File: KeyframeEffect.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (3226 lines) | stat: -rw-r--r-- 142,013 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
/*
 * Copyright (C) 2017-2019 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "KeyframeEffect.h"

#include "AnimationTimelinesController.h"
#include "CSSAnimation.h"
#include "CSSKeyframeRule.h"
#include "CSSNumericFactory.h"
#include "CSSParserContext.h"
#include "CSSPropertyAnimation.h"
#include "CSSPropertyNames.h"
#include "CSSPropertyParser.h"
#include "CSSPropertyParserConsumer+Animations.h"
#include "CSSPropertyParserConsumer+Easing.h"
#include "CSSSelector.h"
#include "CSSSerializationContext.h"
#include "CSSStyleDeclaration.h"
#include "CSSTransition.h"
#include "CSSUnitValue.h"
#include "CSSValue.h"
#include "CSSValueKeywords.h"
#include "ComputedStyleExtractor.h"
#include "DocumentInlines.h"
#include "Element.h"
#include "FontCascade.h"
#include "GeometryUtilities.h"
#include "InspectorInstrumentation.h"
#include "JSCompositeOperation.h"
#include "JSCompositeOperationOrAuto.h"
#include "JSDOMConvert.h"
#include "JSKeyframeEffect.h"
#include "KeyframeEffectStack.h"
#include "LocalFrameView.h"
#include "Logging.h"
#include "MutableStyleProperties.h"
#include "PropertyAllowlist.h"
#include "RenderBox.h"
#include "RenderBoxModelObject.h"
#include "RenderElement.h"
#include "RenderStyleInlines.h"
#include "Settings.h"
#include "StyleAdjuster.h"
#include "StyleEasingFunction.h"
#include "StylePendingResources.h"
#include "StyleProperties.h"
#include "StylePropertyShorthand.h"
#include "StyleResolver.h"
#include "StyleScope.h"
#include "StyledElement.h"
#include "TimelineRangeOffset.h"
#include "TimingFunction.h"
#include "TransformOperationData.h"
#include "TransformOperationsSharedPrimitivesPrefix.h"
#include "TranslateTransformOperation.h"
#include "ViewTimeline.h"
#include <JavaScriptCore/Exception.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/UUID.h>
#include <wtf/text/TextStream.h>

#if ENABLE(THREADED_ANIMATION_RESOLUTION)
#include "AcceleratedEffect.h"
#include "AcceleratedEffectStackUpdater.h"
#endif

namespace WebCore {
using namespace JSC;

WTF_MAKE_TZONE_OR_ISO_ALLOCATED_IMPL(KeyframeEffect);

KeyframeEffect::ParsedKeyframe::ParsedKeyframe()
    : style(MutableStyleProperties::create())
{
}

KeyframeEffect::ParsedKeyframe::~ParsedKeyframe() = default;

static inline void invalidateElement(const std::optional<const Styleable>& styleable)
{
    if (!styleable)
        return;

    auto& element = styleable->element;
    if (!element.document().inStyleRecalc())
        element.invalidateStyleForAnimation();
}

String KeyframeEffect::CSSPropertyIDToIDLAttributeName(CSSPropertyID property)
{
    // https://drafts.csswg.org/web-animations-1/#animation-property-name-to-idl-attribute-name
    // 1. If property follows the <custom-property-name> production, return property.

    // 2. If property refers to the CSS float property, return the string "cssFloat".
    if (property == CSSPropertyFloat)
        return "cssFloat"_s;

    // 3. If property refers to the CSS offset property, return the string "cssOffset".
    if (property == CSSPropertyOffset)
        return "cssOffset"_s;

    // 4. Otherwise, return the result of applying the CSS property to IDL attribute algorithm [CSSOM] to property.
    return nameForIDL(property);
}

static inline CSSPropertyID IDLAttributeNameToAnimationPropertyName(const AtomString& idlAttributeName)
{
    // https://drafts.csswg.org/web-animations-1/#idl-attribute-name-to-animation-property-name
    // 1. If attribute conforms to the <custom-property-name> production, return attribute.

    // 2. If attribute is the string "cssFloat", then return an animation property representing the CSS float property.
    if (idlAttributeName == "cssFloat"_s)
        return CSSPropertyFloat;

    // 3. If attribute is the string "cssOffset", then return an animation property representing the CSS offset property.
    if (idlAttributeName == "cssOffset"_s)
        return CSSPropertyOffset;

    // If the attribute is the string "fontStretch" return the CSS font-width property that it aliases.
    if (idlAttributeName == "fontStretch"_s)
        return CSSPropertyFontWidth;

    // 4. Otherwise, return the result of applying the IDL attribute to CSS property algorithm [CSSOM] to attribute.
    auto cssPropertyId = CSSStyleDeclaration::getCSSPropertyIDFromJavaScriptPropertyName(idlAttributeName);

    if (cssPropertyId == CSSPropertyInvalid && isCustomPropertyName(idlAttributeName))
        return CSSPropertyCustom;

    // We need to check that converting the property back to IDL form yields the same result such that a property passed
    // in non-IDL form is rejected, for instance "font-size".
    if (idlAttributeName != KeyframeEffect::CSSPropertyIDToIDLAttributeName(cssPropertyId))
        return CSSPropertyInvalid;

    return cssPropertyId;
}

static SingleTimelineRange::Name rangeStringToSingleTimelineRangeName(const String& rangeString)
{
    if (rangeString == "cover"_s)
        return SingleTimelineRange::Name::Cover;
    if (rangeString == "contain"_s)
        return SingleTimelineRange::Name::Contain;
    if (rangeString == "entry"_s)
        return SingleTimelineRange::Name::Entry;
    if (rangeString == "exit"_s)
        return SingleTimelineRange::Name::Exit;
    if (rangeString == "entry-crossing"_s)
        return SingleTimelineRange::Name::EntryCrossing;
    if (rangeString == "exit-crossing"_s)
        return SingleTimelineRange::Name::ExitCrossing;
    return SingleTimelineRange::Name::Normal;
}

static bool isTimelineRangeOffsetValid(const TimelineRangeOffset& timelineRangeOffset)
{
    if (rangeStringToSingleTimelineRangeName(timelineRangeOffset.rangeName) == SingleTimelineRange::Name::Normal)
        return false;
    RefPtr offsetUnitValue = dynamicDowncast<CSSUnitValue>(timelineRangeOffset.offset);
    return offsetUnitValue && offsetUnitValue->unitEnum() == CSSUnitType::CSS_PERCENTAGE;
}

static String rangeStringFromSingleTimelineRangeName(SingleTimelineRange::Name rangeName)
{
    switch (rangeName) {
    case SingleTimelineRange::Name::Normal:
        return "normal"_s;
    case SingleTimelineRange::Name::Omitted:
        return "omitted"_s;
    case SingleTimelineRange::Name::Cover:
        return "cover"_s;
    case SingleTimelineRange::Name::Contain:
        return "contain"_s;
    case SingleTimelineRange::Name::Entry:
        return "entry"_s;
    case SingleTimelineRange::Name::Exit:
        return "exit"_s;
    case SingleTimelineRange::Name::EntryCrossing:
        return "entry-crossing"_s;
    case SingleTimelineRange::Name::ExitCrossing:
        return "exit-crossing"_s;
    }
    ASSERT_NOT_REACHED();
    return "normal"_s;
}

static std::optional<std::variant<double, TimelineRangeOffset>> doubleOrTimelineRangeOffsetFromString(const String& offsetString, const Document& document)
{
    bool doubleParsingSuccess = true;
    auto doubleValue = offsetString.toDouble(&doubleParsingSuccess);
    if (doubleParsingSuccess)
        return { doubleValue };

    CSSParserContext parserContext(document);
    CSSTokenizer tokenizer(offsetString);
    auto tokenRange = tokenizer.tokenRange();
    auto offsets = CSSPropertyParserHelpers::consumeKeyframeKeyList(tokenRange, parserContext);
    if (offsets.size() != 1)
        return { };

    auto [rangeCSSValueID, value] = offsets[0];
    auto rangeName = SingleTimelineRange::timelineName(rangeCSSValueID);
    if (rangeName == SingleTimelineRange::Name::Normal)
        return value;

    return { TimelineRangeOffset { rangeStringFromSingleTimelineRangeName(rangeName), CSSNumericFactory::percent(value * 100) } };
}

static std::optional<KeyframeEffect::KeyframeOffset> validateKeyframeOffset(const KeyframeEffect::KeyframeOffset& offset, const Document& document)
{
    if (auto* doubleValue = std::get_if<double>(&offset))
        return *doubleValue;

    if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&offset)) {
        if (!isTimelineRangeOffsetValid(*timelineRangeOffset))
            return { };
        return *timelineRangeOffset;
    }

    if (auto* stringOffset = std::get_if<String>(&offset)) {
        auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document);
        if (!parsedValue)
            return { };
        if (auto doubleOffset = std::get_if<double>(&*parsedValue))
            return *doubleOffset;
        return std::get<TimelineRangeOffset>(*parsedValue);
    }

    ASSERT(std::holds_alternative<std::nullptr_t>(offset));
    return nullptr;
};

static double computedOffset(SingleTimelineRange::Name rangeName, double offset, const ViewTimeline* viewTimeline, WebAnimation* animation)
{
    if ((rangeName == SingleTimelineRange::Name::Normal || rangeName == SingleTimelineRange::Name::Omitted))
        return offset;

    if (!viewTimeline)
        return std::numeric_limits<double>::quiet_NaN();

    Ref timeline { *viewTimeline };

    auto [namedRangeStartOffset, namedRangeEndOffset] = timeline->offsetIntervalForTimelineRangeName(rangeName);
    auto namedRangeOffsetDelta = namedRangeEndOffset - namedRangeStartOffset;
    auto computedOffsetWithinNamedRange = namedRangeStartOffset + offset * namedRangeOffsetDelta;

    if (!animation)
        return computedOffsetWithinNamedRange;

    auto attachmentRange = Ref { *animation }->range();
    if (attachmentRange.isDefault())
        return computedOffsetWithinNamedRange;

    auto [attachmentRangeStartOffset, attachmentRangeEndOffset] = timeline->offsetIntervalForAttachmentRange(attachmentRange);
    auto attachmentRangeOffsetDelta = attachmentRangeEndOffset - attachmentRangeStartOffset;
    return (computedOffsetWithinNamedRange - attachmentRangeStartOffset) / attachmentRangeOffsetDelta;
}

static inline void computeMissingKeyframeOffsets(Vector<KeyframeEffect::ParsedKeyframe>& keyframes, const ViewTimeline* viewTimeline, WebAnimation* animation)
{
    // https://drafts.csswg.org/web-animations-1/#compute-missing-keyframe-offsets

    if (keyframes.isEmpty())
        return;

    Vector<KeyframeEffect::ParsedKeyframe*> keyframesWithDoubleOrNullOffset;

    // 1. For each keyframe, in keyframes, let the computed keyframe offset of the keyframe be equal to its keyframe offset value.
    // In our implementation, we only set non-null values to avoid making computedOffset std::optional<double>. Instead, we'll know
    // that a keyframe hasn't had a computed offset by checking if it has a null offset and a 0 computedOffset, since the first
    // keyframe will already have a 0 computedOffset.
    for (auto& keyframe : keyframes) {
        auto& offset = keyframe.offset;
        if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&offset)) {
            auto rangeName = rangeStringToSingleTimelineRangeName(timelineRangeOffset->rangeName);
            RefPtr offsetUnitValue = dynamicDowncast<CSSUnitValue>(timelineRangeOffset->offset);
            ASSERT(offsetUnitValue && offsetUnitValue->unitEnum() == CSSUnitType::CSS_PERCENTAGE);
            keyframe.computedOffset = computedOffset(rangeName, offsetUnitValue->value() / 100, viewTimeline, animation);
        } else {
            keyframesWithDoubleOrNullOffset.append(&keyframe);
            if (auto* doubleValue = std::get_if<double>(&offset))
                keyframe.computedOffset = *doubleValue;
            else
                keyframe.computedOffset = std::numeric_limits<double>::quiet_NaN();
        }
    }

    if (keyframesWithDoubleOrNullOffset.isEmpty())
        return;

    // 2. If keyframes contains more than one keyframe and the computed keyframe offset of the first keyframe in keyframes is null,
    //    set the computed keyframe offset of the first keyframe to 0.
    if (keyframesWithDoubleOrNullOffset.size() > 1 && std::isnan(keyframesWithDoubleOrNullOffset[0]->computedOffset))
        keyframesWithDoubleOrNullOffset[0]->computedOffset = 0;

    // 3. If the computed keyframe offset of the last keyframe in keyframes is null, set its computed keyframe offset to 1.
    if (std::isnan(keyframesWithDoubleOrNullOffset.last()->computedOffset))
        keyframesWithDoubleOrNullOffset.last()->computedOffset = 1;

    // 4. For each pair of keyframes A and B where:
    //    - A appears before B in keyframes, and
    //    - A and B have a computed keyframe offset that is not null, and
    //    - all keyframes between A and B have a null computed keyframe offset,
    //    calculate the computed keyframe offset of each keyframe between A and B as follows:
    //    1. Let offsetk be the computed keyframe offset of a keyframe k.
    //    2. Let n be the number of keyframes between and including A and B minus 1.
    //    3. Let index refer to the position of keyframe in the sequence of keyframes between A and B such that the first keyframe after A has an index of 1.
    //    4. Set the computed keyframe offset of keyframe to offsetA + (offsetB − offsetA) × index / n.

