beta = binary_exponent + log::floor_log2_pow10(-minus_k);
// Compute xi and deltai.
// 10^kappa <= deltai < 10^(kappa + 1)
auto const deltai = compute_mul_impl<format>::compute_delta(cache, beta);
auto x_result = compute_mul_impl<format>::compute_mul(two_fc << beta, cache);
// Deal with the unique exceptional cases
// 29711844 * 2^-82
// = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18
// and 29711844 * 2^-81
// = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17
// for binary32.
if constexpr (std::is_same<format, ieee754_binary32>::value) {
if (binary_exponent <= -80)
x_result.is_integer = false;
}
if (!x_result.is_integer)
++x_result.integer_part;
//////////////////////////////////////////////////////////////////////
// Step 2: Try larger divisor; remove trailing zeros if necessary
//////////////////////////////////////////////////////////////////////
constexpr auto big_divisor = compute_power<kappa + 1>(static_cast<uint32_t>(10));
// Using an upper bound on xi, we might be able to optimize the division
// better than the compiler; we are computing xi / big_divisor here.
carrier_uint decimal_significand = div::divide_by_pow10<kappa + 1, carrier_uint, (carrier_uint(1) << (significand_bits + 1)) * big_divisor - 1>(x_result.integer_part);
auto r = static_cast<uint32_t>(x_result.integer_part - big_divisor * decimal_significand);
if (r) {
++decimal_significand;
r = big_divisor - r;
}
do {
if (r > deltai)
break;
if (r == deltai) {
// Compare the fractional parts.
// This branch is never taken for the exceptional cases
// 2f_c = 29711482, e = -81
// (6.1442649164096937243516663440523473127541365101933479309082... *
// 10^-18) and 2f_c = 29711482, e = -80
// (1.2288529832819387448703332688104694625508273020386695861816... *
// 10^-17).
auto const z_result = compute_mul_impl<format>::compute_mul_parity(two_fc + 2, cache, beta);
if (z_result.parity || z_result.is_integer)
break;
}
// The ceiling is inside, so we are done.
return TrailingZeroPolicy::template on_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k + kappa + 1);
} while (false);
//////////////////////////////////////////////////////////////////////
// Step 3: Find the significand with the smaller divisor
//////////////////////////////////////////////////////////////////////
decimal_significand *= 10;
decimal_significand -= div::small_division_by_pow10<kappa>(r);
return TrailingZeroPolicy::template no_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k + kappa);
}
template<class ReturnType, class TrailingZeroPolicy, class CachePolicy>
ALWAYS_INLINE static constexpr ReturnType compute_right_closed_directed(carrier_uint const two_fc, int32_t const binary_exponent, bool shorter_interval) noexcept
{
//////////////////////////////////////////////////////////////////////
// Step 1: Schubfach multiplier calculation
//////////////////////////////////////////////////////////////////////
// Compute k and beta.
int32_t const minus_k = log::floor_log10_pow2(binary_exponent - (shorter_interval ? 1 : 0)) - kappa;
auto const cache = CachePolicy::template get_cache<format>(-minus_k);
int32_t const beta = binary_exponent + log::floor_log2_pow10(-minus_k);
// Compute zi and deltai.
// 10^kappa <= deltai < 10^(kappa + 1)
auto const deltai = shorter_interval
? compute_mul_impl<format>::compute_delta(cache, beta - 1)
: compute_mul_impl<format>::compute_delta(cache, beta);
carrier_uint const zi = compute_mul_impl<format>::compute_mul(two_fc << beta, cache).integer_part;
//////////////////////////////////////////////////////////////////////
// Step 2: Try larger divisor; remove trailing zeros if necessary
//////////////////////////////////////////////////////////////////////
constexpr auto big_divisor = compute_power<kappa + 1>(static_cast<uint32_t>(10));
// Using an upper bound on zi, we might be able to optimize the division better
// than the compiler; we are computing zi / big_divisor here.
carrier_uint decimal_significand = div::divide_by_pow10<kappa + 1, carrier_uint, (carrier_uint(1) << (significand_bits + 1)) * big_divisor - 1>(zi);
auto const r = static_cast<uint32_t>(zi - big_divisor * decimal_significand);
do {
if (r > deltai)
break;
if (r == deltai) {
// Compare the fractional parts.
if (!compute_mul_impl<format>::compute_mul_parity(two_fc - (shorter_interval ? 1 : 2), cache, beta).parity)
break;
}
// The floor is inside, so we are done.
return TrailingZeroPolicy::template on_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k + kappa + 1);
} while (false);
//////////////////////////////////////////////////////////////////////
// Step 3: Find the significand with the small divisor
//////////////////////////////////////////////////////////////////////
decimal_significand *= 10;
decimal_significand += div::small_division_by_pow10<kappa>(r);
return TrailingZeroPolicy::template no_trailing_zeros<impl, ReturnType>(decimal_significand, minus_k + kappa);
}
// Remove trailing zeros from n and return the number of zeros removed.
