File: Signals.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (621 lines) | stat: -rw-r--r-- 23,555 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
 * Copyright (C) 2017-2024 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include <wtf/threads/Signals.h>

#if OS(UNIX)

#if HAVE(MACH_EXCEPTIONS)
extern "C" {
#include "MachExceptionsServer.h"
};
#endif

#include <cstdio>
#include <mutex>
#include <signal.h>
#include <wtf/StdLibExtras.h>

#if HAVE(MACH_EXCEPTIONS)
#include <dispatch/dispatch.h>
#include <mach/mach.h>
#include <mach/port.h>
#include <mach/task.h>
#include <mach/thread_act.h>
#include <mach/thread_status.h>
#endif

#if OS(DARWIN)
#include <mach/vm_param.h>
#endif

#include <unistd.h>
#include <wtf/Atomics.h>
#include <wtf/CryptographicallyRandomNumber.h>
#include <wtf/DataLog.h>
#include <wtf/MathExtras.h>
#include <wtf/NeverDestroyed.h>
#include <wtf/PlatformRegisters.h>
#include <wtf/Scope.h>
#include <wtf/ThreadGroup.h>
#include <wtf/Threading.h>
#include <wtf/TranslatedProcess.h>
#include <wtf/WTFConfig.h>

namespace WTF {

#if HAVE(MACH_EXCEPTIONS)
static exception_mask_t toMachMask(Signal);
#endif

void SignalHandlers::add(Signal signal, SignalHandler&& handler)
{
    Config::AssertNotFrozenScope assertScope;

    ASSERT(signal < Signal::NumberOfSignals);
    ASSERT(!useMach || signal != Signal::Usr);
    RELEASE_ASSERT(initState == SignalHandlers::InitState::Initializing);

    size_t signalIndex = static_cast<size_t>(signal);
    size_t nextFree = numberOfHandlers[signalIndex];
#if HAVE(MACH_EXCEPTIONS)
    if (signal != Signal::Usr)
        addedExceptions |= toMachMask(signal);
#endif
    RELEASE_ASSERT(nextFree < maxNumberOfHandlers);
    SignalHandlerMemory* memory = &handlers[signalIndex][nextFree];
    new (memory) SignalHandler(WTFMove(handler));

    numberOfHandlers[signalIndex]++;
}

template<typename Func>
inline void SignalHandlers::forEachHandler(Signal signal, NOESCAPE const Func& func) const
{
    size_t signalIndex = static_cast<size_t>(signal);
    size_t handlerIndex = numberOfHandlers[signalIndex];
    while (handlerIndex--) {
        auto* memory = const_cast<SignalHandlerMemory*>(&handlers[signalIndex][handlerIndex]);
        const SignalHandler& handler = *std::bit_cast<SignalHandler*>(memory);
        func(handler);
    }
}

#if HAVE(MACH_EXCEPTIONS)
// You can read more about mach exceptions here:
// http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/unpublished/exception.ps
// and the Mach interface Generator (MiG) here:
// http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/unpublished/mig.ps

#if CPU(ARM64E) && HAVE(HARDENED_MACH_EXCEPTIONS)
// Our secret key which we use as random diversifier when signing our return PC in the handler callbacks.
// Be VERY careful to clear this before any web content is loaded.
static uint32_t secretSigningKey;

void* SignalHandlers::presignReturnPCForHandler(CodePtr<NoPtrTag> returnPC)
{
    ASSERT(initState < SignalHandlers::InitState::Finalized);
    uint64_t diversifier = ptrauth_blend_discriminator(reinterpret_cast<void*>(secretSigningKey), ptrauth_string_discriminator("pc"));
    return ptrauth_sign_unauthenticated(returnPC.untaggedPtr(), ptrauth_key_function_pointer, diversifier);
}
#endif

static constexpr size_t maxMessageSize = 1 * KB;

static void initMachExceptionHandlerThread()
{
    Config::AssertNotFrozenScope assertScope;
    SignalHandlers& handlers = g_wtfConfig.signalHandlers;
    RELEASE_ASSERT_WITH_MESSAGE(!handlers.exceptionPort, "Mach exception handler thread was already created");
    ASSERT(handlers.useMach);

