File: StringConcatenate.h

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (650 lines) | stat: -rw-r--r-- 20,833 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/*
 * Copyright (C) 2010-2024 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#pragma once

#include <atomic>
#include <cstring>
#include <functional>
#include <wtf/CheckedArithmetic.h>
#include <wtf/StdLibExtras.h>
#include <wtf/text/AtomString.h>
#include <wtf/text/StringView.h>

#if defined(NDEBUG)
#define WTF_STRINGTYPEADAPTER_COPIED_WTF_STRING() do { } while (0)
#else
#define WTF_STRINGTYPEADAPTER_COPIED_WTF_STRING() do { ++WTF::Detail::wtfStringCopyCount; } while (0)
namespace WTF::Detail {
// This variable is helpful for testing how many intermediate Strings are created while evaluating an
// expression containing operator+.
WTF_EXPORT_PRIVATE extern std::atomic<int> wtfStringCopyCount;
}
#endif

namespace WTF {

class StringBuilder;

/// A type is `StringTypeAdaptable` if there is a specialization of `StringTypeAdapter` for that type.
template<typename StringType> concept StringTypeAdaptable = requires {
    typename StringTypeAdapter<StringType>;
};

template<> class StringTypeAdapter<char, void> {
public:
    StringTypeAdapter(char character)
        : m_character { character }
    {
    }

    unsigned length() const { return 1; }
    bool is8Bit() const { return true; }
    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const { destination[0] = m_character; }

private:
    char m_character;
};

template<> class StringTypeAdapter<UChar, void> {
public:
    StringTypeAdapter(UChar character)
        : m_character { character }
    {
    }

    unsigned length() const { return 1; }
    bool is8Bit() const { return isLatin1(m_character); }

    void writeTo(std::span<LChar> destination) const
    {
        ASSERT(is8Bit());
        destination[0] = m_character;
    }

    void writeTo(std::span<UChar> destination) const { destination[0] = m_character; }

private:
    UChar m_character;
};

template<> class StringTypeAdapter<char32_t, void> {
public:
    StringTypeAdapter(char32_t character)
        : m_character { character }
    {
    }

    unsigned length() const { return U16_LENGTH(m_character); }
    bool is8Bit() const { return isLatin1(m_character); }

    void writeTo(std::span<LChar> destination) const
    {
        ASSERT(is8Bit());
        destination[0] = m_character;
    }

    void writeTo(std::span<UChar> destination) const
    {
        if (U_IS_BMP(m_character)) {
            destination[0] = m_character;
            return;
        }
        destination[0] = U16_LEAD(m_character);
        destination[1] = U16_TRAIL(m_character);
    }

private:
    char32_t m_character;
};

template<> class StringTypeAdapter<const LChar*, void> {
public:
    StringTypeAdapter(const LChar* characters)
        : m_characters { unsafeSpan(characters) }
    {
        RELEASE_ASSERT(m_characters.size() <= String::MaxLength);
    }

    unsigned length() const { return m_characters.size(); }
    bool is8Bit() const { return true; }
    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const { StringImpl::copyCharacters(destination, m_characters); }

private:
    std::span<const LChar> m_characters;
};

template<> class StringTypeAdapter<const UChar*, void> {
public:
    StringTypeAdapter(const UChar* characters)
        : m_characters { unsafeSpan(characters) }
    {
        RELEASE_ASSERT(m_characters.size() <= String::MaxLength);
    }

    unsigned length() const { return m_characters.size(); }
    bool is8Bit() const { return m_characters.empty(); }
    void writeTo(std::span<LChar>) const { ASSERT(m_characters.empty()); }
    void writeTo(std::span<UChar> destination) const { StringImpl::copyCharacters(destination, m_characters); }

private:
    std::span<const UChar> m_characters;
};

