1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
#ifndef FASTFLOAT_BIGINT_H
#define FASTFLOAT_BIGINT_H
#include <algorithm>
#include <cstdint>
#include <climits>
#include <cstring>
#include "float_common.h"
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace fast_float {
// the limb width: we want efficient multiplication of double the bits in
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
// extract the high and low parts efficiently. this is every 64-bit
// architecture except for sparc, which emulates 128-bit multiplication.
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
// doing `8 * sizeof(limb)`.
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
#define FASTFLOAT_64BIT_LIMB 1
typedef uint64_t limb;
constexpr size_t limb_bits = 64;
#else
#define FASTFLOAT_32BIT_LIMB
typedef uint32_t limb;
constexpr size_t limb_bits = 32;
#endif
typedef span<limb> limb_span;
// number of bits in a bigint. this needs to be at least the number
// of bits required to store the largest bigint, which is
// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
// ~3600 bits, so we round to 4000.
constexpr size_t bigint_bits = 4000;
constexpr size_t bigint_limbs = bigint_bits / limb_bits;
// vector-like type that is allocated on the stack. the entire
// buffer is pre-allocated, and only the length changes.
template <uint16_t size>
struct stackvec {
limb data[size];
// we never need more than 150 limbs
uint16_t length{0};
stackvec() = default;
stackvec(const stackvec &) = delete;
stackvec &operator=(const stackvec &) = delete;
stackvec(stackvec &&) = delete;
stackvec &operator=(stackvec &&other) = delete;
// create stack vector from existing limb span.
FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
FASTFLOAT_ASSERT(try_extend(s));
}
FASTFLOAT_CONSTEXPR14 limb& operator[](size_t index) noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
FASTFLOAT_CONSTEXPR14 const limb& operator[](size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
// index from the end of the container
FASTFLOAT_CONSTEXPR14 const limb& rindex(size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
size_t rindex = length - index - 1;
return data[rindex];
}
// set the length, without bounds checking.
FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
length = uint16_t(len);
}
constexpr size_t len() const noexcept {
return length;
}
constexpr bool is_empty() const noexcept {
return length == 0;
}
constexpr size_t capacity() const noexcept {
return size;
}
// append item to vector, without bounds checking
FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
data[length] = value;
length++;
}
// append item to vector, returning if item was added
FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
if (len() < capacity()) {
push_unchecked(value);
return true;
} else {
return false;
}
}
// add items to the vector, from a span, without bounds checking
FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
limb* ptr = data + length;
std::copy_n(s.ptr, s.len(), ptr);
set_len(len() + s.len());
}
// try to add items to the vector, returning if items were added
FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
if (len() + s.len() <= capacity()) {
extend_unchecked(s);
return true;
} else {
return false;
}
}
// resize the vector, without bounds checking
// if the new size is longer than the vector, assign value to each
// appended item.
FASTFLOAT_CONSTEXPR20
void resize_unchecked(size_t new_len, limb value) noexcept {
if (new_len > len()) {
size_t count = new_len - len();
limb* first = data + len();
limb* last = first + count;
::std::fill(first, last, value);
set_len(new_len);
} else {
set_len(new_len);
}
}
// try to resize the vector, returning if the vector was resized.
FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
if (new_len > capacity()) {
return false;
} else {
resize_unchecked(new_len, value);
return true;
}
}
// check if any limbs are non-zero after the given index.
// this needs to be done in reverse order, since the index
// is relative to the most significant limbs.
FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
while (index < len()) {
if (rindex(index) != 0) {
return true;
}
index++;
}
return false;
}
// normalize the big integer, so most-significant zero limbs are removed.
FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
while (len() > 0 && rindex(0) == 0) {
length--;
}
}
};
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
uint64_t empty_hi64(bool& truncated) noexcept {
truncated = false;
return 0;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept {
truncated = false;
int shl = leading_zeroes(r0);
return r0 << shl;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept {
int shl = leading_zeroes(r0);
if (shl == 0) {
truncated = r1 != 0;
return r0;
} else {
int shr = 64 - shl;
truncated = (r1 << shl) != 0;
return (r0 << shl) | (r1 >> shr);
}
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept {
return uint64_hi64(r0, truncated);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
return uint64_hi64((x0 << 32) | x1, truncated);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
uint64_t x2 = r2;
return uint64_hi64(x0, (x1 << 32) | x2, truncated);
}
// add two small integers, checking for overflow.
