1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
/*
* Copyright (C) 2024 Apple Inc. All rights reserved.
* Copyright (C) 2011 the V8 project authors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <limits>
#include <wtf/text/StringCommon.h>
#include <wtf/text/StringView.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace WTF {
//---------------------------------------------------------------------
// String Search object.
//---------------------------------------------------------------------
// Class holding constants and methods that apply to all string search variants,
// independently of subject and pattern char size.
class AdaptiveStringSearcherBase {
WTF_MAKE_FAST_ALLOCATED;
public:
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables. For a needle longer than this limit,
// search will not be optimal, since we only build tables for a suffix
// of the string, but it is a safe approximation.
static constexpr int bmMaxShift = 250;
// Reduce alphabet to this size.
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
// proportional to the input alphabet. We reduce the alphabet size by
// equating input characters modulo a smaller alphabet size. This gives
// a potentially less efficient searching, but is a safe approximation.
// For needles using only characters in the same Unicode 256-code point page,
// there is no search speed degradation.
static constexpr int latin1AlphabetSize = 256;
static constexpr int ucharAlphabetSize = 256;
// Bad-char shift table stored in the state. It's length is the alphabet size.
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static constexpr int bmMinPatternLength = 7;
static constexpr bool exceedsOneByte(LChar) { return false; }
static constexpr bool exceedsOneByte(UChar c) { return c > 0xff; }
template <typename PatternChar, typename SubjectChar>
static inline int findFirstCharacter(std::span<const PatternChar> pattern, std::span<const SubjectChar> subject, int index)
{
const auto* subjectPtr = subject.data();
PatternChar patternFirstChar = pattern[0];
if constexpr (sizeof(PatternChar) == 2 && sizeof(SubjectChar) == 1) {
if (!isLatin1(patternFirstChar))
return -1;
}
const int maxN = (subject.size() - pattern.size() + 1);
const SubjectChar searchCharacter = static_cast<SubjectChar>(patternFirstChar);
const auto* start = subjectPtr + index;
const auto searchLength = maxN - index;
const SubjectChar* charPos = nullptr;
ASSERT(maxN - index >= 0);
if constexpr (sizeof(SubjectChar) == 2)
charPos = std::bit_cast<const SubjectChar*>(find16(std::bit_cast<const uint16_t*>(start), searchCharacter, searchLength));
else
charPos = std::bit_cast<const SubjectChar*>(find8(std::bit_cast<const uint8_t*>(start), searchCharacter, searchLength));
if (charPos == nullptr)
return -1;
return static_cast<int>(charPos - subjectPtr);
}
};
class AdaptiveStringSearcherTables {
WTF_MAKE_FAST_ALLOCATED;
public:
int* badCharShiftTable() { return m_badCharShiftTable.data(); }
int* goodSuffixShiftTable() { return m_goodSuffixShiftTable.data(); }
int* suffixTable() { return m_suffixTable.data(); }
private:
std::array<int, AdaptiveStringSearcherBase::ucharAlphabetSize> m_badCharShiftTable { };
std::array<int, AdaptiveStringSearcherBase::bmMaxShift> m_goodSuffixShiftTable { };
std::array<int, AdaptiveStringSearcherBase::bmMaxShift + 1> m_suffixTable { };
};
template <typename PatternChar, typename SubjectChar>
class AdaptiveStringSearcher : private AdaptiveStringSearcherBase {
public:
AdaptiveStringSearcher(AdaptiveStringSearcherTables& tables, std::span<const PatternChar> pattern)
: m_tables(tables)
, m_pattern(pattern)
, m_start(std::max<int>(0, pattern.size() - bmMaxShift))
{
if (sizeof(PatternChar) > sizeof(SubjectChar)) {
if (!charactersAreAllLatin1(m_pattern)) {
m_strategy = &failSearch;
return;
}
}
int patternLength = m_pattern.size();
if (patternLength < bmMinPatternLength) {
if (patternLength == 1) {
m_strategy = &singleCharSearch;
return;
}
m_strategy = &linearSearch;
return;
}
m_strategy = &initialSearch;
}
int search(std::span<const SubjectChar> subject, int index)
{
return m_strategy(*this, subject, index);
}
static constexpr int alphabetSize()
{
if constexpr (sizeof(PatternChar) == 1) {
// Latin1 needle.
