File: ascii_number.h

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (412 lines) | stat: -rw-r--r-- 12,959 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H

#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <type_traits>

#include "float_common.h"

#ifdef FASTFLOAT_SSE2
#include <emmintrin.h>
#endif

#ifdef FASTFLOAT_NEON
#include <arm_neon.h>
#endif

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace fast_float {

template <typename UC>
fastfloat_really_inline constexpr bool has_simd_opt() {
#ifdef FASTFLOAT_HAS_SIMD
  return std::is_same<UC, char16_t>::value;
#else
  return false;
#endif
}

// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
template <typename UC>
fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
  return !(c > UC('9') || c < UC('0'));
}

fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
  return (val & 0xFF00000000000000) >> 56
    | (val & 0x00FF000000000000) >> 40
    | (val & 0x0000FF0000000000) >> 24
    | (val & 0x000000FF00000000) >> 8
    | (val & 0x00000000FF000000) << 8
    | (val & 0x0000000000FF0000) << 24
    | (val & 0x000000000000FF00) << 40
    | (val & 0x00000000000000FF) << 56;
}

// Read 8 UC into a u64. Truncates UC if not char.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint64_t read8_to_u64(const UC *chars) {
  if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
    uint64_t val = 0;
    for(int i = 0; i < 8; ++i) {
      val |= uint64_t(uint8_t(*chars)) << (i*8);
      ++chars;
    }
    return val;
  }
  uint64_t val;
  ::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
  // Need to read as-if the number was in little-endian order.
  val = byteswap(val);
#endif
  return val;
}

#ifdef FASTFLOAT_SSE2

fastfloat_really_inline
uint64_t simd_read8_to_u64(const __m128i data) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
  const __m128i packed = _mm_packus_epi16(data, data);
#ifdef FASTFLOAT_64BIT
  return uint64_t(_mm_cvtsi128_si64(packed));
#else
  uint64_t value;
  // Visual Studio + older versions of GCC don't support _mm_storeu_si64
  _mm_storel_epi64(reinterpret_cast<__m128i*>(&value), packed);
  return value;
#endif
FASTFLOAT_SIMD_RESTORE_WARNINGS
}

fastfloat_really_inline
uint64_t simd_read8_to_u64(const char16_t* chars) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
  return simd_read8_to_u64(_mm_loadu_si128(reinterpret_cast<const __m128i*>(chars)));
FASTFLOAT_SIMD_RESTORE_WARNINGS
}

#elif defined(FASTFLOAT_NEON)


fastfloat_really_inline
uint64_t simd_read8_to_u64(const uint16x8_t data) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
  uint8x8_t utf8_packed = vmovn_u16(data);
  return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
FASTFLOAT_SIMD_RESTORE_WARNINGS
}

fastfloat_really_inline
uint64_t simd_read8_to_u64(const char16_t* chars) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
  return simd_read8_to_u64(vld1q_u16(reinterpret_cast<const uint16_t*>(chars)));
FASTFLOAT_SIMD_RESTORE_WARNINGS
}

#endif // FASTFLOAT_SSE2

// dummy for compile
//template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>())>
template <typename UC>
uint64_t simd_read8_to_u64(UC const*) {
  return 0;
}


fastfloat_really_inline FASTFLOAT_CONSTEXPR20
void write_u64(uint8_t *chars, uint64_t val) {
  if (cpp20_and_in_constexpr()) {
    for(int i = 0; i < 8; ++i) {
      *chars = uint8_t(val);
      val >>= 8;
      ++chars;
    }
    return;
  }
#if FASTFLOAT_IS_BIG_ENDIAN == 1
  // Need to read as-if the number was in little-endian order.
  val = byteswap(val);
#endif
  ::memcpy(chars, &val, sizeof(uint64_t));
}

