1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H
#include "ascii_number.h"
#include "decimal_to_binary.h"
#include "digit_comparison.h"
#include "float_common.h"
#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>
namespace fast_float {
namespace detail {
/**
* Special case +inf, -inf, nan, infinity, -infinity.
* The case comparisons could be made much faster given that we know that the
* strings a null-free and fixed.
**/
template <typename T, typename UC>
from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14
parse_infnan(UC const * first, UC const * last, T &value) noexcept {
from_chars_result_t<UC> answer{};
answer.ptr = first;
answer.ec = std::errc(); // be optimistic
bool minusSign = false;
if (*first == UC('-')) { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
minusSign = true;
++first;
}
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if (*first == UC('+')) {
++first;
}
#endif
if (last - first >= 3) {
if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
answer.ptr = (first += 3);
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
if(first != last && *first == UC('(')) {
for(UC const * ptr = first + 1; ptr != last; ++ptr) {
if (*ptr == UC(')')) {
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
break;
}
else if(!((UC('a') <= *ptr && *ptr <= UC('z')) || (UC('A') <= *ptr && *ptr <= UC('Z')) || (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
break; // forbidden char, not nan(n-char-seq-opt)
}
}
return answer;
}
if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
answer.ptr = first + 8;
} else {
answer.ptr = first + 3;
}
value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
return answer;
}
}
answer.ec = std::errc::invalid_argument;
return answer;
}
/**
* Returns true if the floating-pointing rounding mode is to 'nearest'.
* It is the default on most system. This function is meant to be inexpensive.
* Credit : @mwalcott3
*/
fastfloat_really_inline bool rounds_to_nearest() noexcept {
// https://lemire.me/blog/2020/06/26/gcc-not-nearest/
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return false;
#endif
// See
// A fast function to check your floating-point rounding mode
// https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
//
// This function is meant to be equivalent to :
// prior: #include <cfenv>
// return fegetround() == FE_TONEAREST;
// However, it is expected to be much faster than the fegetround()
// function call.
//
// The volatile keywoard prevents the compiler from computing the function
// at compile-time.
// There might be other ways to prevent compile-time optimizations (e.g., asm).
// The value does not need to be std::numeric_limits<float>::min(), any small
// value so that 1 + x should round to 1 would do (after accounting for excess
// precision, as in 387 instructions).
static volatile float fmin = std::numeric_limits<float>::min();
float fmini = fmin; // we copy it so that it gets loaded at most once.
//
// Explanation:
// Only when fegetround() == FE_TONEAREST do we have that
// fmin + 1.0f == 1.0f - fmin.
//
// FE_UPWARD:
// fmin + 1.0f > 1
// 1.0f - fmin == 1
//
// FE_DOWNWARD or FE_TOWARDZERO:
// fmin + 1.0f == 1
// 1.0f - fmin < 1
//
// Note: This may fail to be accurate if fast-math has been
// enabled, as rounding conventions may not apply.
#ifdef FASTFLOAT_VISUAL_STUDIO
# pragma warning(push)
// todo: is there a VS warning?
// see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
#elif defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wfloat-equal"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
return (fmini + 1.0f == 1.0f - fmini);
#ifdef FASTFLOAT_VISUAL_STUDIO
# pragma warning(pop)
#elif defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
}
} // namespace detail
template<typename T, typename UC>
FASTFLOAT_CONSTEXPR20
from_chars_result_t<UC> from_chars(UC const * first, UC const * last,
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
return from_chars_advanced(first, last, value, parse_options_t<UC>{fmt});
}
template<typename T, typename UC>
FASTFLOAT_CONSTEXPR20
from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
T &value, parse_options_t<UC> options) noexcept {
static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");
static_assert (std::is_same<UC, char>::value ||
std::is_same<UC, wchar_t>::value ||
std::is_same<UC, char16_t>::value ||
std::is_same<UC, char32_t>::value , "only char, wchar_t, char16_t and char32_t are supported");
from_chars_result_t<UC> answer;
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
while ((first != last) && fast_float::is_space(uint8_t(*first))) {
first++;
}
#endif
if (first == last) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
parsed_number_string_t<UC> pns = parse_number_string<UC>(first, last, options);
if (!pns.valid) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
answer.ec = std::errc(); // be optimistic
answer.ptr = pns.lastmatch;
// The implementation of the Clinger's fast path is convoluted because
// we want round-to-nearest in all cases, irrespective of the rounding mode
// selected on the thread.
// We proceed optimistically, assuming that detail::rounds_to_nearest() returns
// true.
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && !pns.too_many_digits) {
// Unfortunately, the conventional Clinger's fast path is only possible
// when the system rounds to the nearest float.
//
// We expect the next branch to almost always be selected.
// We could check it first (before the previous branch), but
// there might be performance advantages at having the check
// be last.
if(!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
// We have that fegetround() == FE_TONEAREST.
// Next is Clinger's fast path.
if (pns.mantissa <=binary_format<T>::max_mantissa_fast_path()) {
value = T(pns.mantissa);
if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
if (pns.negative) { value = -value; }
return answer;
}
} else {
// We do not have that fegetround() == FE_TONEAREST.
// Next is a modified Clinger's fast path, inspired by Jakub JelĂnek's proposal
if (pns.exponent >= 0 && pns.mantissa <=binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
#if defined(__clang__)
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
if(pns.mantissa == 0) {
value = pns.negative ? -0. : 0.;
return answer;
}
#endif
value = T(pns.mantissa) * binary_format<T>::exact_power_of_ten(pns.exponent);
if (pns.negative) { value = -value; }
return answer;
}
}
}
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
if(pns.too_many_digits && am.power2 >= 0) {
if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
}
}
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
// then we need to go the long way around again. This is very uncommon.
if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
to_float(pns.negative, am, value);
// Test for over/underflow.
if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || am.power2 == binary_format<T>::infinite_power()) {
answer.ec = std::errc::result_out_of_range;
}
return answer;
}
} // namespace fast_float
#endif
|