return latin1AlphabetSize;
} else {
ASSERT_UNDER_CONSTEXPR_CONTEXT(sizeof(PatternChar) == 2);
// UC16 needle.
return ucharAlphabetSize;
}
}
private:
using SearchFunction = int (*)(AdaptiveStringSearcher<PatternChar, SubjectChar>&, std::span<const SubjectChar>, int);
static int failSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>&, std::span<const SubjectChar>, int)
{
return -1;
}
static int singleCharSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>&, std::span<const SubjectChar>, int startIndex);
static int linearSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>&, std::span<const SubjectChar>, int startIndex);
static int initialSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>&, std::span<const SubjectChar>, int startIndex);
static int boyerMooreHorspoolSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>&, std::span<const SubjectChar>, int startIndex);
static int boyerMooreSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>&, std::span<const SubjectChar>, int startIndex);
void populateBoyerMooreHorspoolTable();
void populateBoyerMooreTable();
static inline int charOccurrence(int* badCharOccurrence, SubjectChar charCode)
{
if constexpr (sizeof(SubjectChar) == 1)
return badCharOccurrence[static_cast<int>(charCode)];
if constexpr (sizeof(PatternChar) == 1) {
if (exceedsOneByte(charCode))
return -1;
return badCharOccurrence[static_cast<unsigned>(charCode)];
}
// Both pattern and subject are UC16. Reduce character to equivalence
// class.
int equivClass = charCode % ucharAlphabetSize;
return badCharOccurrence[equivClass];
}
// The following tables are shared by all searches.
// TODO(lrn): Introduce a way for a pattern to keep its tables
// between searches (e.g., for an Atom RegExp).
// Store for the BoyerMoore(Horspool) bad char shift table.
// Return a table covering the last bmMaxShift+1 positions of
// pattern.
int* badCharTable() { return m_tables.badCharShiftTable(); }
// Store for the BoyerMoore good suffix shift table.
int* goodSuffixShiftTable()
{
// Return biased pointer that maps the range [m_start..m_pattern.size()
// to the kGoodSuffixShiftTable array.
return m_tables.goodSuffixShiftTable() - m_start;
}
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
int* suffixTable()
{
// Return biased pointer that maps the range [m_start..m_pattern.size()
// to the kSuffixTable array.
return m_tables.suffixTable() - m_start;
}
AdaptiveStringSearcherTables& m_tables;
// The pattern to search for.
std::span<const PatternChar> m_pattern;
// Pointer to implementation of the search.
SearchFunction m_strategy;
// Cache value of max(0, pattern_size() - bmMaxShift)
int m_start;
};
//---------------------------------------------------------------------
// Single Character Pattern Search Strategy
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
int AdaptiveStringSearcher<PatternChar, SubjectChar>::singleCharSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>& search, std::span<const SubjectChar> subject, int index)
{
ASSERT(search.m_pattern.size() == 1);
PatternChar patternFirstChar = search.m_pattern[0];
if constexpr (sizeof(PatternChar) > sizeof(SubjectChar)) {
if (exceedsOneByte(patternFirstChar))
return -1;
}
return findFirstCharacter(search.m_pattern, subject, index);
}
//---------------------------------------------------------------------
// Linear Search Strategy
//---------------------------------------------------------------------
// Simple linear search for short patterns. Never bails out.
template <typename PatternChar, typename SubjectChar>
int AdaptiveStringSearcher<PatternChar, SubjectChar>::linearSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>& search, std::span<const SubjectChar> subject, int index)
{
auto charCompare = [](const PatternChar* pattern, const SubjectChar* subject, int length) ALWAYS_INLINE_LAMBDA {
ASSERT(length > 0);
int pos = 0;
do {
if (pattern[pos] != subject[pos])
return false;
pos++;
} while (pos < length);
return true;
};
std::span<const PatternChar> pattern = search.m_pattern;
ASSERT(pattern.size() > 1);
int patternLength = pattern.size();
int i = index;
int n = subject.size() - patternLength;
while (i <= n) {
i = findFirstCharacter(pattern, subject, i);
if (i == -1)
return -1;
ASSERT(i <= n);
i++;
// Loop extracted to separate function to allow using return to do
// a deeper break.