// we want an efficient operation. for msvc, where
// we don't have built-in intrinsics, this is still
// pretty fast.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
limb scalar_add(limb x, limb y, bool& overflow) noexcept {
limb z;
// gcc and clang
#if defined(__has_builtin)
#if __has_builtin(__builtin_add_overflow)
if (!cpp20_and_in_constexpr()) {
overflow = __builtin_add_overflow(x, y, &z);
return z;
}
#endif
#endif
// generic, this still optimizes correctly on MSVC.
z = x + y;
overflow = z < x;
return z;
}
// multiply two small integers, getting both the high and low bits.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
limb scalar_mul(limb x, limb y, limb& carry) noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
#if defined(__SIZEOF_INT128__)
// GCC and clang both define it as an extension.
__uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#else
// fallback, no native 128-bit integer multiplication with carry.
// on msvc, this optimizes identically, somehow.
value128 z = full_multiplication(x, y);
bool overflow;
z.low = scalar_add(z.low, carry, overflow);
z.high += uint64_t(overflow); // cannot overflow
carry = z.high;
return z.low;
#endif
#else
uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#endif
}
// add scalar value to bigint starting from offset.
// used in grade school multiplication
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20
bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept {
size_t index = start;
limb carry = y;
bool overflow;
while (carry != 0 && index < vec.len()) {
vec[index] = scalar_add(vec[index], carry, overflow);
carry = limb(overflow);
index += 1;
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add scalar value to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool small_add(stackvec<size>& vec, limb y) noexcept {
return small_add_from(vec, y, 0);
}
// multiply bigint by scalar value.
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20
bool small_mul(stackvec<size>& vec, limb y) noexcept {
limb carry = 0;
for (size_t index = 0; index < vec.len(); index++) {
vec[index] = scalar_mul(vec[index], y, carry);
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add bigint to bigint starting from index.
// used in grade school multiplication
template <uint16_t size>
FASTFLOAT_CONSTEXPR20
bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept {
// the effective x buffer is from `xstart..x.len()`, so exit early
// if we can't get that current range.
if (x.len() < start || y.len() > x.len() - start) {
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
}
bool carry = false;
for (size_t index = 0; index < y.len(); index++) {
limb xi = x[index + start];
limb yi = y[index];
bool c1 = false;
bool c2 = false;
xi = scalar_add(xi, yi, c1);
if (carry) {
xi = scalar_add(xi, 1, c2);
}
x[index + start] = xi;
carry = c1 | c2;
}
// handle overflow
if (carry) {
FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
}
return true;
}
// add bigint to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool large_add_from(stackvec<size>& x, limb_span y) noexcept {
return large_add_from(x, y, 0);
}
// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20
bool long_mul(stackvec<size>& x, limb_span y) noexcept {
limb_span xs = limb_span(x.data, x.len());
stackvec<size> z(xs);
limb_span zs = limb_span(z.data, z.len());
if (y.len() != 0) {
limb y0 = y[0];
FASTFLOAT_TRY(small_mul(x, y0));
for (size_t index = 1; index < y.len(); index++) {
limb yi = y[index];
stackvec<size> zi;
if (yi != 0) {
// re-use the same buffer throughout
zi.set_len(0);
FASTFLOAT_TRY(zi.try_extend(zs));
FASTFLOAT_TRY(small_mul(zi, yi));
limb_span zis = limb_span(zi.data, zi.len());
FASTFLOAT_TRY(large_add_from(x, zis, index));
}
}
}
x.normalize();
return true;
}
// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20
bool large_mul(stackvec<size>& x, limb_span y) noexcept {
if (y.len() == 1) {
FASTFLOAT_TRY(small_mul(x, y[0]));
} else {
FASTFLOAT_TRY(long_mul(x, y));
}
return true;
}
template <typename = void>
struct pow5_tables {
static constexpr uint32_t large_step = 135;
static constexpr uint64_t small_power_of_5[] = {
1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL,
1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL,
6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL,
3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL,
2384185791015625UL, 11920928955078125UL, 59604644775390625UL,
298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL,
};
#ifdef FASTFLOAT_64BIT_LIMB
constexpr static limb large_power_of_5[] = {
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
10482974169319127550UL, 198276706040285095UL};
#else
constexpr static limb large_power_of_5[] = {
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
#endif
};
template <typename T>
constexpr uint32_t pow5_tables<T>::large_step;
template <typename T>
constexpr uint64_t pow5_tables<T>::small_power_of_5[];
template <typename T>
constexpr limb pow5_tables<T>::large_power_of_5[];
// big integer type. implements a small subset of big integer
// arithmetic, using simple algorithms since asymptotically
// faster algorithms are slower for a small number of limbs.
// all operations assume the big-integer is normalized.
struct bigint : pow5_tables<> {
// storage of the limbs, in little-endian order.
stackvec<bigint_limbs> vec;
FASTFLOAT_CONSTEXPR20 bigint(): vec() {}
bigint(const bigint &) = delete;
bigint &operator=(const bigint &) = delete;
bigint(bigint &&) = delete;
bigint &operator=(bigint &&other) = delete;
FASTFLOAT_CONSTEXPR20 bigint(uint64_t value): vec() {
#ifdef FASTFLOAT_64BIT_LIMB
vec.push_unchecked(value);
#else
vec.push_unchecked(uint32_t(value));
vec.push_unchecked(uint32_t(value >> 32));
#endif
vec.normalize();
}
// get the high 64 bits from the vector, and if bits were truncated.