    size_t indexOfLastKeyframeWithNonNullOffset = 0;
    for (size_t i = 1; i < keyframesWithDoubleOrNullOffset.size(); ++i) {
        auto& keyframe = *keyframesWithDoubleOrNullOffset[i];
        // Keyframes with a null offset that don't yet have a non-zero computed offset are keyframes
        // with an offset that needs to be computed.
        if (std::isnan(keyframe.computedOffset))
            continue;
        if (indexOfLastKeyframeWithNonNullOffset != i - 1) {
            double lastNonNullOffset = keyframesWithDoubleOrNullOffset[indexOfLastKeyframeWithNonNullOffset]->computedOffset;
            double offsetDelta = keyframe.computedOffset - lastNonNullOffset;
            double offsetIncrement = offsetDelta / (i - indexOfLastKeyframeWithNonNullOffset);
            size_t indexOfFirstKeyframeWithNullOffset = indexOfLastKeyframeWithNonNullOffset + 1;
            for (size_t j = indexOfFirstKeyframeWithNullOffset; j < i; ++j)
                keyframesWithDoubleOrNullOffset[j]->computedOffset = lastNonNullOffset + (j - indexOfLastKeyframeWithNonNullOffset) * offsetIncrement;
        }
        indexOfLastKeyframeWithNonNullOffset = i;
    }
}

static inline ExceptionOr<KeyframeEffect::KeyframeLikeObject> processKeyframeLikeObject(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput, bool allowLists)
{
    // https://drafts.csswg.org/web-animations-1/#process-a-keyframe-like-object

    VM& vm = lexicalGlobalObject.vm();
    auto scope = DECLARE_THROW_SCOPE(vm);

    // 1. Run the procedure to convert an ECMAScript value to a dictionary type [WEBIDL] with keyframe input as the ECMAScript value as follows:
    // 
    //    If allow lists is true, use the following dictionary type:
    //
    //    dictionary BasePropertyIndexedKeyframe {
    //        (double? or sequence<double?>)                                   offset = [];
    //        (DOMString or sequence<DOMString>)                               easing = [];
    //        (CompositeOperationOrAuto or sequence<CompositeOperationOrAuto>) composite = [];
    //    };
    //
    //    Otherwise, use the following dictionary type:
    //
    //    dictionary BaseKeyframe {
    //        double?                  offset = null;
    //        DOMString                easing = "linear";
    //        CompositeOperationOrAuto composite = "auto";
    //    };
    //
    //    Store the result of this procedure as keyframe output.
    KeyframeEffect::BasePropertyIndexedKeyframe baseProperties;
    if (allowLists) {
        auto basePropertiesConversionResult = convert<IDLDictionary<KeyframeEffect::BasePropertyIndexedKeyframe>>(lexicalGlobalObject, keyframesInput.get());
        if (UNLIKELY(basePropertiesConversionResult.hasException(scope)))
            return Exception { ExceptionCode::TypeError };
        baseProperties = basePropertiesConversionResult.releaseReturnValue();

        // Convert string offsets to TimelineRangeOffset in case we were provided with a list of offsets.
        if (auto* offsets = std::get_if<Vector<KeyframeEffect::KeyframeOffset>>(&baseProperties.offset)) {
            for (auto& offset : *offsets) {
                auto* stringOffset = std::get_if<String>(&offset);
                if (!stringOffset)
                    continue;
                if (auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document)) {
                    if (auto doubleOffset = std::get_if<double>(&*parsedValue))
                        offset = *doubleOffset;
                    else
                        offset = std::get<TimelineRangeOffset>(*parsedValue);
                } else
                    return Exception { ExceptionCode::TypeError };
            }
        }
    } else {
        auto baseKeyframeConversionResult = convert<IDLDictionary<KeyframeEffect::BaseKeyframe>>(lexicalGlobalObject, keyframesInput.get());
        if (UNLIKELY(baseKeyframeConversionResult.hasException(scope)))
            return Exception { ExceptionCode::TypeError };

        auto baseKeyframe = baseKeyframeConversionResult.releaseReturnValue();
        auto* baseKeyframeOffset = &baseKeyframe.offset;
        if (auto* doubleValue = std::get_if<double>(baseKeyframeOffset))
            baseProperties.offset = *doubleValue;
        else if (auto* timelineRangeOffsetValue = std::get_if<TimelineRangeOffset>(baseKeyframeOffset)) {
            if (!isTimelineRangeOffsetValid(*timelineRangeOffsetValue)) {
                throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
                return Exception { ExceptionCode::TypeError };
            }
            baseProperties.offset = *timelineRangeOffsetValue;
        } else if (auto* stringOffset = std::get_if<String>(baseKeyframeOffset)) {
            if (auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document)) {
                if (auto doubleOffset = std::get_if<double>(&*parsedValue))
                    baseProperties.offset = *doubleOffset;
                else
                    baseProperties.offset = std::get<TimelineRangeOffset>(*parsedValue);
            } else {
                throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
                return Exception { ExceptionCode::TypeError };
            }
        } else
            baseProperties.offset = nullptr;
        baseProperties.easing = baseKeyframe.easing;
        baseProperties.composite = baseKeyframe.composite;
    }

    KeyframeEffect::KeyframeLikeObject keyframeOuput;
    keyframeOuput.baseProperties = baseProperties;

    // 2. Build up a list of animatable properties as follows:
    //
    //    1. Let animatable properties be a list of property names (including shorthand properties that have longhand sub-properties
    //       that are animatable) that can be animated by the implementation.
    //    2. Convert each property name in animatable properties to the equivalent IDL attribute by applying the animation property
    //       name to IDL attribute name algorithm.

    // 3. Let input properties be the result of calling the EnumerableOwnNames operation with keyframe input as the object.
    PropertyNameArray inputProperties(vm, PropertyNameMode::Strings, PrivateSymbolMode::Exclude);
    JSObject::getOwnPropertyNames(keyframesInput.get(), &lexicalGlobalObject, inputProperties, DontEnumPropertiesMode::Exclude);

    auto isDirectionAwareShorthand = [](CSSPropertyID property) {
        for (auto longhand : shorthandForProperty(property)) {
            if (CSSProperty::isDirectionAwareProperty(longhand))
                return true;
        }
        return false;
    };

    // 4. Make up a new list animation properties that consists of all of the properties that are in both input properties and animatable
    //    properties, or which are in input properties and conform to the <custom-property-name> production.
    Vector<JSC::Identifier> logicalShorthands;
    Vector<JSC::Identifier> physicalShorthands;
    Vector<JSC::Identifier> logicalLonghands;
    Vector<JSC::Identifier> physicalLonghands;
    for (auto& inputProperty : inputProperties) {
        auto cssProperty = IDLAttributeNameToAnimationPropertyName(inputProperty.string());
        if (!isExposed(cssProperty, &document.settings()))
            cssProperty = CSSPropertyInvalid;
        auto resolvedCSSProperty = CSSProperty::resolveDirectionAwareProperty(cssProperty, WritingMode());
        if (CSSPropertyAnimation::isPropertyAnimatable(resolvedCSSProperty)) {
            if (isDirectionAwareShorthand(cssProperty))
                logicalShorthands.append(inputProperty);
            else if (isShorthand(cssProperty))
                physicalShorthands.append(inputProperty);
            else if (resolvedCSSProperty != cssProperty)
                logicalLonghands.append(inputProperty);
            else
                physicalLonghands.append(inputProperty);
        }
    }

    // 5. Sort animation properties in ascending order by the Unicode codepoints that define each property name.
    auto sortPropertiesInAscendingOrder = [](auto& properties) {
        std::sort(properties.begin(), properties.end(), [](auto& lhs, auto& rhs) {
            return codePointCompareLessThan(lhs.string().string(), rhs.string().string());
        });
    };
    sortPropertiesInAscendingOrder(logicalShorthands);
    sortPropertiesInAscendingOrder(physicalShorthands);
    sortPropertiesInAscendingOrder(logicalLonghands);
    sortPropertiesInAscendingOrder(physicalLonghands);

    Vector<JSC::Identifier> animationProperties;
    animationProperties.appendVector(logicalShorthands);
    animationProperties.appendVector(physicalShorthands);
    animationProperties.appendVector(logicalLonghands);
    animationProperties.appendVector(physicalLonghands);

    // 6. For each property name in animation properties,
    size_t numberOfAnimationProperties = animationProperties.size();
    for (size_t i = 0; i < numberOfAnimationProperties; ++i) {
        // 1. Let raw value be the result of calling the [[Get]] internal method on keyframe input, with property name as the property
        //    key and keyframe input as the receiver.
        auto rawValue = keyframesInput->get(&lexicalGlobalObject, animationProperties[i]);

        // 2. Check the completion record of raw value.
        RETURN_IF_EXCEPTION(scope, Exception { ExceptionCode::TypeError });

        // 3. Convert raw value to a DOMString or sequence of DOMStrings property values as follows:
        Vector<String> propertyValues;
        if (allowLists) {
            // If allow lists is true,
            // Let property values be the result of converting raw value to IDL type (DOMString or sequence<DOMString>)
            // using the procedures defined for converting an ECMAScript value to an IDL value [WEBIDL].
            // If property values is a single DOMString, replace property values with a sequence of DOMStrings with the original value of property
            // Values as the only element.
            auto propertyValuesConversionResult = convert<IDLUnion<IDLDOMString, IDLSequence<IDLDOMString>>>(lexicalGlobalObject, rawValue);
            if (UNLIKELY(propertyValuesConversionResult.hasException(scope)))
                return Exception { ExceptionCode::TypeError };

            propertyValues = WTF::switchOn(propertyValuesConversionResult.releaseReturnValue(),
                [](String&& value) -> Vector<String> {
                    return { WTFMove(value) };
                },
                [](Vector<String>&& values) -> Vector<String> {
                    return values;
                }
            );
        } else {
            // Otherwise,
            // Let property values be the result of converting raw value to a DOMString using the procedure for converting an ECMAScript value to a DOMString.
            auto propertyValuesConversionResult = convert<IDLDOMString>(lexicalGlobalObject, rawValue);
            if (UNLIKELY(propertyValuesConversionResult.hasException(scope)))
                return Exception { ExceptionCode::TypeError };

            propertyValues = { propertyValuesConversionResult.releaseReturnValue() };
        }

        // 4. Calculate the normalized property name as the result of applying the IDL attribute name to animation property name algorithm to property name.
        auto propertyName = animationProperties[i].string();
        auto cssPropertyID = IDLAttributeNameToAnimationPropertyName(propertyName);
        ASSERT(isExposed(cssPropertyID, &document.settings()));

        // 5. Add a property to to keyframe output with normalized property name as the property name, and property values as the property value.
        if (cssPropertyID == CSSPropertyCustom)
            keyframeOuput.propertiesAndValues.append({ cssPropertyID, propertyName, propertyValues });
        else
            keyframeOuput.propertiesAndValues.append({ cssPropertyID, emptyAtom(), propertyValues });
    }

    // 7. Return keyframe output.
    return { WTFMove(keyframeOuput) };
}

static inline ExceptionOr<void> processIterableKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput, JSValue method, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes)
{
    CSSParserContext parserContext(document);

    // 1. Let iter be GetIterator(object, method).
    forEachInIterable(lexicalGlobalObject, keyframesInput.get(), method, [&parsedKeyframes, &document, &parserContext](VM& vm, JSGlobalObject& lexicalGlobalObject, JSValue nextValue) -> ExceptionOr<void> {
        // Steps 2 through 5 are already implemented by forEachInIterable().
        auto scope = DECLARE_THROW_SCOPE(vm);

        // 6. If Type(nextItem) is not Undefined, Null or Object, then throw a TypeError and abort these steps.
        if (!nextValue.isUndefinedOrNull() && !nextValue.isObject()) {
            throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
            return { };
        }

        if (!nextValue.isObject()) {
            parsedKeyframes.append({ });
            return { };
        }

        // 7. Append to processed keyframes the result of running the procedure to process a keyframe-like object passing nextItem
        // as the keyframe input and with the allow lists flag set to false.
        auto processKeyframeLikeObjectResult = processKeyframeLikeObject(lexicalGlobalObject, document, Strong<JSObject>(vm, nextValue.toObject(&lexicalGlobalObject)), false);
        if (processKeyframeLikeObjectResult.hasException())
            return processKeyframeLikeObjectResult.releaseException();
        auto keyframeLikeObject = processKeyframeLikeObjectResult.returnValue();

        KeyframeEffect::ParsedKeyframe keyframeOutput;

        // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only offset
        // alternatives we should expect are double and nullptr.
        if (auto* doubleValue = std::get_if<double>(&keyframeLikeObject.baseProperties.offset))
            keyframeOutput.offset = *doubleValue;
        else if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&keyframeLikeObject.baseProperties.offset)) {
            if (!isTimelineRangeOffsetValid(*timelineRangeOffset)) {
                throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
                return Exception { ExceptionCode::TypeError };
            }
            keyframeOutput.offset = *timelineRangeOffset;
        }

        // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only easing
        // alternative we should expect is String.
        ASSERT(std::holds_alternative<String>(keyframeLikeObject.baseProperties.easing));
        keyframeOutput.easing = std::get<String>(keyframeLikeObject.baseProperties.easing);

        // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only composite
        // alternatives we should expect is CompositeOperationAuto.
        ASSERT(std::holds_alternative<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite));
        keyframeOutput.composite = std::get<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite);

        for (auto& propertyAndValue : keyframeLikeObject.propertiesAndValues) {
            auto cssPropertyId = propertyAndValue.property;
            // When calling processKeyframeLikeObject() with the "allow lists" flag set to false,
            // there should only ever be a single value for a given property.
            ASSERT(propertyAndValue.values.size() == 1);
            auto stringValue = propertyAndValue.values[0];
            if (cssPropertyId == CSSPropertyCustom) {
                auto customProperty = propertyAndValue.customProperty;
                if (keyframeOutput.style->setCustomProperty(customProperty, stringValue, parserContext))
                    keyframeOutput.customStyleStrings.set(customProperty, stringValue);
            } else if (keyframeOutput.style->setProperty(cssPropertyId, stringValue, parserContext))
                keyframeOutput.styleStrings.set(cssPropertyId, stringValue);
        }

        parsedKeyframes.append(WTFMove(keyframeOutput));

        return { };
    });

    return { };
}

static inline ExceptionOr<void> processPropertyIndexedKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes, Vector<String>& unusedEasings)
{
    // 1. Let property-indexed keyframe be the result of running the procedure to process a keyframe-like object passing object as the keyframe input.
    auto processKeyframeLikeObjectResult = processKeyframeLikeObject(lexicalGlobalObject, document, WTFMove(keyframesInput), true);
    if (processKeyframeLikeObjectResult.hasException())
        return processKeyframeLikeObjectResult.releaseException();
    auto propertyIndexedKeyframe = processKeyframeLikeObjectResult.returnValue();