if (charCompare(pattern.data() + 1, subject.data() + i, patternLength - 1))
return i - 1;
}
return -1;
}
//---------------------------------------------------------------------
// Boyer-Moore string search
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
int AdaptiveStringSearcher<PatternChar, SubjectChar>::boyerMooreSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>& search, std::span<const SubjectChar> subject, int startIndex)
{
std::span<const PatternChar> pattern = search.m_pattern;
const auto* subjectPtr = subject.data();
const auto* patternPtr = pattern.data();
int subjectLength = subject.size();
int patternLength = pattern.size();
// Only preprocess at most bmMaxShift last characters of pattern.
int start = search.m_start;
int* badCharOccurrence = search.badCharTable();
int* goodSuffixShift = search.goodSuffixShiftTable();
PatternChar lastChar = patternPtr[patternLength - 1];
int index = startIndex;
// Continue search from i.
while (index <= subjectLength - patternLength) {
int j = patternLength - 1;
int c;
while (lastChar != (c = subjectPtr[index + j])) {
int shift = j - charOccurrence(badCharOccurrence, c);
index += shift;
if (index > subjectLength - patternLength)
return -1;
}
while (j >= 0 && patternPtr[j] == (c = subjectPtr[index + j]))
j--;
if (j < 0)
return index;
if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
index += patternLength - 1 - charOccurrence(badCharOccurrence, static_cast<SubjectChar>(lastChar));
} else {
int gsShift = goodSuffixShift[j + 1];
int bcOcc = charOccurrence(badCharOccurrence, c);
int shift = j - bcOcc;
if (gsShift > shift)
shift = gsShift;
index += shift;
}
}
return -1;
}
template <typename PatternChar, typename SubjectChar>
void AdaptiveStringSearcher<PatternChar, SubjectChar>::populateBoyerMooreTable()
{
const auto* patternPtr = m_pattern.data();
int patternLength = m_pattern.size();
// Only look at the last bmMaxShift characters of pattern (from m_start
// to patternLength).
int start = m_start;
int length = patternLength - start;
// Biased tables so that we can use pattern indices as table indices,
// even if we only cover the part of the pattern from offset start.
int* shiftTable = goodSuffixShiftTable();
int* suffixTable = this->suffixTable();
// Initialize table.
for (int i = start; i < patternLength; i++)
shiftTable[i] = length;
shiftTable[patternLength] = 1;
suffixTable[patternLength] = patternLength + 1;
if (patternLength <= start)
return;
// Find suffixes.
PatternChar lastChar = patternPtr[patternLength - 1];
int suffix = patternLength + 1;
{
int i = patternLength;
while (i > start) {
PatternChar c = patternPtr[i - 1];
while (suffix <= patternLength && c != patternPtr[suffix - 1]) {
if (shiftTable[suffix] == length)
shiftTable[suffix] = suffix - i;
suffix = suffixTable[suffix];
}
suffixTable[--i] = --suffix;
if (suffix == patternLength) {
// No suffix to extend, so we check against lastChar only.
while ((i > start) && (patternPtr[i - 1] != lastChar)) {
if (shiftTable[patternLength] == length)
shiftTable[patternLength] = patternLength - i;
suffixTable[--i] = patternLength;
}
if (i > start)
suffixTable[--i] = --suffix;
}
}
}
// Build shift table using suffixes.
if (suffix < patternLength) {
for (int i = start; i <= patternLength; i++) {
if (shiftTable[i] == length)
shiftTable[i] = suffix - start;
if (i == suffix)
suffix = suffixTable[suffix];
}
}
}
//---------------------------------------------------------------------
// Boyer-Moore-Horspool string search.