ALWAYS_INLINE static constexpr int32_t remove_trailing_zeros(carrier_uint& n) noexcept
{
ASSERT(n);
if constexpr (std::is_same<format, ieee754_binary32>::value) {
constexpr auto mod_inv_5 = static_cast<uint32_t>(0xcccccccd);
constexpr auto mod_inv_25 = mod_inv_5 * mod_inv_5;
int32_t s = 0;
while (true) {
auto q = bits::rotr(n * mod_inv_25, 2);
if (q <= std::numeric_limits<uint32_t>::max() / 100) {
n = q;
s += 2;
} else
break;
}
auto q = bits::rotr(n * mod_inv_5, 1);
if (q <= std::numeric_limits<uint32_t>::max() / 10) {
n = q;
s |= 1;
}
return s;
} else {
static_assert(std::is_same<format, ieee754_binary64>::value, "");
// Divide by 10^8 and reduce to 32-bits if divisible.
// Since ret_value.significand <= (2^53 * 1000 - 1) / 1000 < 10^16,
// n is at most of 16 digits.
// This magic number is ceil(2^90 / 10^8).
constexpr auto magic_number = static_cast<uint64_t>(12379400392853802749ull);
auto nm = wuint::umul128(n, magic_number);
uint64_t nm_high = static_cast<uint64_t>(nm >> 64);
uint64_t nm_low = static_cast<uint64_t>(nm);
// Is n is divisible by 10^8?
if (!(nm_high & ((static_cast<uint64_t>(1) << (90 - 64)) - 1)) && nm_low < magic_number) {
// If yes, work with the quotient.
auto n32 = static_cast<uint32_t>(nm_high >> (90 - 64));
constexpr auto mod_inv_5 = static_cast<uint32_t>(0xcccccccd);
constexpr auto mod_inv_25 = mod_inv_5 * mod_inv_5;
int32_t s = 8;
while (true) {
auto q = bits::rotr(n32 * mod_inv_25, 2);
if (q <= std::numeric_limits<uint32_t>::max() / 100) {
n32 = q;
s += 2;
} else
break;
}
auto q = bits::rotr(n32 * mod_inv_5, 1);
if (q <= std::numeric_limits<uint32_t>::max() / 10) {
n32 = q;
s |= 1;
}
n = n32;
return s;
}
// If n is not divisible by 10^8, work with n itself.
constexpr auto mod_inv_5 = static_cast<uint64_t>(0xcccccccccccccccd);
constexpr auto mod_inv_25 = mod_inv_5 * mod_inv_5;
int32_t s = 0;
while (true) {
auto q = bits::rotr(n * mod_inv_25, 2);
if (q <= std::numeric_limits<uint64_t>::max() / 100) {
n = q;
s += 2;
} else
break;
}
auto q = bits::rotr(n * mod_inv_5, 1);
if (q <= std::numeric_limits<uint64_t>::max() / 10) {
n = q;
s |= 1;
}
return s;
}
}
template<class Dummy>
struct compute_mul_impl<ieee754_binary32, Dummy> {
static constexpr compute_mul_result compute_mul(carrier_uint u, cache_entry_type const& cache) noexcept
{
auto r = wuint::umul96_upper64(u, cache);
return { carrier_uint(r >> 32), !carrier_uint(r) };
}
static constexpr uint32_t compute_delta(cache_entry_type const& cache, int32_t beta) noexcept
{
return static_cast<uint32_t>(cache >> (cache_bits - 1 - beta));
}
static constexpr compute_mul_parity_result compute_mul_parity(carrier_uint two_f, cache_entry_type const& cache, int32_t beta) noexcept
{
ASSERT(beta >= 1);
ASSERT(beta < 64);
auto r = wuint::umul96_lower64(two_f, cache);
return { static_cast<bool>((r >> (64 - beta)) & 1), !static_cast<bool>(static_cast<uint32_t>(r >> (32 - beta))) };
}
static constexpr carrier_uint
compute_left_endpoint_for_shorter_interval_case(cache_entry_type const& cache, int32_t beta) noexcept
{
return carrier_uint((cache - (cache >> (significand_bits + 2))) >> (cache_bits - significand_bits - 1 - beta));
}
static constexpr carrier_uint
compute_right_endpoint_for_shorter_interval_case(cache_entry_type const& cache, int32_t beta) noexcept
{
return carrier_uint((cache + (cache >> (significand_bits + 1))) >> (cache_bits - significand_bits - 1 - beta));
}
static constexpr carrier_uint
compute_round_up_for_shorter_interval_case(cache_entry_type const& cache, int32_t beta) noexcept
{
return (carrier_uint(cache >> (cache_bits - significand_bits - 2 - beta)) + 1) / 2;
}
};
template<class Dummy>
struct compute_mul_impl<ieee754_binary64, Dummy> {
static constexpr compute_mul_result compute_mul(carrier_uint u, cache_entry_type const& cache) noexcept
{
auto r = wuint::umul192_upper128(u, cache);
uint64_t r_high = static_cast<uint64_t>(r >> 64);
uint64_t r_low = static_cast<uint64_t>(r);