// this is to get the significant digits for the float.
FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool& truncated) const noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint64_hi64(vec.rindex(0), truncated);
} else {
uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
truncated |= vec.nonzero(2);
return result;
}
#else
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint32_hi64(vec.rindex(0), truncated);
} else if (vec.len() == 2) {
return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
} else {
uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
truncated |= vec.nonzero(3);
return result;
}
#endif
}
// compare two big integers, returning the large value.
// assumes both are normalized. if the return value is
// negative, other is larger, if the return value is
// positive, this is larger, otherwise they are equal.
// the limbs are stored in little-endian order, so we
// must compare the limbs in ever order.
FASTFLOAT_CONSTEXPR20 int compare(const bigint& other) const noexcept {
if (vec.len() > other.vec.len()) {
return 1;
} else if (vec.len() < other.vec.len()) {
return -1;
} else {
for (size_t index = vec.len(); index > 0; index--) {
limb xi = vec[index - 1];
limb yi = other.vec[index - 1];
if (xi > yi) {
return 1;
} else if (xi < yi) {
return -1;
}
}
return 0;
}
}
// shift left each limb n bits, carrying over to the new limb
// returns true if we were able to shift all the digits.
FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
// Internally, for each item, we shift left by n, and add the previous
// right shifted limb-bits.
// For example, we transform (for u8) shifted left 2, to:
// b10100100 b01000010
// b10 b10010001 b00001000
FASTFLOAT_DEBUG_ASSERT(n != 0);
FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
size_t shl = n;
size_t shr = limb_bits - shl;
limb prev = 0;
for (size_t index = 0; index < vec.len(); index++) {
limb xi = vec[index];
vec[index] = (xi << shl) | (prev >> shr);
prev = xi;
}
limb carry = prev >> shr;
if (carry != 0) {
return vec.try_push(carry);
}
return true;
}
// move the limbs left by `n` limbs.
FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
FASTFLOAT_DEBUG_ASSERT(n != 0);
if (n + vec.len() > vec.capacity()) {
return false;
} else if (!vec.is_empty()) {
// move limbs
limb* dst = vec.data + n;
const limb* src = vec.data;
std::copy_backward(src, src + vec.len(), dst + vec.len());
// fill in empty limbs
limb* first = vec.data;
limb* last = first + n;
::std::fill(first, last, 0);
vec.set_len(n + vec.len());
return true;
} else {
return true;
}
}
// move the limbs left by `n` bits.
FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
size_t rem = n % limb_bits;
size_t div = n / limb_bits;
if (rem != 0) {
FASTFLOAT_TRY(shl_bits(rem));
}
if (div != 0) {
FASTFLOAT_TRY(shl_limbs(div));
}
return true;
}
// get the number of leading zeros in the bigint.
FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
if (vec.is_empty()) {
return 0;
} else {
#ifdef FASTFLOAT_64BIT_LIMB
return leading_zeroes(vec.rindex(0));
#else
// no use defining a specialized leading_zeroes for a 32-bit type.
uint64_t r0 = vec.rindex(0);
return leading_zeroes(r0 << 32);
#endif
}
}
// get the number of bits in the bigint.
FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
int lz = ctlz();
return int(limb_bits * vec.len()) - lz;
}
FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept {
return small_mul(vec, y);
}
FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept {
return small_add(vec, y);
}
// multiply as if by 2 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept {
return shl(exp);
}
// multiply as if by 5 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
// multiply by a power of 5
size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
limb_span large = limb_span(large_power_of_5, large_length);
while (exp >= large_step) {
FASTFLOAT_TRY(large_mul(vec, large));
exp -= large_step;
}
#ifdef FASTFLOAT_64BIT_LIMB
uint32_t small_step = 27;
limb max_native = 7450580596923828125UL;
#else
uint32_t small_step = 13;
limb max_native = 1220703125U;
#endif
while (exp >= small_step) {
FASTFLOAT_TRY(small_mul(vec, max_native));
exp -= small_step;
}
if (exp != 0) {
// Work around clang bug https://godbolt.org/z/zedh7rrhc
// This is similar to https://github.com/llvm/llvm-project/issues/47746,
// except the workaround described there don't work here
FASTFLOAT_TRY(
small_mul(vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))
);
}
return true;
}
// multiply as if by 10 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
FASTFLOAT_TRY(pow5(exp));
return pow2(exp);
}
};
} // namespace fast_float
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#endif
|