    CSSParserContext parserContext(document);

    // 2. For each member, m, in property-indexed keyframe, perform the following steps:
    for (auto& m : propertyIndexedKeyframe.propertiesAndValues) {
        // 1. Let property name be the key for m.
        auto propertyName = m.property;
        // 2. If property name is “composite”, or “easing”, or “offset”, skip the remaining steps in this loop and continue from the next member in property-indexed
        //    keyframe after m.
        //    We skip this test since we split those properties and the actual CSS properties that we're currently iterating over.
        // 3. Let property values be the value for m.
        auto propertyValues = m.values;
        // 4. Let property keyframes be an empty sequence of keyframes.
        Vector<KeyframeEffect::ParsedKeyframe> propertyKeyframes;
        // 5. For each value, v, in property values perform the following steps:
        for (auto& v : propertyValues) {
            // 1. Let k be a new keyframe with a null keyframe offset.
            KeyframeEffect::ParsedKeyframe k;
            // 2. Add the property-value pair, property name → v, to k.
            if (propertyName == CSSPropertyCustom) {
                auto customProperty = m.customProperty;
                if (k.style->setCustomProperty(customProperty, v, parserContext))
                    k.customStyleStrings.set(customProperty, v);
            } else if (k.style->setProperty(propertyName, v, parserContext))
                k.styleStrings.set(propertyName, v);
            // 3. Append k to property keyframes.
            propertyKeyframes.append(WTFMove(k));
        }
        // 6. Apply the procedure to compute missing keyframe offsets to property keyframes.
        computeMissingKeyframeOffsets(propertyKeyframes, nullptr, nullptr);

        // 7. Add keyframes in property keyframes to processed keyframes.
        parsedKeyframes.appendVector(propertyKeyframes);
    }

    // 3. Sort processed keyframes by the computed keyframe offset of each keyframe in increasing order.
    std::sort(parsedKeyframes.begin(), parsedKeyframes.end(), [](auto& lhs, auto& rhs) {
        if (!std::isnan(lhs.computedOffset) && !std::isnan(rhs.computedOffset))
            return lhs.computedOffset < rhs.computedOffset;
        // This will sort nullopt values prior to other values.
        return !std::isnan(lhs.computedOffset);
    });

    // 4. Merge adjacent keyframes in processed keyframes when they have equal computed keyframe offsets.
    size_t i = 1;
    while (i < parsedKeyframes.size()) {
        auto& keyframe = parsedKeyframes[i];
        auto& previousKeyframe = parsedKeyframes[i - 1];
        // If the offsets of this keyframe and the previous keyframe are different,
        // this means that the two keyframes should not be merged and we can move
        // on to the next keyframe.
        if (keyframe.computedOffset != previousKeyframe.computedOffset) {
            i++;
            continue;
        }
        // Otherwise, both this keyframe and the previous keyframe should be merged.
        // Unprocessed keyframes in parsedKeyframes at this stage have at most a single
        // property in cssPropertiesAndValues, so just set this on the previous keyframe.
        // In case an invalid or null value was originally provided, then the property
        // was not set and the property count is 0, in which case there is nothing to merge.
        if (keyframe.styleStrings.size()) {
            previousKeyframe.style->mergeAndOverrideOnConflict(keyframe.style);
            for (auto& [property, value] : keyframe.styleStrings)
                previousKeyframe.styleStrings.set(property, value);
        }
        if (keyframe.customStyleStrings.size()) {
            previousKeyframe.style->mergeAndOverrideOnConflict(keyframe.style);
            for (auto& [customProperty, value] : keyframe.customStyleStrings)
                previousKeyframe.customStyleStrings.set(customProperty, value);
        }
        // Since we've processed this keyframe, we can remove it and keep i the same
        // so that we process the next keyframe in the next loop iteration.
        parsedKeyframes.remove(i);
    }

    // 5. Let offsets be a sequence of nullable double values assigned based on the type of the “offset” member of the property-indexed keyframe as follows:
    //    - sequence<double?>, the value of “offset” as-is.
    //    - double?, a sequence of length one with the value of “offset” as its single item, i.e. « offset »,
    Vector<KeyframeEffect::KeyframeOffset> offsets;
    auto* sourceOffsets = &propertyIndexedKeyframe.baseProperties.offset;
    if (auto* vectorOfKeyframeOffsets = std::get_if<Vector<KeyframeEffect::KeyframeOffset>>(sourceOffsets)) {
        for (auto& keyframeOffset : *vectorOfKeyframeOffsets) {
            auto validatedOffset = validateKeyframeOffset(keyframeOffset, document);
            if (!validatedOffset)
                return Exception { ExceptionCode::TypeError };
            offsets.append(*validatedOffset);
        }
    } else if (auto* doubleValue = std::get_if<double>(sourceOffsets))
        offsets.append(*doubleValue);
    else if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(sourceOffsets)) {
        if (!isTimelineRangeOffsetValid(*timelineRangeOffset))
            return Exception { ExceptionCode::TypeError };
        offsets.append(*timelineRangeOffset);
    } else if (auto* stringOffset = std::get_if<String>(sourceOffsets)) {
        if (auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document)) {
            if (auto doubleOffset = std::get_if<double>(&*parsedValue))
                offsets.append(*doubleOffset);
            else
                offsets.append(std::get<TimelineRangeOffset>(*parsedValue));
        } else
            return Exception { ExceptionCode::TypeError };
    } else
        offsets.append(nullptr);

    // 6. Assign each value in offsets to the keyframe offset of the keyframe with corresponding position in property keyframes until the end of either sequence is reached.
    for (size_t i = 0; i < offsets.size() && i < parsedKeyframes.size(); ++i)
        parsedKeyframes[i].offset = offsets[i];

    // 7. Let easings be a sequence of DOMString values assigned based on the type of the “easing” member of the property-indexed keyframe as follows:
    //    - sequence<DOMString>, the value of “easing” as-is.
    //    - DOMString, a sequence of length one with the value of “easing” as its single item, i.e. « easing »,
    Vector<String> easings;
    if (std::holds_alternative<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing))
        easings = std::get<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing);
    else if (std::holds_alternative<String>(propertyIndexedKeyframe.baseProperties.easing))
        easings.append(std::get<String>(propertyIndexedKeyframe.baseProperties.easing));

    // 8. If easings is an empty sequence, let it be a sequence of length one containing the single value “linear”, i.e. « "linear" ».
    if (easings.isEmpty())
        easings.append("linear"_s);

    // 9. If easings has fewer items than property keyframes, repeat the elements in easings successively starting from the beginning of the list until easings has as many
    //    items as property keyframes.
    if (easings.size() < parsedKeyframes.size()) {
        size_t initialNumberOfEasings = easings.size();
        for (i = initialNumberOfEasings; i < parsedKeyframes.size(); ++i)
            easings.append(easings[i % initialNumberOfEasings]);
    }

    // 10. If easings has more items than property keyframes, store the excess items as unused easings.
    while (easings.size() > parsedKeyframes.size())
        unusedEasings.append(easings.takeLast());

    // 11. Assign each value in easings to a property named “easing” on the keyframe with the corresponding position in property keyframes until the end of property keyframes
    //     is reached.
    for (size_t i = 0; i < parsedKeyframes.size(); ++i)
        parsedKeyframes[i].easing = easings[i];

    // 12. If the “composite” member of the property-indexed keyframe is not an empty sequence:
    Vector<CompositeOperationOrAuto> compositeModes;
    if (std::holds_alternative<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite))
        compositeModes = std::get<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite);
    else if (std::holds_alternative<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite))
        compositeModes.append(std::get<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite));
    if (!compositeModes.isEmpty()) {
        // 1. Let composite modes be a sequence of CompositeOperationOrAuto values assigned from the “composite” member of property-indexed keyframe. If that member is a single
        //    CompositeOperationOrAuto value operation, let composite modes be a sequence of length one, with the value of the “composite” as its single item.
        // 2. As with easings, if composite modes has fewer items than processed keyframes, repeat the elements in composite modes successively starting from the beginning of
        //    the list until composite modes has as many items as processed keyframes.
        if (compositeModes.size() < parsedKeyframes.size()) {
            size_t initialNumberOfCompositeModes = compositeModes.size();
            for (i = initialNumberOfCompositeModes; i < parsedKeyframes.size(); ++i)
                compositeModes.append(compositeModes[i % initialNumberOfCompositeModes]);
        }
        // 3. Assign each value in composite modes that is not auto to the keyframe-specific composite operation on the keyframe with the corresponding position in processed
        //    keyframes until the end of processed keyframes is reached.
        for (size_t i = 0; i < compositeModes.size() && i < parsedKeyframes.size(); ++i) {
            if (compositeModes[i] != CompositeOperationOrAuto::Auto)
                parsedKeyframes[i].composite = compositeModes[i];
        }
    }

    return { };
}

ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(JSGlobalObject& lexicalGlobalObject, Document& document, Element* target, Strong<JSObject>&& keyframes, std::optional<std::variant<double, KeyframeEffectOptions>>&& options)
{
    auto keyframeEffect = adoptRef(*new KeyframeEffect(target, { }));
    keyframeEffect->m_document = document;

    if (options) {
        OptionalEffectTiming timing;
        auto optionsValue = options.value();
        if (std::holds_alternative<double>(optionsValue)) {
            std::variant<double, String> duration = std::get<double>(optionsValue);
            timing.duration = duration;
        } else {
            auto keyframeEffectOptions = std::get<KeyframeEffectOptions>(optionsValue);

            auto setPseudoElementResult = keyframeEffect->setPseudoElement(keyframeEffectOptions.pseudoElement);
            if (setPseudoElementResult.hasException())
                return setPseudoElementResult.releaseException();

            auto convertedDuration = keyframeEffectOptions.durationAsDoubleOrString();
            if (!convertedDuration)
                return Exception { ExceptionCode::TypeError };

            timing = {
                *convertedDuration,
                keyframeEffectOptions.iterations,
                keyframeEffectOptions.delay,
                keyframeEffectOptions.endDelay,
                keyframeEffectOptions.iterationStart,
                keyframeEffectOptions.easing,
                keyframeEffectOptions.fill,
                keyframeEffectOptions.direction
            };

            keyframeEffect->setComposite(keyframeEffectOptions.composite);
            keyframeEffect->setIterationComposite(keyframeEffectOptions.iterationComposite);
        }
        auto updateTimingResult = keyframeEffect->updateTiming(document, timing);
        if (updateTimingResult.hasException())
            return updateTimingResult.releaseException();
    }

    auto processKeyframesResult = keyframeEffect->processKeyframes(lexicalGlobalObject, document, WTFMove(keyframes));
    if (processKeyframesResult.hasException())
        return processKeyframesResult.releaseException();

    return keyframeEffect;
}

Ref<KeyframeEffect> KeyframeEffect::create(Ref<KeyframeEffect>&& source)
{
    auto keyframeEffect = adoptRef(*new KeyframeEffect(nullptr, { }));
    keyframeEffect->copyPropertiesFromSource(WTFMove(source));
    return keyframeEffect;
}

Ref<KeyframeEffect> KeyframeEffect::create(const Element& target, const std::optional<Style::PseudoElementIdentifier>& pseudoElementIdentifier)
{
    return adoptRef(*new KeyframeEffect(const_cast<Element*>(&target), pseudoElementIdentifier));
}

KeyframeEffect::KeyframeEffect(Element* target, const std::optional<Style::PseudoElementIdentifier>& pseudoElementIdentifier)
    : m_keyframesName(makeAtomString("keyframe-effect-"_s, WTF::UUID::createVersion4Weak()))
    , m_target(target)
    , m_pseudoElementIdentifier(pseudoElementIdentifier)
{
    if (m_target)
        m_document = m_target->document();
}

void KeyframeEffect::copyPropertiesFromSource(Ref<KeyframeEffect>&& source)
{
    m_target = source->m_target;
    m_pseudoElementIdentifier = source->m_pseudoElementIdentifier;
    m_document = source->m_document;
    m_compositeOperation = source->m_compositeOperation;
    m_iterationCompositeOperation = source->m_iterationCompositeOperation;

    Vector<ParsedKeyframe> parsedKeyframes;
    for (auto& sourceParsedKeyframe : source->m_parsedKeyframes) {
        ParsedKeyframe parsedKeyframe;
        parsedKeyframe.easing = sourceParsedKeyframe.easing;
        parsedKeyframe.offset = sourceParsedKeyframe.offset;
        parsedKeyframe.composite = sourceParsedKeyframe.composite;
        parsedKeyframe.styleStrings = sourceParsedKeyframe.styleStrings;
        parsedKeyframe.customStyleStrings = sourceParsedKeyframe.customStyleStrings;
        parsedKeyframe.computedOffset = sourceParsedKeyframe.computedOffset;
        parsedKeyframe.timingFunction = sourceParsedKeyframe.timingFunction;
        parsedKeyframe.style = sourceParsedKeyframe.style->mutableCopy();
        parsedKeyframes.append(WTFMove(parsedKeyframe));
    }
    m_parsedKeyframes = WTFMove(parsedKeyframes);

    setFill(source->fill());
    setDelay(source->specifiedDelay());
    setEndDelay(source->specifiedEndDelay());
    setDirection(source->direction());
    setIterations(source->iterations());
    setTimingFunction(source->timingFunction());
    setIterationStart(source->iterationStart());
    setIterationDuration(source->specifiedIterationDuration());