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
int AdaptiveStringSearcher<PatternChar, SubjectChar>::boyerMooreHorspoolSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>& search, std::span<const SubjectChar> subject, int startIndex)
{
std::span<const PatternChar> pattern = search.m_pattern;
const auto* subjectPtr = subject.data();
const auto* patternPtr = pattern.data();
int subjectLength = subject.size();
int patternLength = pattern.size();
int* charOccurrences = search.badCharTable();
int badness = -patternLength;
// How bad we are doing without a good-suffix table.
PatternChar lastChar = patternPtr[patternLength - 1];
int lastCharShift = patternLength - 1 - charOccurrence(charOccurrences, static_cast<SubjectChar>(lastChar));
// Perform search
int index = startIndex; // No matches found prior to this index.
while (index <= subjectLength - patternLength) {
int j = patternLength - 1;
int subjectChar;
while (lastChar != (subjectChar = subjectPtr[index + j])) {
int bcOcc = charOccurrence(charOccurrences, subjectChar);
int shift = j - bcOcc;
index += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (index > subjectLength - patternLength)
return -1;
}
j--;
while (j >= 0 && patternPtr[j] == (subjectPtr[index + j]))
j--;
if (j < 0)
return index;
index += lastCharShift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (patternLength - j) - lastCharShift;
if (badness > 0) {
search.populateBoyerMooreTable();
search.m_strategy = &boyerMooreSearch;
return boyerMooreSearch(search, subject, index);
}
}
return -1;
}
template <typename PatternChar, typename SubjectChar>
void AdaptiveStringSearcher<PatternChar, SubjectChar>::populateBoyerMooreHorspoolTable()
{
int patternLength = m_pattern.size();
int* badCharOccurrence = badCharTable();
// Only preprocess at most bmMaxShift last characters of pattern.
int start = m_start;
// Run forwards to populate badCharTable, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
int tableSize = alphabetSize();
if (!start) // All patterns less than bmMaxShift in length.
memset(badCharOccurrence, -1, tableSize * sizeof(*badCharOccurrence));
else {
for (int i = 0; i < tableSize; i++)
badCharOccurrence[i] = start - 1;
}
const auto* patternPtr = m_pattern.data();
for (int i = start; i < patternLength - 1; i++) {
PatternChar c = patternPtr[i];
int bucket = (sizeof(PatternChar) == 1) ? c : c % alphabetSize();
badCharOccurrence[bucket] = i;
}
}
//---------------------------------------------------------------------
// Linear string search with bailout to BMH.
//---------------------------------------------------------------------
// Simple linear search for short patterns, which bails out if the string
// isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
template <typename PatternChar, typename SubjectChar>
int AdaptiveStringSearcher<PatternChar, SubjectChar>::initialSearch(AdaptiveStringSearcher<PatternChar, SubjectChar>& search, std::span<const SubjectChar> subject, int index)
{
std::span<const PatternChar> pattern = search.m_pattern;
const auto* subjectPtr = subject.data();
const auto* patternPtr = pattern.data();
int patternLength = pattern.size();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int badness = -10 - (patternLength << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
for (int i = index, n = subject.size() - patternLength; i <= n; i++) {
badness++;
if (badness <= 0) {
i = findFirstCharacter(pattern, subject, i);
if (i == -1)
return -1;
ASSERT(i <= n);
int j = 1;
do {
if (patternPtr[j] != subjectPtr[i + j])
break;
j++;
} while (j < patternLength);
if (j == patternLength)
return i;
badness += j;
} else {
search.populateBoyerMooreHorspoolTable();
search.m_strategy = &boyerMooreHorspoolSearch;
return boyerMooreHorspoolSearch(search, subject, i);
}
}
return -1;
}
// Perform a a single stand-alone search.
// If searching multiple times for the same pattern, a search
// object should be constructed once and the Search function then called
// for each search.
template <typename SubjectChar, typename PatternChar>
int searchString(AdaptiveStringSearcherTables& tables, std::span<const SubjectChar> subject, std::span<const PatternChar> pattern, int startIndex)
{
AdaptiveStringSearcher<PatternChar, SubjectChar> search(tables, pattern);
return search.search(subject, startIndex);
}
} // namespace WTF
using WTF::AdaptiveStringSearcher;
using WTF::AdaptiveStringSearcherTables;
using WTF::searchString;
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|