    // We need this because some processes (e.g. WebKit's GPU process) don't allow signal handling in their
    // sandbox profiles. We don't use them there so there's no point in setting up a dispatch queue we're
    // never going to use.
    if (!handlers.addedExceptions)
        return;

    uint16_t flags = MPO_INSERT_SEND_RIGHT;

    // This provisional flag can be removed once macos sonoma is no longer supported
#ifdef MPO_PROVISIONAL_ID_PROT_OPTOUT
    flags |= MPO_PROVISIONAL_ID_PROT_OPTOUT;
#endif

#if CPU(ARM64) && HAVE(HARDENED_MACH_EXCEPTIONS)
    flags |= MPO_EXCEPTION_PORT;
#endif

    mach_port_options_t options { };
    options.flags = flags;

    kern_return_t kr = mach_port_construct(mach_task_self(), &options, 0, &handlers.exceptionPort);
    RELEASE_ASSERT(kr == KERN_SUCCESS);

#if CPU(ARM64) && HAVE(HARDENED_MACH_EXCEPTIONS)
#if !CPU(ARM64E)
    uint32_t secretSigningKey = 0;
#endif
    uint64_t exceptionsAllowed = handlers.addedExceptions;
    uint64_t behaviorsAllowed = EXCEPTION_STATE_IDENTITY_PROTECTED | MACH_EXCEPTION_CODES;
    uint64_t flavorsAllowed = MACHINE_THREAD_STATE;

    kr = task_register_hardened_exception_handler(current_task(), secretSigningKey, exceptionsAllowed,
        behaviorsAllowed, flavorsAllowed, handlers.exceptionPort);
    if (kr == KERN_SUCCESS)
        handlers.useHardenedHandler = true;
    else {
        dataLog("Failed to register hardened exception handler due to ", mach_error_string(kr));
        if (kr == KERN_DENIED)
            dataLog(" consider adding `task_register_hardened_exception_handler` and `thread_adopt_exception_handler` to your sandbox");
        dataLogLn();
    }

    // Clear the key since we no longer need it anymore and we don't want an attacker to find it.
    secretSigningKey = 0;
#endif

    dispatch_source_t source = dispatch_source_create(
        DISPATCH_SOURCE_TYPE_MACH_RECV, handlers.exceptionPort, 0, DISPATCH_TARGET_QUEUE_DEFAULT);
    RELEASE_ASSERT(source);

    dispatch_source_set_event_handler(source, ^{
        UNUSED_PARAM(source); // Capture a pointer to source in user space to silence the leaks tool.

        kern_return_t kr = mach_msg_server_once(
            mach_exc_server, maxMessageSize, handlers.exceptionPort, MACH_MSG_TIMEOUT_NONE);
        RELEASE_ASSERT(kr == KERN_SUCCESS);
    });

    // No need for a cancel handler because we never destroy exceptionPort.

    dispatch_resume(source);
}

static exception_mask_t toMachMask(Signal signal)
{
    switch (signal) {
    case Signal::AccessFault: return EXC_MASK_BAD_ACCESS;
    case Signal::IllegalInstruction: return EXC_MASK_BAD_INSTRUCTION;
    case Signal::FloatingPoint: return EXC_MASK_ARITHMETIC;
    case Signal::Breakpoint: return EXC_MASK_BREAKPOINT;
    default: break;
    }
    RELEASE_ASSERT_NOT_REACHED();
}

static Signal fromMachException(exception_type_t type)
{
    switch (type) {
    case EXC_BAD_ACCESS: return Signal::AccessFault;
    case EXC_BAD_INSTRUCTION: return Signal::IllegalInstruction;
    case EXC_ARITHMETIC: return Signal::FloatingPoint;
    case EXC_BREAKPOINT: return Signal::Breakpoint;
    default: break;
    }
    return Signal::Unknown;
}

#if CPU(ARM64E) && OS(DARWIN)
inline ptrauth_generic_signature_t hashThreadState(const thread_state_t source)
{
    constexpr size_t threadStatePCPointerIndex = (offsetof(arm_unified_thread_state, ts_64) + offsetof(arm_thread_state64_t, __opaque_pc)) / sizeof(uintptr_t);
    constexpr size_t threadStateSizeInPointers = sizeof(arm_unified_thread_state) / sizeof(uintptr_t);

    ptrauth_generic_signature_t hash = 0;

    hash = ptrauth_sign_generic_data(hash, mach_thread_self());

    auto srcPtr = unsafeMakeSpan(reinterpret_cast<const uintptr_t*>(source), threadStateSizeInPointers);