    BlendingKeyframes blendingKeyframes(m_keyframesName);
    blendingKeyframes.copyKeyframes(source->m_blendingKeyframes);
    setBlendingKeyframes(WTFMove(blendingKeyframes));
}

static TimelineRangeOffset timelineRangeOffsetFromSpecifiedOffset(const BlendingKeyframe::Offset& specifiedOffset)
{
    auto name = rangeStringFromSingleTimelineRangeName(specifiedOffset.name);
    return TimelineRangeOffset { name, CSSNumericFactory::percent(specifiedOffset.value * 100) };
}

auto KeyframeEffect::getKeyframes() -> Vector<ComputedKeyframe>
{
    // https://drafts.csswg.org/web-animations-1/#dom-keyframeeffectreadonly-getkeyframes

    if (auto* styleOriginatedAnimation = dynamicDowncast<StyleOriginatedAnimation>(animation()))
        styleOriginatedAnimation->flushPendingStyleChanges();

    updateComputedKeyframeOffsetsIfNeeded();

    Vector<ComputedKeyframe> computedKeyframes;

    if (!m_parsedKeyframes.isEmpty() || m_animationType == WebAnimationType::WebAnimation || !m_blendingKeyframes.containsAnimatableCSSProperty()) {
        for (size_t i = 0; i < m_parsedKeyframes.size(); ++i) {
            auto& parsedKeyframe = m_parsedKeyframes[i];
            ComputedKeyframe computedKeyframe { parsedKeyframe };
            for (auto& [cssPropertyId, stringValue] : computedKeyframe.styleStrings) {
                if (cssPropertyId == CSSPropertyCustom)
                    continue;
                if (auto cssValue = parsedKeyframe.style->getPropertyCSSValue(cssPropertyId))
                    stringValue = cssValue->cssText(CSS::defaultSerializationContext());
            }
            computedKeyframe.easing = timingFunctionForKeyframeAtIndex(i)->cssText();
            computedKeyframes.append(WTFMove(computedKeyframe));
        }
        return computedKeyframes;
    }

    auto* target = m_target.get();
    auto* lastStyleChangeEventStyle = targetStyleable()->lastStyleChangeEventStyle();
    auto& elementStyle = lastStyleChangeEventStyle ? *lastStyleChangeEventStyle : currentStyle();

    ComputedStyleExtractor computedStyleExtractor { target, false, m_pseudoElementIdentifier };

    BlendingKeyframes computedBlendingKeyframes(m_blendingKeyframes.animationName());
    computedBlendingKeyframes.copyKeyframes(m_blendingKeyframes);

    if (computedBlendingKeyframes.hasKeyframeNotUsingRangeOffset() || activeViewTimeline())
        computedBlendingKeyframes.fillImplicitKeyframes(*this, elementStyle);

    auto keyframeRules = [&]() -> const Vector<Ref<StyleRuleKeyframe>> {
        auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation());
        if (!cssAnimation)
            return { };

        if (!m_target || !m_target->isConnected())
            return { };

        auto& backingAnimation = cssAnimation->backingAnimation();
        auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.name().scopeOrdinal);
        if (!styleScope)
            return { };

        return styleScope->resolver().keyframeRulesForName(computedBlendingKeyframes.animationName(), backingAnimation.timingFunction());
    }();

    auto matchingStyleRuleKeyframe = [&](const BlendingKeyframe& keyframe) -> StyleRuleKeyframe* {
        auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation());
        if (!cssAnimation)
            return nullptr;

        auto& backingAnimation = cssAnimation->backingAnimation();
        auto defaultCompositeOperation = backingAnimation.compositeOperation();
        auto* defaultTimingFunction = backingAnimation.timingFunction();

        auto compositeOperation = keyframe.compositeOperation().value_or(defaultCompositeOperation);
        auto* timingFunction = keyframe.timingFunction();
        if (!timingFunction)
            timingFunction = defaultTimingFunction;

        auto compositeOperationForStyleRuleKeyframe = [&](Ref<StyleRuleKeyframe>& styleRuleKeyframe) {
            if (auto compositeOperationCSSValue = styleRuleKeyframe->properties().getPropertyCSSValue(CSSPropertyAnimationComposition)) {
                if (auto compositeOperation = toCompositeOperation(*compositeOperationCSSValue))
                    return *compositeOperation;
            }
            return defaultCompositeOperation;
        };

        auto timingFunctionForStyleRuleKeyframe = [&](Ref<StyleRuleKeyframe>& styleRuleKeyframe) -> RefPtr<const TimingFunction> {
            if (auto timingFunctionCSSValue = styleRuleKeyframe->properties().getPropertyCSSValue(CSSPropertyAnimationTimingFunction)) {
                if (auto timingFunction = Style::createTimingFunctionDeprecated(*timingFunctionCSSValue))
                    return timingFunction;
            }
            if (defaultTimingFunction)
                return defaultTimingFunction;
            return &CubicBezierTimingFunction::defaultTimingFunction();
        };

        auto& specifiedOffset = keyframe.specifiedOffset();
        StyleRuleKeyframe::Key key { SingleTimelineRange::valueID(specifiedOffset.name), specifiedOffset.value };

        for (auto& keyframeRule : keyframeRules) {
            if (compositeOperationForStyleRuleKeyframe(keyframeRule) != compositeOperation)
                continue;
            if (timingFunctionForStyleRuleKeyframe(keyframeRule) != timingFunction)
                continue;
            for (auto keyframeRuleKey : keyframeRule->keys()) {
                if (keyframeRuleKey == key)
                    return keyframeRule.ptr();
            }
        }
        return nullptr;
    };

    auto styleProperties = MutableStyleProperties::create();
    if (m_animationType == WebAnimationType::CSSAnimation && m_target->isConnected()) {
        auto matchingRules = m_target->styleResolver().pseudoStyleRulesForElement(target, m_pseudoElementIdentifier, Style::Resolver::AllCSSRules);
        for (auto& matchedRule : matchingRules)
            styleProperties->mergeAndOverrideOnConflict(matchedRule->properties());
        if (auto* target = dynamicDowncast<StyledElement>(m_target.get()); target && !m_pseudoElementIdentifier) {
            if (auto* inlineProperties = target->inlineStyle())
                styleProperties->mergeAndOverrideOnConflict(*inlineProperties);
        }
    }

    Vector<ComputedKeyframe> computedKeyframesWithTimelineRangeOffset;
    Vector<ComputedKeyframe> computedKeyframesWithDoubleOffset;

    for (auto& keyframe : computedBlendingKeyframes) {
        auto& style = *keyframe.style();
        auto* keyframeRule = matchingStyleRuleKeyframe(keyframe);

        ComputedKeyframe computedKeyframe;
        computedKeyframe.offset = [&] -> KeyframeOffset {
            if (keyframe.usesRangeOffset())
                return timelineRangeOffsetFromSpecifiedOffset(keyframe.specifiedOffset());
            return keyframe.specifiedOffset().value;
        }();
        computedKeyframe.computedOffset = keyframe.offset();
        // For CSS transitions, all keyframes should return "linear" since the effect's global timing function applies.
        computedKeyframe.easing = is<CSSTransition>(animation()) ? "linear"_s : timingFunctionForBlendingKeyframe(keyframe)->cssText();

        if (auto compositeOperation = keyframe.compositeOperation())
            computedKeyframe.composite = toCompositeOperationOrAuto(*compositeOperation);

        auto addPropertyToKeyframe = [&](CSSPropertyID cssPropertyId) {
            String styleString = emptyString();
            if (keyframeRule) {
                if (auto cssValue = keyframeRule->properties().getPropertyCSSValue(cssPropertyId)) {
                    if (!cssValue->hasVariableReferences())
                        styleString = keyframeRule->properties().getPropertyValue(cssPropertyId);
                }
            }
            if (styleString.isEmpty()) {
                if (auto cssValue = styleProperties->getPropertyCSSValue(cssPropertyId)) {
                    if (!cssValue->hasVariableReferences())
                        styleString = styleProperties->getPropertyValue(cssPropertyId);
                }
            }
            if (styleString.isEmpty()) {
                if (auto cssValue = computedStyleExtractor.valueForPropertyInStyle(style, cssPropertyId, nullptr, ComputedStyleExtractor::PropertyValueType::Computed))
                    styleString = cssValue->cssText(CSS::defaultSerializationContext());
            }
            computedKeyframe.styleStrings.set(cssPropertyId, styleString);
        };

        auto addCustomPropertyToKeyframe = [&](const AtomString& customProperty) {
            String styleString = emptyString();
            if (keyframeRule) {
                if (auto cssValue = keyframeRule->properties().getCustomPropertyCSSValue(customProperty)) {
                    if (!cssValue->hasVariableReferences())
                        styleString = keyframeRule->properties().getCustomPropertyValue(customProperty);
                }
            }
            if (styleString.isEmpty()) {
                if (auto cssValue = styleProperties->getCustomPropertyCSSValue(customProperty)) {
                    if (!cssValue->hasVariableReferences())
                        styleString = styleProperties->getCustomPropertyValue(customProperty);
                }
            }
            if (styleString.isEmpty()) {
                if (auto* cssValue = style.customPropertyValue(customProperty))
                    styleString = cssValue->cssText(CSS::defaultSerializationContext());
            }
            computedKeyframe.customStyleStrings.set(customProperty, styleString);
        };

        for (auto property : keyframe.properties()) {
            WTF::switchOn(property,
                [&] (CSSPropertyID cssProperty) {
                    addPropertyToKeyframe(cssProperty);
                },
                [&] (const AtomString& customProperty) {
                    if (m_animationType != WebAnimationType::CSSAnimation)
                        addCustomPropertyToKeyframe(customProperty);
                }
            );
        }

        // FIXME: this is so that we mimic the Chrome behavior since this isn't
        // spec'd out, but it makes little sense to me. Items ought to be sorted
        // by computed offset just like BlendingKeyframes would organize its keyframes.
        // https://github.com/w3c/csswg-drafts/issues/11467
        if (std::holds_alternative<double>(computedKeyframe.offset))
            computedKeyframesWithDoubleOffset.append(WTFMove(computedKeyframe));
        else
            computedKeyframesWithTimelineRangeOffset.append(WTFMove(computedKeyframe));
    }

    computedKeyframes.appendVector(WTFMove(computedKeyframesWithDoubleOffset));
    computedKeyframes.appendVector(WTFMove(computedKeyframesWithTimelineRangeOffset));

    return computedKeyframes;
}

ExceptionOr<void> KeyframeEffect::setBindingsKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput)
{
    auto retVal = setKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput));
    if (!retVal.hasException()) {
        if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
            cssAnimation->effectKeyframesWereSetUsingBindings();
    }
    return retVal;
}

ExceptionOr<void> KeyframeEffect::setKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput)
{
    auto processKeyframesResult = processKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput));
    if (!processKeyframesResult.hasException() && animation()) {
        animation()->effectTimingDidChange();

        // Need a full style invalidation since the new keyframes may interact differently with the base style.
        if (auto target = targetStyleable())
            target->element.invalidateStyleInternal();
    }

    return processKeyframesResult;
}

void KeyframeEffect::keyframesRuleDidChange()
{
    ASSERT(is<CSSAnimation>(animation()));
    clearBlendingKeyframes();
    invalidate();
}

void KeyframeEffect::customPropertyRegistrationDidChange(const AtomString& customProperty)
{
    // If the registration of a custom property is changed, we should recompute keyframes
    // at the next opportunity as the initial value, inherited value, etc. could have changed.
    if (!m_blendingKeyframes.properties().contains(customProperty))
        return;

    clearBlendingKeyframes();
    invalidate();
}

ExceptionOr<void> KeyframeEffect::processKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput)
{
    Ref protectedDocument { document };

    // 1. If object is null, return an empty sequence of keyframes.
    if (!keyframesInput.get())
        return { };

    VM& vm = lexicalGlobalObject.vm();
    auto scope = DECLARE_THROW_SCOPE(vm);

    // 2. Let processed keyframes be an empty sequence of keyframes.
    Vector<ParsedKeyframe> parsedKeyframes;

    // 3. Let method be the result of GetMethod(object, @@iterator).
    auto method = keyframesInput.get()->get(&lexicalGlobalObject, vm.propertyNames->iteratorSymbol);

    // 4. Check the completion record of method.
    RETURN_IF_EXCEPTION(scope, Exception { ExceptionCode::TypeError });

    // 5. Perform the steps corresponding to the first matching condition from below,
    Vector<String> unusedEasings;
    if (!method.isUndefined()) {
        auto retVal = processIterableKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput), WTFMove(method), parsedKeyframes);
        if (retVal.hasException())
            return retVal.releaseException();
    } else {
        auto retVal = processPropertyIndexedKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput), parsedKeyframes, unusedEasings);
        if (retVal.hasException())
            return retVal.releaseException();
    }

    // 6. If processed keyframes is not loosely sorted by offset, throw a TypeError and abort these steps.
    // 7. If there exist any keyframe in processed keyframes whose keyframe offset is non-null and less than
    //    zero or greater than one, throw a TypeError and abort these steps.
    double lastNonNullOffset = -1;
    for (auto& keyframe : parsedKeyframes) {
        auto* doubleOffset = std::get_if<double>(&keyframe.offset);
        if (!doubleOffset)
            continue;
        auto offset = *doubleOffset;
        if (offset < lastNonNullOffset || offset < 0 || offset > 1)
            return Exception { ExceptionCode::TypeError };
        lastNonNullOffset = offset;
    }

    // We take a slight detour from the spec text and compute the missing keyframe offsets right away
    // since they can be computed up-front.
    computeMissingKeyframeOffsets(parsedKeyframes, activeViewTimeline(), animation());

    CSSParserContext parserContext(document);

    // 8. For each frame in processed keyframes, perform the following steps:
    for (auto& keyframe : parsedKeyframes) {
        // Let the timing function of frame be the result of parsing the “easing” property on frame using the CSS syntax
        // defined for the easing property of the AnimationEffectTiming interface.
        // If parsing the “easing” property fails, throw a TypeError and abort this procedure.