return { r_high, !r_low };
}
static constexpr uint32_t compute_delta(cache_entry_type const& cache, int32_t beta) noexcept
{
uint64_t cache_high = static_cast<uint64_t>(cache >> 64);
return static_cast<uint32_t>(cache_high >> (carrier_bits - 1 - beta));
}
static constexpr compute_mul_parity_result compute_mul_parity(carrier_uint two_f, cache_entry_type const& cache, int32_t beta) noexcept
{
ASSERT(beta >= 1);
ASSERT(beta < 64);
auto r = wuint::umul192_lower128(two_f, cache);
uint64_t r_high = static_cast<uint64_t>(r >> 64);
uint64_t r_low = static_cast<uint64_t>(r);
return { static_cast<bool>((r_high >> (64 - beta)) & 1), !static_cast<bool>(((r_high << beta) | (r_low >> (64 - beta)))) };
}
static constexpr carrier_uint
compute_left_endpoint_for_shorter_interval_case(cache_entry_type const& cache, int32_t beta) noexcept
{
uint64_t cache_high = static_cast<uint64_t>(cache >> 64);
return (cache_high - (cache_high >> (significand_bits + 2))) >> (carrier_bits - significand_bits - 1 - beta);
}
static constexpr carrier_uint
compute_right_endpoint_for_shorter_interval_case(cache_entry_type const& cache, int32_t beta) noexcept
{
uint64_t cache_high = static_cast<uint64_t>(cache >> 64);
return (cache_high + (cache_high >> (significand_bits + 1))) >> (carrier_bits - significand_bits - 1 - beta);
}
static constexpr carrier_uint
compute_round_up_for_shorter_interval_case(cache_entry_type const& cache, int32_t beta) noexcept
{
uint64_t cache_high = static_cast<uint64_t>(cache >> 64);
return ((cache_high >> (carrier_bits - significand_bits - 2 - beta)) + 1) / 2;
}
};
static constexpr bool
is_right_endpoint_integer_shorter_interval(int32_t exponent) noexcept
{
return exponent >= case_shorter_interval_right_endpoint_lower_threshold && exponent <= case_shorter_interval_right_endpoint_upper_threshold;
}
static constexpr bool is_left_endpoint_integer_shorter_interval(int32_t exponent) noexcept
{
return exponent >= case_shorter_interval_left_endpoint_lower_threshold && exponent <= case_shorter_interval_left_endpoint_upper_threshold;
}
};
}
////////////////////////////////////////////////////////////////////////////////////////
// The interface function.
////////////////////////////////////////////////////////////////////////////////////////
template<class Float, class FloatTraits = default_float_traits<Float>, class... Policies>
ALWAYS_INLINE constexpr detail::to_decimal_return_type<FloatTraits, Policies...>
to_decimal(signed_significand_bits<Float, FloatTraits> signed_significand_bits, unsigned exponent_bits, Policies...) noexcept
{
// Build policy holder type.
using policy_holder = detail::to_decimal_policy_holder<Policies...>;
return policy_holder::delegate(
signed_significand_bits,
detail::to_decimal_dispatcher<Float, FloatTraits, policy_holder> { },
signed_significand_bits,
exponent_bits);
}
template<class Float, class FloatTraits = default_float_traits<Float>, class... Policies>
ALWAYS_INLINE constexpr detail::to_decimal_return_type<FloatTraits, Policies...>
to_decimal(Float x, Policies... policies) noexcept
{
auto const br = float_bits<Float, FloatTraits>(x);
auto const exponent_bits = br.extract_exponent_bits();
auto const s = br.remove_exponent_bits(exponent_bits);
ASSERT(br.is_finite());
return to_decimal<Float, FloatTraits>(s, exponent_bits, policies...);
}
// ------------------------------------------------------------------------------------------
enum class Mode : uint8_t {
ToShortest = 1,
ToExponential = 2,
};
enum class PrintTrailingZero : uint8_t {
Yes,
No,
};
struct PrintConfig {
Mode mode;
PrintTrailingZero print_trailing_zero;
};
template<class FloatFormat>
ALWAYS_INLINE constexpr size_t to_exponential_max_string_length()
{
// Maximum required buffer size for exponential mode (excluding null-terminator)
// If ieee754_binary32 then sign(1) + significand(9) + decimal_point(1) + exp_marker(1) + exp_sign(1) + exp(2).