    // Exclude the __opaque_flags field which is reserved for OS use.
    // __opaque_flags is at the end of the payload.
    for (size_t i = 0; i < threadStateSizeInPointers - 1; ++i) {
        if (i != threadStatePCPointerIndex)
            hash = ptrauth_sign_generic_data(srcPtr[i], hash);
    }
    const uint32_t* cpsrPtr = reinterpret_cast<const uint32_t*>(&srcPtr[threadStateSizeInPointers - 1]);
    hash = ptrauth_sign_generic_data(static_cast<uint64_t>(*cpsrPtr), hash);
    
    return hash;
}
#endif

extern "C" {

// We need to implement stubs for catch_mach_exception_raise and catch_mach_exception_raise_state_identity.
// The MiG generated file will fail to link otherwise, even though we don't use the functions. Only the
// catch_mach_exception_raise_state function should be called because we pass EXCEPTION_STATE to
// thread_set_exception_ports.
kern_return_t catch_mach_exception_raise(mach_port_t, mach_port_t, mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t)
{
    dataLogLn("We should not have called catch_exception_raise(), please file a bug at bugs.webkit.org");
    return KERN_FAILURE;
}

kern_return_t catch_mach_exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, int*, thread_state_t, mach_msg_type_number_t, thread_state_t,  mach_msg_type_number_t*)
{
    dataLogLn("We should not have called catch_mach_exception_raise_state_identity, please file a bug at bugs.webkit.org");
    return KERN_FAILURE;
}

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
static kern_return_t runSignalHandlers(Signal signal, PlatformRegisters& registers, mach_msg_type_number_t dataCount, mach_exception_data_t exceptionData)
{
    SigInfo info;
    SignalHandlers& handlers = g_wtfConfig.signalHandlers;
    if (signal == Signal::AccessFault) {
        ASSERT_UNUSED(dataCount, dataCount == 2);
        info.faultingAddress = reinterpret_cast<void*>(exceptionData[1]);
#if CPU(ADDRESS64)
        // If the faulting address is out of the range of any valid memory, we would
        // not have any reason to handle it. Just let the default handler take care of it.
        static constexpr unsigned validAddressBits = OS_CONSTANT(EFFECTIVE_ADDRESS_WIDTH);
        static constexpr uintptr_t invalidAddressMask = ~((1ull << validAddressBits) - 1);
        if (std::bit_cast<uintptr_t>(info.faultingAddress) & invalidAddressMask)
            return KERN_FAILURE;
#endif
    }

    bool didHandle = false;
    handlers.forEachHandler(signal, [&] (const SignalHandler& handler) {
        SignalAction handlerResult = handler(signal, info, registers);
        didHandle |= handlerResult == SignalAction::Handled;
    });
    return didHandle ? KERN_SUCCESS : KERN_FAILURE;
}
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#if defined(EXCEPTION_STATE_IDENTITY_PROTECTED)

kern_return_t catch_mach_exception_raise_state_identity_protected(
    mach_port_t exceptionPort,
    uint64_t threadID,
    mach_port_t taskIDToken,
    exception_type_t exceptionType,
    mach_exception_data_t exceptionData,
    mach_msg_type_number_t dataCount,
    int* stateFlavor,
    const thread_state_t inState,
    mach_msg_type_number_t inStateCount,
    thread_state_t outState,
    mach_msg_type_number_t* outStateCount)
{
    UNUSED_PARAM(threadID);
    UNUSED_PARAM(taskIDToken);
    return catch_mach_exception_raise_state(exceptionPort, exceptionType, exceptionData,
        dataCount, stateFlavor, inState, inStateCount, outState, outStateCount);
}