template<typename CharacterType, size_t Extent> class StringTypeAdapter<std::span<CharacterType, Extent>, void> {
public:
    StringTypeAdapter(std::span<CharacterType, Extent> span)
        : m_characters { span }
    {
        RELEASE_ASSERT(m_characters.size() <= String::MaxLength);
    }

    unsigned length() const { return m_characters.size(); }
    static constexpr bool is8Bit() { return sizeof(CharacterType) == 1; }

    template<typename DestinationCharacterType> void writeTo(std::span<DestinationCharacterType> destination) const
    {
        using CharacterTypeForString = std::conditional_t<sizeof(CharacterType) == sizeof(LChar), LChar, UChar>;
        static_assert(sizeof(CharacterTypeForString) == sizeof(CharacterType));
        StringImpl::copyCharacters(destination, spanReinterpretCast<const CharacterTypeForString>(m_characters));
    }

private:
    std::span<const CharacterType> m_characters;
};

template<> class StringTypeAdapter<CString, void> : public StringTypeAdapter<std::span<const char>, void> {
public:
    StringTypeAdapter(const CString& string)
        : StringTypeAdapter<std::span<const char>, void> { spanReinterpretCast<const char>(string.span()) }
    {
    }
};

template<> class StringTypeAdapter<ASCIILiteral, void> : public StringTypeAdapter<std::span<const LChar>, void> {
public:
    StringTypeAdapter(ASCIILiteral characters)
        : StringTypeAdapter<std::span<const LChar>, void> { characters.span8() }
    {
    }
};

template<typename CharacterType, size_t InlineCapacity> class StringTypeAdapter<Vector<CharacterType, InlineCapacity>, void> : public StringTypeAdapter<std::span<const CharacterType>> {
public:
    StringTypeAdapter(const Vector<CharacterType, InlineCapacity>& vector)
        : StringTypeAdapter<std::span<const CharacterType>> { vector.span() }
    {
    }
};

template<> class StringTypeAdapter<StringImpl*, void> {
public:
    StringTypeAdapter(StringImpl* string)
        : m_string { string }
    {
    }

    unsigned length() const { return m_string ? m_string->length() : 0; }
    bool is8Bit() const { return !m_string || m_string->is8Bit(); }
    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const
    {
        StringView { m_string }.getCharacters(destination);
        WTF_STRINGTYPEADAPTER_COPIED_WTF_STRING();
    }

private:
    SUPPRESS_UNCOUNTED_MEMBER StringImpl* const m_string;
};

template<> class StringTypeAdapter<AtomStringImpl*, void> : public StringTypeAdapter<StringImpl*, void> {
public:
    StringTypeAdapter(AtomStringImpl* string)
        : StringTypeAdapter<StringImpl*, void> { static_cast<StringImpl*>(string) }
    {
    }
};

template<> class StringTypeAdapter<String, void> : public StringTypeAdapter<StringImpl*, void> {
public:
    StringTypeAdapter(const String& string)
        : StringTypeAdapter<StringImpl*, void> { string.impl() }
    {
    }
};

template<> class StringTypeAdapter<AtomString, void> : public StringTypeAdapter<String, void> {
public:
    StringTypeAdapter(const AtomString& string)
        : StringTypeAdapter<String, void> { string.string() }
    {
    }
};

template<> class StringTypeAdapter<StringImpl&, void> {
public:
    StringTypeAdapter(StringImpl& string)
        : m_string { string }
    {
    }

    unsigned length() const { return m_string.length(); }
    bool is8Bit() const { return m_string.is8Bit(); }
    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const
    {
        StringView { m_string }.getCharacters(destination);
        WTF_STRINGTYPEADAPTER_COPIED_WTF_STRING();
    }

private:
    SUPPRESS_UNCOUNTED_MEMBER StringImpl& m_string;
};

template<> class StringTypeAdapter<AtomStringImpl&, void> : public StringTypeAdapter<StringImpl&, void> {
public:
    StringTypeAdapter(StringImpl& string)
        : StringTypeAdapter<StringImpl&, void> { string }
    {
    }
};