        // FIXME: Determine the how calc() and relative units should be resolved and switch to the non-deprecated parsing function.
        auto timingFunctionResult = CSSPropertyParserHelpers::parseEasingFunctionDeprecated(keyframe.easing, parserContext);
        if (!timingFunctionResult)
            return Exception { ExceptionCode::TypeError };
        keyframe.timingFunction = WTFMove(timingFunctionResult);
    }

    // 9. Parse each of the values in unused easings using the CSS syntax defined for easing property of the
    //    AnimationEffectTiming interface, and if any of the values fail to parse, throw a TypeError
    //    and abort this procedure.
    for (auto& easing : unusedEasings) {
        // FIXME: Determine the how calc() and relative units should be resolved and switch to the non-deprecated parsing function.
        auto timingFunctionResult = CSSPropertyParserHelpers::parseEasingFunctionDeprecated(easing, parserContext);
        if (!timingFunctionResult)
            return Exception { ExceptionCode::TypeError };
    }

    m_parsedKeyframes = WTFMove(parsedKeyframes);

    clearBlendingKeyframes();

    invalidate();

    return { };
}

static BlendingKeyframe::Offset specifiedOffsetForParsedKeyframe(const KeyframeEffect::ParsedKeyframe& keyframe)
{
    if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&keyframe.offset)) {
        auto rangeName = rangeStringToSingleTimelineRangeName(timelineRangeOffset->rangeName);
        RefPtr offsetUnitValue = dynamicDowncast<CSSUnitValue>(timelineRangeOffset->offset);
        ASSERT(offsetUnitValue && offsetUnitValue->unitEnum() == CSSUnitType::CSS_PERCENTAGE);
        return { rangeName, offsetUnitValue->value() / 100 };
    }

    ASSERT(!std::isnan(keyframe.computedOffset));
    return keyframe.computedOffset;
}

void KeyframeEffect::updateBlendingKeyframes(RenderStyle& elementStyle, const Style::ResolutionContext& resolutionContext)
{
    updateComputedKeyframeOffsetsIfNeeded();

    if (!m_blendingKeyframes.isEmpty() || !m_target)
        return;

    BlendingKeyframes blendingKeyframes(m_keyframesName);
    auto& styleResolver = m_target->styleResolver();

    for (auto& keyframe : m_parsedKeyframes) {
        BlendingKeyframe blendingKeyframe(specifiedOffsetForParsedKeyframe(keyframe), nullptr);
        blendingKeyframe.setTimingFunction(keyframe.timingFunction->clone());

        switch (keyframe.composite) {
        case CompositeOperationOrAuto::Replace:
            blendingKeyframe.setCompositeOperation(CompositeOperation::Replace);
            break;
        case CompositeOperationOrAuto::Add:
            blendingKeyframe.setCompositeOperation(CompositeOperation::Add);
            break;
        case CompositeOperationOrAuto::Accumulate:
            blendingKeyframe.setCompositeOperation(CompositeOperation::Accumulate);
            break;
        case CompositeOperationOrAuto::Auto:
            break;
        }

        auto keyframeRule = StyleRuleKeyframe::create(keyframe.style->immutableCopyIfNeeded());
        blendingKeyframe.setStyle(styleResolver.styleForKeyframe(*m_target, elementStyle, resolutionContext, keyframeRule.get(), blendingKeyframe));
        blendingKeyframes.insert(WTFMove(blendingKeyframe));
        blendingKeyframes.updatePropertiesMetadata(keyframeRule->properties());
    }

    setBlendingKeyframes(WTFMove(blendingKeyframes));
}

const UncheckedKeyHashSet<AnimatableCSSProperty>& KeyframeEffect::animatedProperties()
{
    if (!m_blendingKeyframes.isEmpty())
        return m_blendingKeyframes.properties();

    if (m_animatedProperties.isEmpty()) {
        for (auto& keyframe : m_parsedKeyframes) {
            for (auto keyframeCustomProperty : keyframe.customStyleStrings.keys())
                m_animatedProperties.add(keyframeCustomProperty);
            for (auto keyframeProperty : keyframe.styleStrings.keys())
                m_animatedProperties.add(keyframeProperty);
        }
    }

    return m_animatedProperties;
}

bool KeyframeEffect::animatesProperty(const AnimatableCSSProperty& property) const
{
    if (!m_blendingKeyframes.isEmpty())
        return m_blendingKeyframes.containsProperty(property);

    return WTF::switchOn(property,
        [&](CSSPropertyID cssProperty) {
            return m_parsedKeyframes.findIf([&](const auto& keyframe) {
                for (auto keyframeProperty : keyframe.styleStrings.keys()) {
                    if (keyframeProperty == cssProperty)
                        return true;
                }
                return false;
            });
        },
        [&](const AtomString& customProperty) {
            return m_parsedKeyframes.findIf([&](const auto& keyframe) {
                for (auto keyframeProperty : keyframe.customStyleStrings.keys()) {
                    if (keyframeProperty == customProperty)
                        return true;
                }
                return false;
            });
        }) != notFound;
}

bool KeyframeEffect::forceLayoutIfNeeded()
{
    if (!m_needsForcedLayout || !m_target)
        return false;

    auto* renderer = this->renderer();
    if (!renderer || !renderer->parent())
        return false;

    ASSERT(document());
    auto* frameView = document()->view();
    if (!frameView)
        return false;

    frameView->forceLayout();
    return true;
}


void KeyframeEffect::clearBlendingKeyframes()
{
    m_animationType = WebAnimationType::WebAnimation;
    m_blendingKeyframes.clear();
}

void KeyframeEffect::setBlendingKeyframes(BlendingKeyframes&& blendingKeyframes)
{
    CanBeAcceleratedMutationScope mutationScope(this);

    m_blendingKeyframes = WTFMove(blendingKeyframes);
    m_animatedProperties.clear();

    m_needsComputedKeyframeOffsetsUpdate = true;

    computedNeedsForcedLayout();
    computeStackingContextImpact();
    computeAcceleratedPropertiesState();
    computeSomeKeyframesUseStepsOrLinearTimingFunctionWithPoints();
    computeHasImplicitKeyframeForAcceleratedProperty();
    computeHasKeyframeComposingAcceleratedProperty();
    computeHasAcceleratedPropertyOverriddenByCascadeProperty();
    computeHasReferenceFilter();
    computeHasSizeDependentTransform();
    analyzeAcceleratedProperties();

    checkForMatchingTransformFunctionLists();

    updateAcceleratedAnimationIfNecessary();
}

void KeyframeEffect::analyzeAcceleratedProperties()
{
    m_acceleratedProperties.clear();
    m_acceleratedPropertiesWithImplicitKeyframe.clear();

    ASSERT(document());
    auto& settings = document()->settings();
    for (auto& property : m_blendingKeyframes.properties()) {
        if (!CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings))
            continue;
        m_acceleratedProperties.add(property);
        if (m_blendingKeyframes.hasImplicitKeyframeForProperty(property))
            m_acceleratedPropertiesWithImplicitKeyframe.add(property);
    }
}

void KeyframeEffect::checkForMatchingTransformFunctionLists()
{
    if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) {
        m_transformFunctionListsMatchPrefix = 0;
        return;
    }

    TransformOperationsSharedPrimitivesPrefix prefix;
    for (const auto& keyframe : m_blendingKeyframes)
        prefix.update(keyframe.style()->transform());

    m_transformFunctionListsMatchPrefix = prefix.primitives().size();
}

std::optional<unsigned> KeyframeEffect::transformFunctionListPrefix() const
{
    auto isTransformFunctionListsMatchPrefixRelevant = [&]() {
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
        if (threadedAnimationResolutionEnabled()) {
            // The prefix is only relevant if the animation is fully replaced.
            if (m_compositeOperation != CompositeOperation::Replace || m_hasKeyframeComposingAcceleratedProperty)
                return false;
        }
#endif
        // The CoreAnimation animation code can only use direct function interpolation when all keyframes share the same
        // prefix of shared transform function primitives, whereas software animations simply calls blend(...) which can do
        // direct interpolation based on the function list of any two particular keyframes. The prefix serves as a way to
        // make sure that the results of blend(...) can be made to return the same results as rendered by the hardware
        // animation code.
        return !preventsAcceleration();
    };

    return isTransformFunctionListsMatchPrefixRelevant() ? std::optional<unsigned>(m_transformFunctionListsMatchPrefix) : std::nullopt;
}

void KeyframeEffect::computeStyleOriginatedAnimationBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle, const Style::ResolutionContext& resolutionContext)
{
    ASSERT(is<StyleOriginatedAnimation>(animation()));
    if (is<CSSAnimation>(animation()))
        computeCSSAnimationBlendingKeyframes(newStyle, resolutionContext);
    else if (is<CSSTransition>(animation())) {
        ASSERT(oldStyle);
        computeCSSTransitionBlendingKeyframes(*oldStyle, newStyle);
    }
}

void KeyframeEffect::computeCSSAnimationBlendingKeyframes(const RenderStyle& unanimatedStyle, const Style::ResolutionContext& resolutionContext)
{
    ASSERT(document());

    auto& backingAnimation = downcast<CSSAnimation>(*animation()).backingAnimation();

    BlendingKeyframes blendingKeyframes(AtomString { backingAnimation.name().name });
    if (m_target) {
        if (auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.name().scopeOrdinal))
            styleScope->resolver().keyframeStylesForAnimation(*m_target, unanimatedStyle, resolutionContext, blendingKeyframes, backingAnimation.timingFunction());

        // Ensure resource loads for all the frames.
        for (auto& keyframe : blendingKeyframes) {
            if (auto* style = const_cast<RenderStyle*>(keyframe.style()))
                Style::loadPendingResources(*style, *document(), m_target.get());
        }
    }

    m_animationType = WebAnimationType::CSSAnimation;
    setBlendingKeyframes(WTFMove(blendingKeyframes));
}

void KeyframeEffect::computeCSSTransitionBlendingKeyframes(const RenderStyle& oldStyle, const RenderStyle& newStyle)
{
    ASSERT(document());

    if (m_blendingKeyframes.size())
        return;

    auto property = downcast<CSSTransition>(animation())->property();

    auto toStyle = RenderStyle::clonePtr(newStyle);
    if (m_target)
        Style::loadPendingResources(*toStyle, *document(), m_target.get());

    BlendingKeyframes blendingKeyframes(m_keyframesName);

    BlendingKeyframe fromBlendingKeyframe(0, RenderStyle::clonePtr(oldStyle));
    fromBlendingKeyframe.addProperty(property);
    blendingKeyframes.insert(WTFMove(fromBlendingKeyframe));

    BlendingKeyframe toBlendingKeyframe(1, WTFMove(toStyle));
    toBlendingKeyframe.addProperty(property);
    blendingKeyframes.insert(WTFMove(toBlendingKeyframe));

    m_animationType = WebAnimationType::CSSTransition;
    setBlendingKeyframes(WTFMove(blendingKeyframes));
}

void KeyframeEffect::computedNeedsForcedLayout()
{
    m_needsForcedLayout = [&]() {
        if (is<CSSTransition>(animation()))
            return false;
        return m_blendingKeyframes.hasWidthDependentTransform() || m_blendingKeyframes.hasHeightDependentTransform();
    }();
}

void KeyframeEffect::computeStackingContextImpact()
{
    m_triggersStackingContext = false;
    for (auto property : m_blendingKeyframes.properties()) {
        if (std::holds_alternative<CSSPropertyID>(property) && WillChangeData::propertyCreatesStackingContext(std::get<CSSPropertyID>(property))) {
            m_triggersStackingContext = true;
            break;
        }
    }
}

void KeyframeEffect::updateIsAssociatedWithProgressBasedTimeline()
{
    auto wasAssociatedWithProgressBasedTimeline = m_isAssociatedWithProgressBasedTimeline;

    m_isAssociatedWithProgressBasedTimeline = [&] {
        if (RefPtr animation = this->animation()) {
            if (RefPtr timeline = animation->timeline())
                return timeline->isProgressBased();
        }
        return false;
    }();

    if (wasAssociatedWithProgressBasedTimeline != m_isAssociatedWithProgressBasedTimeline)
        updateAcceleratedAnimationIfNecessary();
}

void KeyframeEffect::animationTimelineDidChange(const AnimationTimeline* timeline)
{
    AnimationEffect::animationTimelineDidChange(timeline);

    updateIsAssociatedWithProgressBasedTimeline();

    updateEffectStackMembership();

    m_needsComputedKeyframeOffsetsUpdate = true;
}

void KeyframeEffect::animationRelevancyDidChange()
{
    updateEffectStackMembership();
}

void KeyframeEffect::updateEffectStackMembership()
{
    auto target = targetStyleable();
    if (!target)
        return;

#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    StackMembershipMutationScope stackMembershipMutationScope(*this);
#endif

    bool isRelevant = animation() && animation()->isRelevant();
    if (isRelevant && !m_inTargetEffectStack)
        target->ensureKeyframeEffectStack().addEffect(*this);
    else if (!isRelevant && m_inTargetEffectStack)
        target->ensureKeyframeEffectStack().removeEffect(*this);
}

void KeyframeEffect::setAnimation(WebAnimation* animation)
{
    bool animationChanged = animation != this->animation();