// If ieee754_binary64 then sign(1) + significand(17) + decimal_point(1) + exp_marker(1) + exp_sign(1) + exp(3).
return std::is_same<FloatFormat, ieee754_binary32>::value ? (1 + 9 + 1 + 1 + 1 + 2) : (1 + 17 + 1 + 1 + 1 + 3);
}
template<class FloatFormat>
ALWAYS_INLINE constexpr size_t to_shortest_max_string_length()
{
constexpr int32_t decimal_in_shortest_low = WTF::double_conversion::default_decimal_in_shortest_low;
constexpr int32_t decimal_in_shortest_high = WTF::double_conversion::default_decimal_in_shortest_high;
static_assert(decimal_in_shortest_low <= 0);
static_assert(decimal_in_shortest_high >= FloatFormat::decimal_digits);
// Maximum required buffer size for exponential mode (excluding null-terminator)
// If ieee754_binary32 then sign(1) + significand(9) + decimal_point(1) + max(-low, (high-9)).
// If ieee754_binary64 then sign(1) + significand(17) + decimal_point(1) + max(-low, (high-17)).
return 1 + FloatFormat::decimal_digits + 1 + std::max(-decimal_in_shortest_low, decimal_in_shortest_high - FloatFormat::decimal_digits);
}
template<class FloatFormat>
ALWAYS_INLINE constexpr size_t max_string_length()
{
// Maximum required buffer size (excluding null-terminator)
return std::max(to_exponential_max_string_length<FloatFormat>(), to_shortest_max_string_length<FloatFormat>());
}
ALWAYS_INLINE constexpr bool valid_shortest_representation(int32_t decimal_point)
{
constexpr int32_t decimal_in_shortest_low = WTF::double_conversion::default_decimal_in_shortest_low;
constexpr int32_t decimal_in_shortest_high = WTF::double_conversion::default_decimal_in_shortest_high;
int32_t exponent = decimal_point - 1;
return double_conversion::validShortestRepresentation(exponent, decimal_in_shortest_low, decimal_in_shortest_high);
}
ALWAYS_INLINE uint32_t count_digits_base10_with_max_17(uint64_t v)
{
if (v >= 10000000000000000ull)
return 17;
if (v >= 1000000000000000ull)
return 16;
if (v >= 100000000000000ull)
return 15;
if (v >= 10000000000000ull)
return 14;
if (v >= 1000000000000ull)
return 13;
if (v >= 100000000000ull)
return 12;
if (v >= 10000000000ull)
return 11;
if (v >= 1000000000)
return 10;
if (v >= 100000000)
return 9;
if (v >= 10000000)
return 8;
if (v >= 1000000)
return 7;
if (v >= 100000)
return 6;
if (v >= 10000)
return 5;
if (v >= 1000)
return 4;
if (v >= 100)
return 3;
if (v >= 10)
return 2;
return 1;
}
ALWAYS_INLINE uint64_t compute_power_with_max_16(uint64_t base, uint32_t k)
{
ASSERT(0 < k && k < ieee754_binary64::decimal_digits);
switch (k) {
case 1:
return detail::compute_power<1>(base);
case 2:
return detail::compute_power<2>(base);
case 3:
return detail::compute_power<3>(base);
case 4:
return detail::compute_power<4>(base);
case 5:
return detail::compute_power<5>(base);
case 6:
return detail::compute_power<6>(base);
case 7:
return detail::compute_power<7>(base);
case 8:
return detail::compute_power<8>(base);
case 9:
return detail::compute_power<9>(base);
case 10:
return detail::compute_power<10>(base);
case 11:
return detail::compute_power<11>(base);
case 12:
return detail::compute_power<12>(base);
case 13:
return detail::compute_power<13>(base);
case 14:
return detail::compute_power<14>(base);
case 15:
return detail::compute_power<15>(base);
case 16:
return detail::compute_power<16>(base);
default:
return 0;
}
}
} // namespace dragonbox
} // namespace WTF
|