template<> class StringTypeAdapter<Unicode::CheckedUTF8, void> {
public:
    StringTypeAdapter(Unicode::CheckedUTF8 characters)
        : m_characters { characters }
    {
        if (m_characters.lengthUTF16 > String::MaxLength)
            m_characters.lengthUTF16 = 0;
    }

    unsigned length() const { return m_characters.lengthUTF16; }
    bool is8Bit() const { return m_characters.isAllASCII; }
    void writeTo(std::span<LChar> destination) const { memcpySpan(destination, unsafeMakeSpan(m_characters.characters.data(), m_characters.lengthUTF16)); }
#ifndef __swift__ // FIXME: This fails to compile because of rdar://136156228
    void writeTo(std::span<UChar> destination) const { Unicode::convert(m_characters.characters, destination.first(m_characters.lengthUTF16)); }
#endif

private:
    Unicode::CheckedUTF8 m_characters;
};

template<size_t Extent> class StringTypeAdapter<std::span<const char8_t, Extent>, void> : public StringTypeAdapter<Unicode::CheckedUTF8, void> {
public:
    StringTypeAdapter(std::span<const char8_t, Extent> span)
        : StringTypeAdapter<Unicode::CheckedUTF8, void> { Unicode::checkUTF8(span) }
    {
    }
};

template<typename... StringTypes> class StringTypeAdapter<std::tuple<StringTypes...>, void> {
public:
    StringTypeAdapter(const std::tuple<StringTypes...>& tuple)
        : m_tuple { tuple }
        , m_length { std::apply(computeLength, tuple) }
        , m_is8Bit { std::apply(computeIs8Bit, tuple) }
    {
    }

    unsigned length() const { return m_length; }
    bool is8Bit() const { return m_is8Bit; }
    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const
    {
        std::apply([&](const StringTypes&... strings) {
            unsigned offset = 0;
            (..., (
                StringTypeAdapter<StringTypes>(strings).writeTo(destination.subspan(offset)),
                offset += StringTypeAdapter<StringTypes>(strings).length()
            ));
        }, m_tuple);
    }

private:
    static unsigned computeLength(const StringTypes&... strings)
    {
        return (... + StringTypeAdapter<StringTypes>(strings).length());
    }

    static bool computeIs8Bit(const StringTypes&... strings)
    {
        return (... && StringTypeAdapter<StringTypes>(strings).is8Bit());
    }
    const std::tuple<StringTypes...>& m_tuple;
    unsigned m_length;
    bool m_is8Bit;
};

template<typename UnderlyingElementType> struct PaddingSpecification {
    LChar character;
    unsigned length;
    UnderlyingElementType underlyingElement;
};

template<typename UnderlyingElementType> PaddingSpecification<UnderlyingElementType> pad(char character, unsigned length, UnderlyingElementType element)
{
    return { byteCast<LChar>(character), length, element };
}

template<typename UnderlyingElementType> class StringTypeAdapter<PaddingSpecification<UnderlyingElementType>> {
public:
    StringTypeAdapter(const PaddingSpecification<UnderlyingElementType>& padding)
        : m_padding { padding }
        , m_underlyingAdapter { m_padding.underlyingElement }
    {
    }

    unsigned length() const { return std::max(m_padding.length, m_underlyingAdapter.length()); }
    bool is8Bit() const { return m_underlyingAdapter.is8Bit(); }
    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const
    {
        unsigned underlyingLength = m_underlyingAdapter.length();
        unsigned count = 0;
        if (underlyingLength < m_padding.length) {
            count = m_padding.length - underlyingLength;
            for (unsigned i = 0; i < count; ++i)
                destination[i] = m_padding.character;
        }
        m_underlyingAdapter.writeTo(destination.subspan(count));
    }