    AnimationEffect::setAnimation(animation);

    if (!animationChanged)
        return;

    if (m_animationType == WebAnimationType::CSSAnimation)
        clearBlendingKeyframes();
    updateEffectStackMembership();

    updateIsAssociatedWithProgressBasedTimeline();
}

const std::optional<const Styleable> KeyframeEffect::targetStyleable() const
{
    if (m_target)
        return Styleable(*m_target, m_pseudoElementIdentifier);
    return std::nullopt;
}

bool KeyframeEffect::targetsPseudoElement() const
{
    return m_target.get() && m_pseudoElementIdentifier;
}

void KeyframeEffect::setTarget(RefPtr<Element>&& newTarget)
{
    if (m_target == newTarget)
        return;

    auto& previousTargetStyleable = targetStyleable();
    RefPtr<Element> protector;
    if (previousTargetStyleable)
        protector = &previousTargetStyleable->element;
    m_target = WTFMove(newTarget);
    didChangeTargetStyleable(previousTargetStyleable);
}

const String KeyframeEffect::pseudoElement() const
{
    // https://drafts.csswg.org/web-animations/#dom-keyframeeffect-pseudoelement

    // The target pseudo-selector. null if this effect has no effect target or if the effect target is an element (i.e. not a pseudo-element).
    // When the effect target is a pseudo-element, this specifies the pseudo-element selector (e.g. ::before).
    if (targetsPseudoElement())
        return pseudoElementIdentifierAsString(m_pseudoElementIdentifier);
    return { };
}

ExceptionOr<void> KeyframeEffect::setPseudoElement(const String& pseudoElement)
{
    // https://drafts.csswg.org/web-animations-1/#dom-keyframeeffect-pseudoelement
    auto [parsed, pseudoElementIdentifier] = pseudoElementIdentifierFromString(pseudoElement, document());
    if (!parsed)
        return Exception { ExceptionCode::SyntaxError, "Parsing pseudo-element selector failed"_s };

    if (m_pseudoElementIdentifier == pseudoElementIdentifier)
        return { };

    auto& previousTargetStyleable = targetStyleable();
    m_pseudoElementIdentifier = pseudoElementIdentifier;
    didChangeTargetStyleable(previousTargetStyleable);

    return { };
}

void KeyframeEffect::didChangeTargetStyleable(const std::optional<const Styleable>& previousTargetStyleable)
{
    auto newTargetStyleable = targetStyleable();

    if (auto* effectAnimation = animation())
        effectAnimation->effectTargetDidChange(previousTargetStyleable, newTargetStyleable);

    clearBlendingKeyframes();

    // We need to invalidate the effect now that the target has changed
    // to ensure the effect's styles are applied to the new target right away.
    invalidate();

    // Likewise, we need to invalidate styles on the previous target so that
    // any animated styles are removed immediately.
    invalidateElement(previousTargetStyleable);

#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    StackMembershipMutationScope stackMembershipMutationScope(*this);
#endif

    if (previousTargetStyleable)
        previousTargetStyleable->ensureKeyframeEffectStack().removeEffect(*this);

    if (newTargetStyleable)
        newTargetStyleable->ensureKeyframeEffectStack().addEffect(*this);
}

OptionSet<AnimationImpact> KeyframeEffect::apply(RenderStyle& targetStyle, const Style::ResolutionContext& resolutionContext, std::optional<Seconds> startTime)
{
    OptionSet<AnimationImpact> impact;
    if (!m_target)
        return impact;

    updateBlendingKeyframes(targetStyle, resolutionContext);

    auto computedTiming = getComputedTiming(startTime);
    if (!startTime) {
        if (m_phaseAtLastApplication != computedTiming.phase) {
            m_phaseAtLastApplication = computedTiming.phase;
            impact.add(AnimationImpact::RequiresRecomposite);
        }

        if (auto target = targetStyleable())
            InspectorInstrumentation::willApplyKeyframeEffect(*target, *this, computedTiming);
    }

    if (!computedTiming.progress)
        return impact;

    ASSERT(computedTiming.currentIteration);
    setAnimatedPropertiesInStyle(targetStyle, computedTiming);
    return impact;
}

bool KeyframeEffect::isRunningAccelerated() const
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        if (!m_inTargetEffectStack || !canBeAccelerated())
            return false;
        auto* animation = this->animation();
        ASSERT(animation);
        return !animation->isSuspended() && animation->playState() == WebAnimation::PlayState::Running;
    }
#endif
    return m_runningAccelerated == RunningAccelerated::Yes;
}

bool KeyframeEffect::isCurrentlyAffectingProperty(CSSPropertyID property, Accelerated accelerated) const
{
    if (accelerated == Accelerated::Yes && !isRunningAccelerated() && !isAboutToRunAccelerated())
        return false;

    if (!m_blendingKeyframes.properties().contains(property))
        return false;

    if (m_pseudoElementIdentifier && m_pseudoElementIdentifier->pseudoId == PseudoId::Marker && !Style::isValidMarkerStyleProperty(property))
        return false;

    return m_phaseAtLastApplication == AnimationEffectPhase::Active;
}

bool KeyframeEffect::isRunningAcceleratedAnimationForProperty(CSSPropertyID property) const
{
    if (!isRunningAccelerated())
        return false;

    ASSERT(document());
    return CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, document()->settings()) && m_blendingKeyframes.properties().contains(property);
}

static bool propertiesContainTransformRelatedProperty(const UncheckedKeyHashSet<AnimatableCSSProperty>& properties)
{
    return properties.contains(CSSPropertyTranslate)
        || properties.contains(CSSPropertyScale)
        || properties.contains(CSSPropertyRotate)
        || properties.contains(CSSPropertyTransform);
}

bool KeyframeEffect::isRunningAcceleratedTransformRelatedAnimation() const
{
    return isRunningAccelerated() && propertiesContainTransformRelatedProperty(m_blendingKeyframes.properties());
}

void KeyframeEffect::invalidate()
{
    LOG_WITH_STREAM(Animations, stream << "KeyframeEffect::invalidate on element " << ValueOrNull(m_target.get()));
    invalidateElement(targetStyleable());
}

void KeyframeEffect::computeAcceleratedPropertiesState()
{
    bool hasSomeAcceleratedProperties = false;
    bool hasSomeUnacceleratedProperties = false;

    if (auto* document = this->document()) {
        auto& settings = document->settings();
        for (auto property : m_blendingKeyframes.properties()) {
            // If any animated property can be accelerated, then the animation should run accelerated.
            if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings))
                hasSomeAcceleratedProperties = true;
            else
                hasSomeUnacceleratedProperties = true;
            if (hasSomeAcceleratedProperties && hasSomeUnacceleratedProperties)
                break;
        }
    }

    if (!hasSomeAcceleratedProperties)
        m_acceleratedPropertiesState = AcceleratedProperties::None;
    else if (hasSomeUnacceleratedProperties)
        m_acceleratedPropertiesState = AcceleratedProperties::Some;
    else
        m_acceleratedPropertiesState = AcceleratedProperties::All;
}

static bool isLinearTimingFunctionWithPoints(const TimingFunction* timingFunction)
{
    auto* linearTimingFunction = dynamicDowncast<LinearTimingFunction>(timingFunction);
    return linearTimingFunction && !linearTimingFunction->points().isEmpty();
}

void KeyframeEffect::computeSomeKeyframesUseStepsOrLinearTimingFunctionWithPoints()
{
    m_someKeyframesUseStepsTimingFunction = false;
    m_someKeyframesUseLinearTimingFunctionWithPoints = false;

    // If we're dealing with a CSS Animation and it specifies a default steps() or linear() timing function,
    // we need to check that any of the specified keyframes either does not have an explicit timing
    // function or specifies an explicit steps() or linear() timing function.
    if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation())) {
        auto* defaultTimingFunction = cssAnimation->backingAnimation().timingFunction();
        auto defaultTimingFunctionIsSteps = is<StepsTimingFunction>(defaultTimingFunction);
        auto defaultTimingFunctionIsLinearWithPoints = isLinearTimingFunctionWithPoints(defaultTimingFunction);
        if (defaultTimingFunctionIsSteps || defaultTimingFunctionIsLinearWithPoints) {
            for (auto& keyframe : m_blendingKeyframes) {
                auto* timingFunction = keyframe.timingFunction();
                if (defaultTimingFunctionIsSteps && !m_someKeyframesUseStepsTimingFunction)
                    m_someKeyframesUseStepsTimingFunction = !timingFunction || is<StepsTimingFunction>(timingFunction);
                else if (defaultTimingFunctionIsLinearWithPoints && !m_someKeyframesUseLinearTimingFunctionWithPoints)
                    m_someKeyframesUseLinearTimingFunctionWithPoints = !timingFunction || isLinearTimingFunctionWithPoints(timingFunction);
                if (defaultTimingFunctionIsSteps == m_someKeyframesUseStepsTimingFunction && defaultTimingFunctionIsLinearWithPoints == m_someKeyframesUseLinearTimingFunctionWithPoints)
                    break;
            }
            return;
        }
    }

    // For any other type of animation, we just need to check whether any of the keyframes specify
    // an explicit steps() or linear() timing function.
    for (auto& keyframe : m_blendingKeyframes) {
        auto* timingFunction = keyframe.timingFunction();
        if (!m_someKeyframesUseStepsTimingFunction && is<StepsTimingFunction>(timingFunction))
            m_someKeyframesUseStepsTimingFunction = true;
        if (!m_someKeyframesUseLinearTimingFunctionWithPoints && isLinearTimingFunctionWithPoints(timingFunction))
            m_someKeyframesUseLinearTimingFunctionWithPoints = true;
        if (m_someKeyframesUseStepsTimingFunction && m_someKeyframesUseLinearTimingFunctionWithPoints)
            return;
    }
}

bool KeyframeEffect::hasImplicitKeyframes() const
{
    auto numberOfKeyframes = m_parsedKeyframes.size();

    // If we have no keyframes, then there cannot be any implicit keyframes.
    if (!numberOfKeyframes)
        return false;

    // If we have a single keyframe, then there has to be at least one implicit keyframe.
    if (numberOfKeyframes == 1)
        return true;

    // If we have two or more keyframes, then we have implicit keyframes if the first and last
    // keyframes don't have 0 and 1 respectively as their computed offset.
    return m_parsedKeyframes[0].computedOffset || m_parsedKeyframes[numberOfKeyframes - 1].computedOffset != 1;
}

void KeyframeEffect::getAnimatedStyle(std::unique_ptr<RenderStyle>& animatedStyle)
{
    if (!renderer() || !animation())
        return;

    auto computedTiming = getComputedTiming();
    LOG_WITH_STREAM(Animations, stream << "KeyframeEffect " << this << " getAnimatedStyle - progress " << computedTiming.progress);
    if (!computedTiming.progress)
        return;

    if (!animatedStyle) {
        if (auto* style = targetStyleable()->lastStyleChangeEventStyle())
            animatedStyle = RenderStyle::clonePtr(*style);
        else
            animatedStyle = RenderStyle::clonePtr(renderer()->style());
    }

    ASSERT(computedTiming.currentIteration);
    setAnimatedPropertiesInStyle(*animatedStyle.get(), computedTiming);
}

void KeyframeEffect::setAnimatedPropertiesInStyle(RenderStyle& targetStyle, const ComputedEffectTiming& computedTiming)
{
    ASSERT(computedTiming.progress);
    ASSERT(computedTiming.currentIteration);

    auto iterationProgress = *computedTiming.progress;
    auto currentIteration = *computedTiming.currentIteration;
    auto before = computedTiming.before;

    auto& properties = m_blendingKeyframes.properties();

    // In the case of CSS Transitions we already know that there are only two keyframes, one where offset=0 and one where offset=1,
    // and only a single CSS property so we can simply blend based on the style available on those keyframes with the provided iteration
    // progress which already accounts for the transition's timing function.
    if (m_animationType == WebAnimationType::CSSTransition) {
        ASSERT(properties.size() == 1);
        CSSPropertyAnimation::blendProperty(*this, *properties.begin(), targetStyle, *m_blendingKeyframes[0].style(), *m_blendingKeyframes[1].style(), iterationProgress, m_compositeOperation);
        return;
    }

    // 4.4.3. The effect value of a keyframe effect
    // https://drafts.csswg.org/web-animations-1/#the-effect-value-of-a-keyframe-animation-effect
    //
    // The effect value of a single property referenced by a keyframe effect as one of its target properties,
    // for a given iteration progress, current iteration and underlying value is calculated as follows.

    updateBlendingKeyframes(targetStyle, { nullptr });
    if (m_blendingKeyframes.isEmpty())
        return;

    BlendingKeyframe propertySpecificKeyframeWithZeroOffset(0, RenderStyle::clonePtr(targetStyle));
    BlendingKeyframe propertySpecificKeyframeWithOneOffset(1, RenderStyle::clonePtr(targetStyle));

    for (auto property : properties) {
        auto interval = interpolationKeyframes(property, iterationProgress, propertySpecificKeyframeWithZeroOffset, propertySpecificKeyframeWithOneOffset);
        if (interval.endpoints.isEmpty())
            continue;

        auto* startBlendingKeyframe = dynamicDowncast<BlendingKeyframe>(interval.endpoints.first());
        auto* endBlendingKeyframe = dynamicDowncast<BlendingKeyframe>(interval.endpoints.last());

        if (!startBlendingKeyframe || !endBlendingKeyframe) {
            ASSERT_NOT_REACHED();
            continue;
        }

        auto startKeyframeStyle = RenderStyle::clone(*startBlendingKeyframe->style());
        auto endKeyframeStyle = RenderStyle::clone(*endBlendingKeyframe->style());

        KeyframeInterpolation::CompositionCallback composeProperty = [&] (const KeyframeInterpolation::Keyframe& keyframe, CompositeOperation compositeOperation) {
            auto* blendingKeyframe = dynamicDowncast<BlendingKeyframe>(keyframe);
            if (!blendingKeyframe) {
                ASSERT_NOT_REACHED();
                return;
            }

            if (blendingKeyframe->offset() == startBlendingKeyframe->offset())
                CSSPropertyAnimation::blendProperty(*this, property, startKeyframeStyle, targetStyle, *blendingKeyframe->style(), 1, compositeOperation);
            else
                CSSPropertyAnimation::blendProperty(*this, property, endKeyframeStyle, targetStyle, *blendingKeyframe->style(), 1, compositeOperation);
        };