#endif // defined(EXCEPTION_STATE_IDENTITY_PROTECTED)

kern_return_t catch_mach_exception_raise_state(
    mach_port_t port,
    exception_type_t exceptionType,
    const mach_exception_data_t exceptionData,
    mach_msg_type_number_t dataCount,
    int* stateFlavor,
    const thread_state_t inState,
    mach_msg_type_number_t inStateCount,
    thread_state_t outState,
    mach_msg_type_number_t* outStateCount)
{
    ASSERT(g_wtfConfig.isPermanentlyFrozen || g_wtfConfig.disabledFreezingForTesting);
    SignalHandlers& handlers = g_wtfConfig.signalHandlers;
    RELEASE_ASSERT(port == handlers.exceptionPort);
    // If we wanted to distinguish between SIGBUS and SIGSEGV for EXC_BAD_ACCESS on Darwin we could do:
    // if (exceptionData[0] == KERN_INVALID_ADDRESS)
    //    signal = SIGSEGV;
    // else
    //    signal = SIGBUS;
    Signal signal = fromMachException(exceptionType);
    RELEASE_ASSERT(signal != Signal::Unknown);

#if CPU(ARM64E) && HAVE(HARDENED_MACH_EXCEPTIONS)
    ASSERT_WITH_MESSAGE(!secretSigningKey, "The secret key should have been cleared before any exception handlers are run");
#endif

#if CPU(ARM64E) && OS(DARWIN)
    ptrauth_generic_signature_t inStateHash = hashThreadState(inState);
#endif

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    memcpy(outState, inState, inStateCount * sizeof(inState[0]));
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#if CPU(X86_64)
    RELEASE_ASSERT(*stateFlavor == x86_THREAD_STATE);
    PlatformRegisters& registers = reinterpret_cast<x86_thread_state_t*>(outState)->uts.ts64;
#elif CPU(X86)
    RELEASE_ASSERT(*stateFlavor == x86_THREAD_STATE);
    PlatformRegisters& registers = reinterpret_cast<x86_thread_state_t*>(outState)->uts.ts32;
#elif CPU(ARM64)
    RELEASE_ASSERT(*stateFlavor == ARM_THREAD_STATE);
    PlatformRegisters& registers = reinterpret_cast<arm_unified_thread_state*>(outState)->ts_64;
#elif CPU(ARM)
    RELEASE_ASSERT(*stateFlavor == ARM_THREAD_STATE);
    PlatformRegisters& registers = reinterpret_cast<arm_unified_thread_state*>(outState)->ts_32;
#endif

    kern_return_t kr = runSignalHandlers(signal, registers, dataCount, exceptionData);
    if (kr != KERN_SUCCESS)
        return kr;

#if CPU(ARM64E) && OS(DARWIN)
    RELEASE_ASSERT(inStateHash == hashThreadState(outState));
#endif
    *outStateCount = inStateCount;
    return KERN_SUCCESS;
}

}; // extern "C"

void handleSignalsWithMach()
{
    Config::AssertNotFrozenScope assertScope;
    g_wtfConfig.signalHandlers.useMach = true;
}

static exception_mask_t activeExceptions;
inline void setExceptionPorts(const AbstractLocker& threadGroupLocker, Thread& thread)
{
    UNUSED_PARAM(threadGroupLocker);
    SignalHandlers& handlers = g_wtfConfig.signalHandlers;

#if CPU(ARM64) && HAVE(HARDENED_MACH_EXCEPTIONS)
    if (handlers.useHardenedHandler) {
        const exception_behavior_t newBehavior = MACH_EXCEPTION_CODES | EXCEPTION_STATE_IDENTITY_PROTECTED;
        kern_return_t result = thread_adopt_exception_handler(thread.machThread(), handlers.exceptionPort, handlers.addedExceptions & activeExceptions, newBehavior, MACHINE_THREAD_STATE);
        RELEASE_ASSERT(result == KERN_SUCCESS, result, handlers.exceptionPort, handlers.addedExceptions, activeExceptions);
        return;
    }
#endif // CPU(ARM64) && HAVE(HARDENED_MACH_EXCEPTIONS)
    const exception_behavior_t newBehavior = MACH_EXCEPTION_CODES | EXCEPTION_STATE;
    kern_return_t result = thread_set_exception_ports(thread.machThread(), handlers.addedExceptions & activeExceptions, handlers.exceptionPort, newBehavior, MACHINE_THREAD_STATE);
    RELEASE_ASSERT(result == KERN_SUCCESS, result, handlers.exceptionPort, handlers.addedExceptions, activeExceptions);
}

static ThreadGroup& activeThreads()
{
    static LazyNeverDestroyed<std::shared_ptr<ThreadGroup>> activeThreads;
    static std::once_flag initializeKey;
    std::call_once(initializeKey, [&] {
        activeThreads.construct(ThreadGroup::create());
    });
    return (*activeThreads.get());
}

void registerThreadForMachExceptionHandling(Thread& thread)
{
    const SignalHandlers& signalHandlers = g_wtfConfig.signalHandlers;
    RELEASE_ASSERT(signalHandlers.initState >= SignalHandlers::InitState::Initializing, signalHandlers.initState);
    if (!signalHandlers.useMach || !signalHandlers.addedExceptions)
        return;