// credit  @aqrit
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
uint32_t parse_eight_digits_unrolled(uint64_t val) {
  const uint64_t mask = 0x000000FF000000FF;
  const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
  const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
  val -= 0x3030303030303030;
  val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
  val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
  return uint32_t(val);
}


// Call this if chars are definitely 8 digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint32_t parse_eight_digits_unrolled(UC const * chars)  noexcept {
  if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
    return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
  }
  return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
}


// credit @aqrit
fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val)  noexcept {
  return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
     0x8080808080808080));
}


#ifdef FASTFLOAT_HAS_SIMD

// Call this if chars might not be 8 digits.
// Using this style (instead of is_made_of_eight_digits_fast() then parse_eight_digits_unrolled())
// ensures we don't load SIMD registers twice.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool simd_parse_if_eight_digits_unrolled(const char16_t* chars, uint64_t& i) noexcept {
  if (cpp20_and_in_constexpr()) {
    return false;
  }   
#ifdef FASTFLOAT_SSE2
FASTFLOAT_SIMD_DISABLE_WARNINGS
  const __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(chars));

  // (x - '0') <= 9
  // http://0x80.pl/articles/simd-parsing-int-sequences.html
  const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
  const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));

  if (_mm_movemask_epi8(t1) == 0) {
    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
    return true;
  }
  else return false;
FASTFLOAT_SIMD_RESTORE_WARNINGS
#elif defined(FASTFLOAT_NEON)
FASTFLOAT_SIMD_DISABLE_WARNINGS
  const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t*>(chars));
  
  // (x - '0') <= 9
  // http://0x80.pl/articles/simd-parsing-int-sequences.html
  const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
  const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));

  if (vminvq_u16(mask) == 0xFFFF) {
    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
    return true;
  }
  else return false;
FASTFLOAT_SIMD_RESTORE_WARNINGS
#else
  (void)chars; (void)i;
  return false;
#endif // FASTFLOAT_SSE2
}

#endif // FASTFLOAT_HAS_SIMD

// dummy for compile
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>())>
bool simd_parse_if_eight_digits_unrolled(UC const*, uint64_t&) {
  return 0;
}


template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value)>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
void loop_parse_if_eight_digits(const UC*& p, const UC* const pend, uint64_t& i) {
  if (!has_simd_opt<UC>()) {
    return;
  }
  while ((std::distance(p, pend) >= 8) && simd_parse_if_eight_digits_unrolled(p, i)) { // in rare cases, this will overflow, but that's ok
    p += 8;
  }
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20
void loop_parse_if_eight_digits(const char*& p, const char* const pend, uint64_t& i) {
  // optimizes better than parse_if_eight_digits_unrolled() for UC = char.
  while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(read8_to_u64(p))) {
    i = i * 100000000 + parse_eight_digits_unrolled(read8_to_u64(p)); // in rare cases, this will overflow, but that's ok
    p += 8;
  }
}

template <typename UC>
struct parsed_number_string_t {
  int64_t exponent{0};
  uint64_t mantissa{0};
  UC const * lastmatch{nullptr};
  bool negative{false};
  bool valid{false};
  bool too_many_digits{false};
  // contains the range of the significant digits
  span<const UC> integer{};  // non-nullable
  span<const UC> fraction{}; // nullable
};

using byte_span = span<const char>;
using parsed_number_string = parsed_number_string_t<char>;

// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, parse_options_t<UC> options) noexcept {
  chars_format const fmt = options.format;
  UC const decimal_point = options.decimal_point;

  parsed_number_string_t<UC> answer;
  answer.valid = false;
  answer.too_many_digits = false;
  answer.negative = (*p == UC('-'));
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
  if ((*p == UC('-')) || (*p == UC('+'))) {
#else
  if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
#endif
    ++p;
    if (p == pend) {
      return answer;
    }
    if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
      return answer;
    }
  }
  UC const * const start_digits = p;

  uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)