private:
    const PaddingSpecification<UnderlyingElementType>& m_padding;
    StringTypeAdapter<UnderlyingElementType> m_underlyingAdapter;
};

template<unsigned N> struct Indentation {
    unsigned operator++() { return ++value; }
    unsigned operator++(int) { return value++; }
    unsigned operator--() { return --value; }
    unsigned operator--(int) { return value--; }

    unsigned value { 0 };
};

template<unsigned N>
struct IndentationScope {
    IndentationScope(Indentation<N>& indentation)
        : m_indentation(indentation)
    {
        ++m_indentation;
    }
    ~IndentationScope()
    {
        --m_indentation;
    }

    Indentation<N>& m_indentation;
};

template<unsigned N> class StringTypeAdapter<Indentation<N>, void> {
public:
    StringTypeAdapter(Indentation<N> indentation)
        : m_indentation { indentation }
    {
    }

    unsigned length() const
    {
        return m_indentation.value * N;
    }

    bool is8Bit() const
    {
        return true;
    }

    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const
    {
        std::fill_n(destination.data(), m_indentation.value * N, ' ');
    }

private:
    Indentation<N> m_indentation;
};

struct ASCIICaseConverter {
    StringView::CaseConvertType type;
    StringView string;
};

inline ASCIICaseConverter asASCIILowercase(StringView stringView)
{
    return { StringView::CaseConvertType::Lower, stringView };
}

inline ASCIICaseConverter asASCIIUppercase(StringView stringView)
{
    return { StringView::CaseConvertType::Upper, stringView };
}

template<> class StringTypeAdapter<ASCIICaseConverter, void> {
public:
    StringTypeAdapter(const ASCIICaseConverter& converter)
        : m_converter { converter }
    {
    }

    unsigned length() const { return m_converter.string.length(); }
    bool is8Bit() const { return m_converter.string.is8Bit(); }
    template<typename CharacterType> void writeTo(std::span<CharacterType> destination) const
    {
        m_converter.string.getCharactersWithASCIICase(m_converter.type, destination);
    }

private:
    const ASCIICaseConverter& m_converter;
};

template<typename C, typename E, typename B> class Interleave {
public:
    Interleave(const C& container, E each, const B& between)
        : container { container }
        , each { WTFMove(each) }
        , between { between }
    {
    }

    Interleave(const Interleave&) = delete;
    Interleave& operator=(const Interleave&) = delete;

    Interleave(Interleave&&) = default;
    Interleave& operator=(Interleave&&) = default;

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    template<typename Accumulator> void writeUsing(Accumulator& accumulator) const
    {
        auto begin = std::begin(container);
        auto end = std::end(container);
        if (begin == end)
            return;

        constexpr bool eachTakesAccumulator = requires {
            { std::invoke(each, accumulator, *begin) } -> std::same_as<void>;
        };

        if constexpr (eachTakesAccumulator) {
            std::invoke(each, accumulator, *begin);

            ++begin;
            for (; begin != end; ++begin) {
                accumulator.append(between);
                std::invoke(each, accumulator, *begin);
            }
        } else {
            accumulator.append(std::invoke(each, *begin));

            ++begin;
            for (; begin != end; ++begin)
                accumulator.append(between, std::invoke(each, *begin));
        }
    }
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

private:
    const C& container;
    E each;
    const B& between;
};

// The `interleave` function can be called in three different ways:
//
//  1. The most generic way provides an `each` functor taking two arguments,
//     the `accumulator` and the `value`, and returns `void`.
//
//       Vector<Foo> container = { ... };
//
//       ... interleave(
//              container,
//              [](auto& accumulator, auto& value) {
//                  accumulator.append(value.stringRepresentation(), '-', value.otherStringRepresentation());
//              },
//              ", "_s
//           ), ...
//
//     This allows for containers of non-string values to provide complex mapped
//     values without additional allocations.
//
//  2. If multiple mapped strings per-value are not required, an `each` functor
//     taking just the `value` and returning a "string-type" (i.e. something you
//     could pass to `StringBuilder::append(...)`).
//
//       Vector<Foo> container = { ... };
//
//       ... interleave(
//              container,
//              [](auto& value) {
//                  return value.stringRepresentation();
//              },
//              ", "_s
//           ), ...
//
//  3. Finally, if the container already contains "string-types", no `each` functor
//     is required at all.
//
//       Vector<String> container = { ... };
//
//       ... interleave(
//              container,
//              ", "_s
//           ), ...
//