    Locker locker { activeThreads().getLock() };
    if (activeThreads().add(locker, thread) == ThreadGroupAddResult::NewlyAdded)
        setExceptionPorts(locker, thread);
}

#endif // HAVE(MACH_EXCEPTIONS)

inline std::tuple<int, std::optional<int>> toSystemSignal(Signal signal)
{
    switch (signal) {
    case Signal::AccessFault: return std::make_tuple(SIGSEGV, SIGBUS);
    case Signal::IllegalInstruction: return std::make_tuple(SIGILL, std::nullopt);
    case Signal::Usr: return std::make_tuple(SIGUSR2, std::nullopt);
    case Signal::FloatingPoint: return std::make_tuple(SIGFPE, std::nullopt);
    case Signal::Breakpoint: return std::make_tuple(SIGTRAP, std::nullopt);
#if !OS(DARWIN)
    case Signal::Abort: return std::make_tuple(SIGABRT, std::nullopt);
#endif
    default: break;
    }
    RELEASE_ASSERT_NOT_REACHED();
}

inline Signal fromSystemSignal(int signal)
{
    switch (signal) {
    case SIGSEGV: return Signal::AccessFault;
    case SIGBUS: return Signal::AccessFault;
    case SIGFPE: return Signal::FloatingPoint;
    case SIGTRAP: return Signal::Breakpoint;
    case SIGILL: return Signal::IllegalInstruction;
    case SIGUSR2: return Signal::Usr;
#if !OS(DARWIN)
    case SIGABRT: return Signal::Abort;
#endif
    default: return Signal::Unknown;
    }
}

inline size_t offsetForSystemSignal(int sig)
{
    Signal signal = fromSystemSignal(sig);
    return static_cast<size_t>(signal) + (sig == SIGBUS);
}

void activateSignalHandlersFor(Signal signal)
{
    const SignalHandlers& handlers = g_wtfConfig.signalHandlers;
    RELEASE_ASSERT(handlers.initState >= SignalHandlers::InitState::Initializing);
    ASSERT_UNUSED(signal, signal < Signal::Unknown);

#if HAVE(MACH_EXCEPTIONS)
    if (handlers.useMach) {
        ASSERT(signal != Signal::Usr);
        Locker locker { activeThreads().getLock() };
        if (activeExceptions & toMachMask(signal))
            return;

        ASSERT(handlers.numberOfHandlers[static_cast<uint8_t>(signal)]);
        activeExceptions |= toMachMask(signal);
        // activeExceptions should be a subset of addedExceptions.
        ASSERT(!(activeExceptions & ~handlers.addedExceptions));
        for (auto& thread : activeThreads().threads(locker))
            setExceptionPorts(locker, thread.get());
        return;
    }
#endif
}

void addSignalHandler(Signal signal, SignalHandler&& handler)
{
    g_wtfConfig.signalHandlers.add(signal, WTFMove(handler));
}

static void jscSignalHandler(int sig, siginfo_t* info, void* ucontext)
{
    Signal signal = fromSystemSignal(sig);
    SignalHandlers& handlers = g_wtfConfig.signalHandlers;

    auto restoreDefault = [&] {
        struct sigaction defaultAction;
        defaultAction.sa_handler = SIG_DFL;
        sigfillset(&defaultAction.sa_mask);
        defaultAction.sa_flags = 0;
        auto result = sigaction(sig, &defaultAction, nullptr);
        dataLogLnIf(result == -1, "Unable to restore the default handler while processing signal ", sig, " the process is probably deadlocked. (errno: ", errno, ")");
    };

    // This shouldn't happen but we might as well be careful.
    if (signal == Signal::Unknown) {
        dataLogLn("We somehow got called for an unknown signal ", sig, ", help.");
        restoreDefault();
        return;
    }