        KeyframeInterpolation::AccumulationCallback accumulateProperty = [&](const KeyframeInterpolation::Keyframe& keyframe) {
            auto* blendingKeyframe = dynamicDowncast<BlendingKeyframe>(keyframe);
            if (!blendingKeyframe) {
                ASSERT_NOT_REACHED();
                return;
            }

            if (blendingKeyframe->offset() == startBlendingKeyframe->offset())
                CSSPropertyAnimation::blendProperty(*this, property, startKeyframeStyle, *endBlendingKeyframe->style(), startKeyframeStyle, 1, CompositeOperation::Accumulate);
            else
                CSSPropertyAnimation::blendProperty(*this, property, endKeyframeStyle, *endBlendingKeyframe->style(), endKeyframeStyle, 1, CompositeOperation::Accumulate);
        };

        KeyframeInterpolation::InterpolationCallback interpolateProperty = [&](double intervalProgress, double currentIteration, IterationCompositeOperation iterationCompositeOperation) {
            CSSPropertyAnimation::blendProperty(*this, property, targetStyle, startKeyframeStyle, endKeyframeStyle, intervalProgress, CompositeOperation::Replace, iterationCompositeOperation, currentIteration);
        };

        KeyframeInterpolation::RequiresBlendingForAccumulativeIterationCallback requiresBlendingForAccumulativeIterationCallback = [&]() {
            return CSSPropertyAnimation::propertyRequiresBlendingForAccumulativeIteration(*this, property, startKeyframeStyle, endKeyframeStyle);
        };

        interpolateKeyframes(property, interval, iterationProgress, currentIteration, iterationDuration(), before, composeProperty, accumulateProperty, interpolateProperty, requiresBlendingForAccumulativeIterationCallback);
    }

    // In case one of the animated properties has its value set to "inherit" in one of the keyframes,
    // let's mark the resulting animated style as having an explicitly inherited property such that
    // a future style update accounts for this in a future call to TreeResolver::determineResolutionType().
    if (m_blendingKeyframes.hasExplicitlyInheritedKeyframeProperty())
        targetStyle.setHasExplicitlyInheritedProperties();
}

const TimingFunction* KeyframeEffect::timingFunctionForBlendingKeyframe(const BlendingKeyframe& keyframe) const
{
    if (auto* styleOriginatedAnimation = dynamicDowncast<StyleOriginatedAnimation>(animation())) {
        // If we're dealing with a CSS Animation, the timing function is specified either on the keyframe itself.
        if (is<CSSAnimation>(styleOriginatedAnimation)) {
            if (auto* timingFunction = keyframe.timingFunction())
                return timingFunction;
        }

        // Failing that, or for a CSS Transition, the timing function is inherited from the backing Animation object.
        return styleOriginatedAnimation->backingAnimation().timingFunction();
    }

    return keyframe.timingFunction();
}

const TimingFunction* KeyframeEffect::timingFunctionForKeyframeAtIndex(size_t index) const
{
    if (!m_parsedKeyframes.isEmpty()) {
        if (index >= m_parsedKeyframes.size())
            return nullptr;
        return m_parsedKeyframes[index].timingFunction.get();
    }

    if (index >= m_blendingKeyframes.size())
        return nullptr;
    return timingFunctionForBlendingKeyframe(m_blendingKeyframes[index]);
}

bool KeyframeEffect::canBeAccelerated() const
{
    if (!animation())
        return false;

    if (m_acceleratedPropertiesState == AcceleratedProperties::None)
        return false;

    if (m_isAssociatedWithProgressBasedTimeline)
        return false;

    if (m_hasAcceleratedPropertyOverriddenByCascadeProperty)
        return false;

    if (m_hasReferenceFilter)
        return false;

    if (m_animatesSizeAndSizeDependentTransform)
        return false;

    if (m_blendingKeyframes.hasDiscreteTransformInterval())
        return false;

#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        return true;
#endif

    if (m_someKeyframesUseStepsTimingFunction || is<StepsTimingFunction>(timingFunction()))
        return false;

    if (m_someKeyframesUseLinearTimingFunctionWithPoints || isLinearTimingFunctionWithPoints(timingFunction()))
        return false;

    if (m_compositeOperation != CompositeOperation::Replace)
        return false;

    if (m_hasKeyframeComposingAcceleratedProperty)
        return false;

    return true;
}

bool KeyframeEffect::preventsAcceleration() const
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        return false;
#endif

    // We cannot run accelerated transform animations if a motion path is applied
    // to an element, either through the underlying style, or through a keyframe.
    if (auto target = targetStyleable()) {
        if (auto* lastStyleChangeEventStyle = target->lastStyleChangeEventStyle()) {
            if (lastStyleChangeEventStyle->offsetPath())
                return true;
        }
    }

    if (animatesProperty(CSSPropertyOffsetAnchor)
        || animatesProperty(CSSPropertyOffsetDistance)
        || animatesProperty(CSSPropertyOffsetPath)
        || animatesProperty(CSSPropertyOffsetPosition)
        || animatesProperty(CSSPropertyOffsetRotate)) {
        return true;
    }

    if (m_acceleratedPropertiesState == AcceleratedProperties::None)
        return false;

    return !canBeAccelerated() || m_runningAccelerated == RunningAccelerated::Failed;
}

void KeyframeEffect::updateAcceleratedActions()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        return;
#endif

    auto* renderer = this->renderer();
    if (!renderer || !renderer->isComposited())
        return;

    if (!canBeAccelerated())
        return;

    auto computedTiming = getComputedTiming();

    // If we're not already running accelerated, the only thing we're interested in is whether we need to start the animation
    // which we need to do once we're in the active phase. Otherwise, there's no change in accelerated state to consider.
    bool isActive = computedTiming.phase == AnimationEffectPhase::Active;
    if (m_runningAccelerated == RunningAccelerated::NotStarted) {
        if (isActive && animation()->playState() == WebAnimation::PlayState::Running)
            addPendingAcceleratedAction(AcceleratedAction::Play);
        return;
    }

    // If we're no longer active, we need to remove the accelerated animation.
    if (!isActive) {
        addPendingAcceleratedAction(AcceleratedAction::Stop);
        return;
    }

    auto playState = animation()->playState();
    // The only thing left to consider is whether we need to pause or resume the animation following a change of play-state.
    if (playState == WebAnimation::PlayState::Paused) {
        if (m_lastRecordedAcceleratedAction != AcceleratedAction::Pause) {
            if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop)
                addPendingAcceleratedAction(AcceleratedAction::Play);
            addPendingAcceleratedAction(AcceleratedAction::Pause);
        }
    } else if (playState == WebAnimation::PlayState::Running && isActive) {
        if (m_lastRecordedAcceleratedAction != AcceleratedAction::Play)
            addPendingAcceleratedAction(AcceleratedAction::Play);
    }
}

void KeyframeEffect::addPendingAcceleratedAction(AcceleratedAction action)
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        return;
#endif

    if (m_runningAccelerated == RunningAccelerated::Prevented || m_runningAccelerated == RunningAccelerated::Failed)
        return;

    if (action == m_lastRecordedAcceleratedAction)
        return;

    if (action == AcceleratedAction::Stop)
        m_pendingAcceleratedActions.clear();
    m_pendingAcceleratedActions.append(action);
    if (action != AcceleratedAction::UpdateProperties && action != AcceleratedAction::TransformChange)
        m_lastRecordedAcceleratedAction = action;
    animation()->acceleratedStateDidChange();
}

void KeyframeEffect::animationDidTick()
{
    invalidate();
    updateAcceleratedActions();

    if (auto* viewTimeline = activeViewTimeline())
        computeMissingKeyframeOffsets(m_parsedKeyframes, viewTimeline, animation());
}

void KeyframeEffect::animationDidChangeTimingProperties()
{
    computeSomeKeyframesUseStepsOrLinearTimingFunctionWithPoints();
    updateAcceleratedAnimationIfNecessary();
    invalidate();
}

void KeyframeEffect::updateAcceleratedAnimationIfNecessary()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        if (canBeAccelerated())
            updateAssociatedThreadedEffectStack();
        return;
    }
#endif

    if (isRunningAccelerated() || isAboutToRunAccelerated()) {
        if (canBeAccelerated())
            addPendingAcceleratedAction(AcceleratedAction::UpdateProperties);
        else {
            abilityToBeAcceleratedDidChange();
            addPendingAcceleratedAction(AcceleratedAction::Stop);
        }
    } else if (canBeAccelerated())
        m_runningAccelerated = RunningAccelerated::NotStarted;
}

void KeyframeEffect::animationDidFinish()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        updateAcceleratedAnimationIfNecessary();
#endif
}

void KeyframeEffect::transformRelatedPropertyDidChange()
{
    ASSERT(isRunningAcceleratedTransformRelatedAnimation());
    auto hasTransformRelatedPropertyWithImplicitKeyframe = propertiesContainTransformRelatedProperty(m_acceleratedPropertiesWithImplicitKeyframe);
    addPendingAcceleratedAction(hasTransformRelatedPropertyWithImplicitKeyframe ? AcceleratedAction::UpdateProperties : AcceleratedAction::TransformChange);
}

std::optional<KeyframeEffect::RecomputationReason> KeyframeEffect::recomputeKeyframesIfNecessary(const RenderStyle* previousUnanimatedStyle, const RenderStyle& unanimatedStyle, const Style::ResolutionContext& resolutionContext)
{
    if (m_animationType == WebAnimationType::CSSTransition)
        return { };

    auto fontSizeChanged = [&]() {
        return previousUnanimatedStyle && previousUnanimatedStyle->computedFontSize() != unanimatedStyle.computedFontSize();
    };

    auto fontWeightChanged = [&]() {
        return m_blendingKeyframes.usesRelativeFontWeight() && previousUnanimatedStyle
        && previousUnanimatedStyle->fontWeight() != unanimatedStyle.fontWeight();
    };

    auto cssVariableChanged = [&]() {
        if (previousUnanimatedStyle && m_blendingKeyframes.hasCSSVariableReferences()) {
            if (!previousUnanimatedStyle->customPropertiesEqual(unanimatedStyle))
                return true;
        }
        return false;
    };

    auto hasPropertyExplicitlySetToInherit = [&]() {
        return !m_blendingKeyframes.propertiesSetToInherit().isEmpty();
    };

    auto propertySetToCurrentColorChanged = [&]() {
        // If the "color" property itself is set to "currentcolor" on a keyframe, we always recompute keyframes.
        if (m_blendingKeyframes.hasColorSetToCurrentColor())
            return true;
        // For all other color-related properties set to "currentcolor" on a keyframe, it's sufficient to check
        // whether the value "color" resolves to has changed since the last style resolution.
        return m_blendingKeyframes.hasPropertySetToCurrentColor() && previousUnanimatedStyle
        && previousUnanimatedStyle->color() != unanimatedStyle.color();
    };

    auto logicalPropertyChanged = [&]() {
        if (!previousUnanimatedStyle)
            return false;

        if (previousUnanimatedStyle->writingMode() == unanimatedStyle.writingMode())
            return false;

        if (!m_blendingKeyframes.isEmpty())
            return m_blendingKeyframes.containsDirectionAwareProperty();

        for (auto& keyframe : m_parsedKeyframes) {
            for (auto property : keyframe.styleStrings.keys()) {
                if (CSSProperty::isDirectionAwareProperty(property))
                    return true;
            }
        }

        return false;
    }();

    auto usesAnchorFunctions = m_blendingKeyframes.usesAnchorFunctions();

    if (logicalPropertyChanged || fontSizeChanged() || fontWeightChanged() || cssVariableChanged() || hasPropertyExplicitlySetToInherit() || propertySetToCurrentColorChanged() || usesAnchorFunctions) {
        switch (m_animationType) {
        case WebAnimationType::CSSTransition:
            ASSERT_NOT_REACHED();
            break;
        case WebAnimationType::CSSAnimation:
            computeCSSAnimationBlendingKeyframes(unanimatedStyle, resolutionContext);
            break;
        case WebAnimationType::WebAnimation:
            clearBlendingKeyframes();
            break;
        }

        return logicalPropertyChanged ? KeyframeEffect::RecomputationReason::LogicalPropertyChange : KeyframeEffect::RecomputationReason::Other;
    }

    return { };
}

void KeyframeEffect::animationWasCanceled()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        updateAcceleratedAnimationIfNecessary();
        return;
    }
#endif

    if (isRunningAccelerated() || isAboutToRunAccelerated())
        addPendingAcceleratedAction(AcceleratedAction::Stop);
}

void KeyframeEffect::wasAddedToEffectStack()
{
    m_inTargetEffectStack = true;
    invalidate();
}

void KeyframeEffect::wasRemovedFromEffectStack()
{
    m_inTargetEffectStack = false;
}

void KeyframeEffect::willChangeRenderer()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        updateAcceleratedAnimationIfNecessary();
        return;
    }
#endif

    if (isRunningAccelerated() || isAboutToRunAccelerated())
        addPendingAcceleratedAction(AcceleratedAction::Stop);
}

void KeyframeEffect::animationSuspensionStateDidChange(bool animationIsSuspended)
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        updateAssociatedThreadedEffectStack();
        return;
    }
#endif

    if (isRunningAccelerated() || isAboutToRunAccelerated())
        addPendingAcceleratedAction(animationIsSuspended ? AcceleratedAction::Pause : AcceleratedAction::Play);
}

void KeyframeEffect::applyPendingAcceleratedActionsOrUpdateTimingProperties()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        return;
#endif

    if (m_pendingAcceleratedActions.isEmpty()) {
        if (!canBeAccelerated() || getComputedTiming().phase != AnimationEffectPhase::Active)
            return;
        m_pendingAcceleratedActions.append(AcceleratedAction::UpdateProperties);
        m_lastRecordedAcceleratedAction = AcceleratedAction::Play;
        applyPendingAcceleratedActions();
        m_pendingAcceleratedActions.clear();
    } else
        applyPendingAcceleratedActions();
}

void KeyframeEffect::applyPendingAcceleratedActions()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        return;
#endif