template<typename C, typename E> concept EachTakingValue = requires(C&& container, E&& each) {
    { each(*std::begin(container)) } -> StringTypeAdaptable;
};

template<typename C, typename E> concept EachTakingAccumulatorAndValue = requires(C&& container, E&& each) {
    { each(std::declval<StringBuilder&>(), *std::begin(container)) } -> std::same_as<void>;
};

template<typename C> using EachTakingAccumulatorAndValueFunction = void(&)(StringBuilder&, const std::remove_reference_t<decltype(*std::begin(std::declval<C>()))>&);

template<typename C, std::invocable<decltype(*std::begin(std::declval<C>()))> E, StringTypeAdaptable B>
    requires EachTakingValue<C, E>
decltype(auto) interleave(const C& container, E each, const B& between)
{
    return Interleave {
        container,
        WTFMove(each),
        between
    };
}

template<typename C, std::invocable<decltype(std::declval<StringBuilder&>()), decltype(*std::begin(std::declval<C>()))> E, StringTypeAdaptable B>
    requires EachTakingAccumulatorAndValue<C, E>
decltype(auto) interleave(const C& container, E each, const B& between)
{
    return Interleave {
        container,
        WTFMove(each),
        between
    };
}

template<typename C, StringTypeAdaptable B> decltype(auto) interleave(const C& container, EachTakingAccumulatorAndValueFunction<C> each, B&& between)
{
    return Interleave {
        container,
        each,
        between
    };
}

template<typename C, StringTypeAdaptable B> decltype(auto) interleave(const C& container, const B& between)
{
    return interleave(
        container,
        []<typename A, typename V>(A& accumulator, const V& value) { accumulator.append(value); },
        between
    );
}

template<typename C, typename E, typename B> class StringTypeAdapter<Interleave<C, E, B>, void> {
public:
    StringTypeAdapter(const Interleave<C, E, B>& interleave)
        : m_interleave { interleave }
    {
    }

    template<typename Accumulator>
    void writeUsing(Accumulator& accumulator) const
    {
        m_interleave.writeUsing(accumulator);
    }

private:
    const Interleave<C, E, B>& m_interleave;
};

template<typename... StringTypeAdapters> inline bool are8Bit(StringTypeAdapters&& ...adapters)
{
    return (... && adapters.is8Bit());
}

template<typename ResultType, typename StringTypeAdapters>
inline void stringTypeAdapterAccumulator(std::span<ResultType> result, StringTypeAdapters adapter)
{
    adapter.writeTo(result);
}

template<typename ResultType, typename StringTypeAdapter, typename... StringTypeAdapters>
inline void stringTypeAdapterAccumulator(std::span<ResultType> result, StringTypeAdapter adapter, StringTypeAdapters ...adapters)
{
    adapter.writeTo(result);
    stringTypeAdapterAccumulator(result.subspan(adapter.length()), adapters...);
}

template<typename Func, StringTypeAdaptable... StringTypes>
auto handleWithAdapters(Func&& func, StringTypes&& ...strings) -> decltype(auto)
{
    return func(StringTypeAdapter<StringTypes>(std::forward<StringTypes>(strings))...);
}

} // namespace WTF

using WTF::Indentation;
using WTF::IndentationScope;
using WTF::asASCIILowercase;
using WTF::asASCIIUppercase;
using WTF::interleave;
using WTF::pad;