    SigInfo sigInfo;
    if (signal == Signal::AccessFault)
        sigInfo.faultingAddress = info->si_addr;

#if HAVE(MACHINE_CONTEXT)
    PlatformRegisters& registers = registersFromUContext(reinterpret_cast<ucontext_t*>(ucontext));
#else
    PlatformRegisters registers { };
#endif

    bool didHandle = false;
    bool restoreDefaultHandler = false;
    handlers.forEachHandler(signal, [&] (const SignalHandler& handler) {
        switch (handler(signal, sigInfo, registers)) {
        case SignalAction::Handled:
            didHandle = true;
            break;
        case SignalAction::ForceDefault:
            restoreDefaultHandler = true;
            break;
        default:
            break;
        }
    });

    if (restoreDefaultHandler) {
        restoreDefault();
        return;
    }

    unsigned oldActionIndex = static_cast<size_t>(signal) + (sig == SIGBUS);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    struct sigaction& oldAction = handlers.oldActions[static_cast<size_t>(oldActionIndex)];
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
    if (signal == Signal::Usr) {
        if (oldAction.sa_sigaction)
            oldAction.sa_sigaction(sig, info, ucontext);
        return;
    }

    if (!didHandle) {
        if (oldAction.sa_sigaction) {
            oldAction.sa_sigaction(sig, info, ucontext);
            return;
        }

        restoreDefault();
        return;
    }
}

void SignalHandlers::initialize()
{
    SignalHandlers& handlers = g_wtfConfig.signalHandlers;
    RELEASE_ASSERT(handlers.initState == SignalHandlers::InitState::Uninitialized);
    handlers.initState = SignalHandlers::InitState::Initializing;

#if CPU(ARM64E) && HAVE(HARDENED_MACH_EXCEPTIONS)
    // Set up our secret key which we use as random diversifier when signing our return PC in the handler callbacks.
    // According to the ARM64 ABI ptrauth_blend_discriminator can't take zero as the first argument.
    static_assert(__DARWIN_ARM_THREAD_STATE64_USER_DIVERSIFIER_MASK == 0xff000000);
    do {
        secretSigningKey = static_cast<uint32_t>(WTF::cryptographicallyRandomNumber<uint8_t>()) << 24;
    } while (!secretSigningKey);
    ASSERT(secretSigningKey == (secretSigningKey & __DARWIN_ARM_THREAD_STATE64_USER_DIVERSIFIER_MASK));
#endif
}

void SignalHandlers::finalize()
{
    Config::AssertNotFrozenScope assertScope;
    SignalHandlers& handlers = g_wtfConfig.signalHandlers;
    RELEASE_ASSERT(handlers.initState == SignalHandlers::InitState::Initializing);
    handlers.initState = SignalHandlers::InitState::Finalized;

#if HAVE(MACH_EXCEPTIONS)
    if (handlers.useMach)
        initMachExceptionHandlerThread();
#endif

    if (!handlers.useMach) {
        for (unsigned i = 0; i < numberOfSignals; ++i) {
            if (!handlers.numberOfHandlers[i])
                continue;

            Signal signal = static_cast<Signal>(i);
            struct sigaction action;
            action.sa_sigaction = jscSignalHandler;
            auto result = sigfillset(&action.sa_mask);
            RELEASE_ASSERT(!result);
            // Do not block this signal since it is used on non-Darwin systems to suspend and resume threads.
            RELEASE_ASSERT(g_wtfConfig.isThreadSuspendResumeSignalConfigured);
            result = sigdelset(&action.sa_mask, g_wtfConfig.sigThreadSuspendResume);
            RELEASE_ASSERT(!result);
            action.sa_flags = SA_SIGINFO;
            auto systemSignals = toSystemSignal(signal);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
            result = sigaction(std::get<0>(systemSignals), &action, &handlers.oldActions[offsetForSystemSignal(std::get<0>(systemSignals))]);
            if (std::get<1>(systemSignals))
                result |= sigaction(*std::get<1>(systemSignals), &action, &handlers.oldActions[offsetForSystemSignal(*std::get<1>(systemSignals))]);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
            RELEASE_ASSERT(!result);
        }
    }
}

} // namespace WTF

#endif // OS(UNIX)