  while ((p != pend) && is_integer(*p)) {
    // a multiplication by 10 is cheaper than an arbitrary integer
    // multiplication
    i = 10 * i +
        uint64_t(*p - UC('0')); // might overflow, we will handle the overflow later
    ++p;
  }
  UC const * const end_of_integer_part = p;
  int64_t digit_count = int64_t(end_of_integer_part - start_digits);
  answer.integer = span<const UC>(start_digits, size_t(digit_count));
  int64_t exponent = 0;
  if ((p != pend) && (*p == decimal_point)) {
    ++p;
    UC const * before = p;
    // can occur at most twice without overflowing, but let it occur more, since
    // for integers with many digits, digit parsing is the primary bottleneck.
    loop_parse_if_eight_digits(p, pend, i);

    while ((p != pend) && is_integer(*p)) {
      uint8_t digit = uint8_t(*p - UC('0'));
      ++p;
      i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
    }
    exponent = before - p;
    answer.fraction = span<const UC>(before, size_t(p - before));
    digit_count -= exponent;
  }
  // we must have encountered at least one integer!
  if (digit_count == 0) {
    return answer;
  }
  int64_t exp_number = 0;            // explicit exponential part
  if ((fmt & chars_format::scientific) && (p != pend) && ((UC('e') == *p) || (UC('E') == *p))) {
    UC const * location_of_e = p;
    ++p;
    bool neg_exp = false;
    if ((p != pend) && (UC('-') == *p)) {
      neg_exp = true;
      ++p;
    } else if ((p != pend) && (UC('+') == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
      ++p;
    }
    if ((p == pend) || !is_integer(*p)) {
      if(!(fmt & chars_format::fixed)) {
        // We are in error.
        return answer;
      }
      // Otherwise, we will be ignoring the 'e'.
      p = location_of_e;
    } else {
      while ((p != pend) && is_integer(*p)) {
        uint8_t digit = uint8_t(*p - UC('0'));
        if (exp_number < 0x10000000) {
          exp_number = 10 * exp_number + digit;
        }
        ++p;
      }
      if(neg_exp) { exp_number = - exp_number; }
      exponent += exp_number;
    }
  } else {
    // If it scientific and not fixed, we have to bail out.
    if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
  }
  answer.lastmatch = p;
  answer.valid = true;

  // If we frequently had to deal with long strings of digits,
  // we could extend our code by using a 128-bit integer instead
  // of a 64-bit integer. However, this is uncommon.
  //
  // We can deal with up to 19 digits.
  if (digit_count > 19) { // this is uncommon
    // It is possible that the integer had an overflow.
    // We have to handle the case where we have 0.0000somenumber.
    // We need to be mindful of the case where we only have zeroes...
    // E.g., 0.000000000...000.
    UC const * start = start_digits;
    while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
      if(*start == UC('0')) { digit_count --; }
      start++;
    }

    if (digit_count > 19) {
      answer.too_many_digits = true;
      // Let us start again, this time, avoiding overflows.
      // We don't need to check if is_integer, since we use the
      // pre-tokenized spans from above.
      i = 0;
      p = answer.integer.ptr;
      UC const* int_end = p + answer.integer.len();
      const uint64_t minimal_nineteen_digit_integer{ 1000000000000000000 };
      while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
        i = i * 10 + uint64_t(*p - UC('0'));
        ++p;
      }
      if (i >= minimal_nineteen_digit_integer) { // We have a big integers
        exponent = end_of_integer_part - p + exp_number;
      }
      else { // We have a value with a fractional component.
        p = answer.fraction.ptr;
        UC const* frac_end = p + answer.fraction.len();
        while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
          i = i * 10 + uint64_t(*p - UC('0'));
          ++p;
        }
        exponent = answer.fraction.ptr - p + exp_number;
      }
      // We have now corrected both exponent and i, to a truncated value
    }
  }
  answer.exponent = exponent;
  answer.mantissa = i;
  return answer;
}

} // namespace fast_float

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#endif