    CanBeAcceleratedMutationScope mutationScope(this);

    // Once an accelerated animation has been committed, we no longer want to force a layout.
    // This should have been performed by a call to forceLayoutIfNeeded() prior to applying
    // pending accelerated actions.
    m_needsForcedLayout = false;

    if (m_pendingAcceleratedActions.isEmpty())
        return;

    auto* renderer = this->renderer();
    if (!renderer || !renderer->isComposited()) {
        // The renderer may no longer be composited because the accelerated animation ended before we had a chance to update it,
        // in which case if we asked for the animation to stop, we can discard the current set of accelerated actions.
        if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop) {
            m_pendingAcceleratedActions.clear();
            m_runningAccelerated = RunningAccelerated::NotStarted;
        }
        return;
    }

    auto pendingAcceleratedActions = m_pendingAcceleratedActions;
    m_pendingAcceleratedActions.clear();

    auto timeOffset = [&] {
        // To simplify the code we use a default of 0s for an unresolved current time since for a Stop action that is acceptable.
        auto cssNumberishTimeOffset = animation()->currentTime().value_or(0_s) - delay();
        ASSERT(cssNumberishTimeOffset.time());
        return cssNumberishTimeOffset.time()->seconds();
    };

    auto startAnimation = [&]() -> RunningAccelerated {
        if (isRunningAccelerated())
            renderer->animationFinished(m_blendingKeyframes.animationName());

        ASSERT(m_target);
        auto* effectStack = m_target->keyframeEffectStack(m_pseudoElementIdentifier);
        ASSERT(effectStack);

        if ((m_blendingKeyframes.hasWidthDependentTransform() && effectStack->containsProperty(CSSPropertyWidth))
            || (m_blendingKeyframes.hasHeightDependentTransform() && effectStack->containsProperty(CSSPropertyHeight)))
            return RunningAccelerated::Prevented;

        if (!effectStack->allowsAcceleration())
            return RunningAccelerated::Prevented;

        if (!m_hasImplicitKeyframeForAcceleratedProperty)
            return renderer->startAnimation(timeOffset(), backingAnimationForCompositedRenderer(), m_blendingKeyframes) ? RunningAccelerated::Yes : RunningAccelerated::Failed;

        // We need to resolve all animations up to this point to ensure any forward-filling
        // effect is accounted for when computing the "from" value for the accelerated animation.
        auto underlyingStyle = [&]() {
            if (auto* lastStyleChangeEventStyle = m_target->lastStyleChangeEventStyle(m_pseudoElementIdentifier))
                return RenderStyle::clonePtr(*lastStyleChangeEventStyle);
            return RenderStyle::clonePtr(renderer->style());
        }();

        for (const auto& effect : effectStack->sortedEffects()) {
            if (this == effect.get())
                break;
            auto computedTiming = effect->getComputedTiming();
            if (computedTiming.progress)
                effect->setAnimatedPropertiesInStyle(*underlyingStyle, computedTiming);
        }

        BlendingKeyframes explicitKeyframes(m_blendingKeyframes.animationName());
        explicitKeyframes.copyKeyframes(m_blendingKeyframes);
        explicitKeyframes.fillImplicitKeyframes(*this, *underlyingStyle);
        return renderer->startAnimation(timeOffset(), backingAnimationForCompositedRenderer(), explicitKeyframes) ? RunningAccelerated::Yes : RunningAccelerated::Failed;
    };

    for (const auto& action : pendingAcceleratedActions) {
        switch (action) {
        case AcceleratedAction::Play:
            m_runningAccelerated = startAnimation();
            LOG_WITH_STREAM(Animations, stream << "KeyframeEffect " << this << " applyPendingAcceleratedActions " << m_blendingKeyframes.animationName() << " Play, started accelerated: " << isRunningAccelerated());
            if (!isRunningAccelerated()) {
                m_lastRecordedAcceleratedAction = AcceleratedAction::Stop;
                return;
            }
            break;
        case AcceleratedAction::Pause:
            renderer->animationPaused(timeOffset(), m_blendingKeyframes.animationName());
            break;
        case AcceleratedAction::UpdateProperties:
            m_runningAccelerated = startAnimation();
            LOG_WITH_STREAM(Animations, stream << "KeyframeEffect " << this << " applyPendingAcceleratedActions " << m_blendingKeyframes.animationName() << " UpdateProperties, started accelerated: " << isRunningAccelerated());
            if (animation()->playState() == WebAnimation::PlayState::Paused)
                renderer->animationPaused(timeOffset(), m_blendingKeyframes.animationName());
            break;
        case AcceleratedAction::Stop:
            ASSERT(document());
            renderer->animationFinished(m_blendingKeyframes.animationName());
            if (!document()->renderTreeBeingDestroyed())
                m_target->invalidateStyleAndLayerComposition();
            m_runningAccelerated = canBeAccelerated() ? RunningAccelerated::NotStarted : RunningAccelerated::Prevented;
            break;
        case AcceleratedAction::TransformChange:
            renderer->transformRelatedPropertyDidChange();
            break;
        }
    }
}

Ref<const Animation> KeyframeEffect::backingAnimationForCompositedRenderer()
{
    auto effectAnimation = animation();

    // FIXME: The iterationStart and endDelay AnimationEffectTiming properties do not have
    // corresponding Animation properties.
    auto animation = Animation::create();
    animation->setDuration(iterationDuration().time()->seconds());
    animation->setDelay(delay().time()->seconds());
    animation->setIterationCount(iterations());
    animation->setTimingFunction(timingFunction()->clone());
    animation->setPlaybackRate(effectAnimation->playbackRate());
    animation->setCompositeOperation(m_compositeOperation);

    switch (fill()) {
    case FillMode::None:
    case FillMode::Auto:
        animation->setFillMode(AnimationFillMode::None);
        break;
    case FillMode::Backwards:
        animation->setFillMode(AnimationFillMode::Backwards);
        break;
    case FillMode::Forwards:
        animation->setFillMode(AnimationFillMode::Forwards);
        break;
    case FillMode::Both:
        animation->setFillMode(AnimationFillMode::Both);
        break;
    }

    switch (direction()) {
    case PlaybackDirection::Normal:
        animation->setDirection(Animation::Direction::Normal);
        break;
    case PlaybackDirection::Alternate:
        animation->setDirection(Animation::Direction::Alternate);
        break;
    case PlaybackDirection::Reverse:
        animation->setDirection(Animation::Direction::Reverse);
        break;
    case PlaybackDirection::AlternateReverse:
        animation->setDirection(Animation::Direction::AlternateReverse);
        break;
    }

    // In the case of CSS Animations, we must set the default timing function for keyframes to match
    // the current value set for animation-timing-function on the target element which affects only
    // keyframes and not the animation-wide timing.
    if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(effectAnimation))
        animation->setDefaultTimingFunctionForKeyframes(cssAnimation->backingAnimation().timingFunction());

    return animation;
}

Document* KeyframeEffect::document() const
{
    if (m_document)
        return m_document.get();
    return m_target ? &m_target->document() : nullptr;
}

RenderElement* KeyframeEffect::renderer() const
{
    if (auto target = targetStyleable())
        return target->renderer();
    return nullptr;
}

const RenderStyle& KeyframeEffect::currentStyle() const
{
    if (auto* renderer = this->renderer())
        return renderer->style();
    return RenderStyle::defaultStyle();
}

bool KeyframeEffect::computeExtentOfTransformAnimation(LayoutRect& bounds) const
{
    ASSERT(m_blendingKeyframes.containsProperty(CSSPropertyTransform));

    auto* box = dynamicDowncast<RenderBox>(renderer());
    if (!box)
        return true; // Non-boxes don't get transformed;

    auto rendererBox = snapRectToDevicePixels(box->borderBoxRect(), box->document().deviceScaleFactor());

    LayoutRect cumulativeBounds;

    auto* implicitStyle = [&]() {
        if (auto target = targetStyleable()) {
            if (auto* lastStyleChangeEventStyle = target->lastStyleChangeEventStyle())
                return lastStyleChangeEventStyle;
        }
        return &box->style();
    }();

    auto addStyleToCumulativeBounds = [&](const RenderStyle* style) -> bool {
        auto keyframeBounds = bounds;

        bool canCompute;
        if (transformFunctionListPrefix() > 0)
            canCompute = computeTransformedExtentViaTransformList(rendererBox, *style, keyframeBounds);
        else
            canCompute = computeTransformedExtentViaMatrix(rendererBox, *style, keyframeBounds);

        if (!canCompute)
            return false;

        cumulativeBounds.unite(keyframeBounds);
        return true;
    };

    for (const auto& keyframe : m_blendingKeyframes) {
        const auto* keyframeStyle = keyframe.style();

        // FIXME: maybe for style-originated animations we always say it's true for the first and last keyframe.
        if (!keyframe.animatesProperty(CSSPropertyTransform)) {
            // If the first keyframe is missing transform style, use the current style.
            if (!keyframe.offset())
                keyframeStyle = implicitStyle;
            else
                continue;
        }

        if (!addStyleToCumulativeBounds(keyframeStyle))
            return false;
    }

    if (m_blendingKeyframes.hasImplicitKeyframes()) {
        if (!addStyleToCumulativeBounds(implicitStyle))
            return false;
    }

    bounds = cumulativeBounds;
    return true;
}

bool KeyframeEffect::computeTransformedExtentViaTransformList(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const
{
    FloatRect floatBounds = bounds;
    FloatPoint transformOrigin;

    bool applyTransformOrigin = style.transform().hasTransformOfType<TransformOperation::Type::Rotate>() || style.transform().affectedByTransformOrigin();
    if (applyTransformOrigin) {
        transformOrigin = style.computeTransformOrigin(rendererBox).xy();
        // Ignore transformOriginZ because we'll bail if we encounter any 3D transforms.
        floatBounds.moveBy(-transformOrigin);
    }

    for (const auto& operation : style.transform()) {
        if (operation->type() == TransformOperation::Type::Rotate) {
            // For now, just treat this as a full rotation. This could take angle into account to reduce inflation.
            floatBounds = boundsOfRotatingRect(floatBounds);
        } else {
            TransformationMatrix transform;
            operation->apply(transform, rendererBox.size());
            if (!transform.isAffine())
                return false;

            if (operation->type() == TransformOperation::Type::Matrix || operation->type() == TransformOperation::Type::Matrix3D) {
                TransformationMatrix::Decomposed2Type toDecomp;
                // Any rotation prevents us from using a simple start/end rect union.
                if (!transform.decompose2(toDecomp) || toDecomp.angle)
                    return false;
            }

            floatBounds = transform.mapRect(floatBounds);
        }
    }

    if (applyTransformOrigin)
        floatBounds.moveBy(transformOrigin);

    bounds = LayoutRect(floatBounds);
    return true;
}

bool KeyframeEffect::computeTransformedExtentViaMatrix(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const
{
    TransformationMatrix transform;
    style.applyTransform(transform, TransformOperationData(rendererBox, renderer()));
    if (!transform.isAffine())
        return false;

    TransformationMatrix::Decomposed2Type fromDecomp;
    // Any rotation prevents us from using a simple start/end rect union.
    if (!transform.decompose2(fromDecomp) || fromDecomp.angle)
        return false;

    bounds = LayoutRect(transform.mapRect(bounds));
    return true;
}

bool KeyframeEffect::requiresPseudoElement() const
{
    return m_animationType == WebAnimationType::WebAnimation && targetsPseudoElement();
}

std::optional<double> KeyframeEffect::progressUntilNextStep(double iterationProgress) const
{
    ASSERT(iterationProgress >= 0 && iterationProgress <= 1);

    if (auto progress = AnimationEffect::progressUntilNextStep(iterationProgress))
        return progress;

    if (!is<LinearTimingFunction>(timingFunction()) || !m_someKeyframesUseStepsTimingFunction)
        return std::nullopt;

    if (m_blendingKeyframes.isEmpty())
        return std::nullopt;

    auto progressUntilNextStepInInterval = [iterationProgress](double intervalStartProgress, double intervalEndProgress, const TimingFunction* timingFunction) -> std::optional<double> {
        auto* stepsTimingFunction = dynamicDowncast<StepsTimingFunction>(timingFunction);
        if (!stepsTimingFunction)
            return std::nullopt;

        auto numberOfSteps = stepsTimingFunction->numberOfSteps();
        auto intervalProgress = intervalEndProgress - intervalStartProgress;
        auto iterationProgressMappedToCurrentInterval = (iterationProgress - intervalStartProgress) / intervalProgress;
        auto nextStepProgress = ceil(iterationProgressMappedToCurrentInterval * numberOfSteps) / numberOfSteps;
        return (nextStepProgress - iterationProgressMappedToCurrentInterval) * intervalProgress;
    };

    for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) {
        auto intervalEndProgress = m_blendingKeyframes[i].offset();
        // We can stop once we find a keyframe for which the progress is more than the provided iteration progress.
        if (intervalEndProgress <= iterationProgress)
            continue;

        // In case we're on the first keyframe, then this means we are dealing with an implicit 0% keyframe.
        // This will be a linear timing function unless we're dealing with a CSS Animation which might have
        // the default timing function for its keyframes defined on its backing Animation object.
        if (!i) {
            if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
                return progressUntilNextStepInInterval(0, intervalEndProgress, cssAnimation->backingAnimation().timingFunction());
            return std::nullopt;
        }

        return progressUntilNextStepInInterval(m_blendingKeyframes[i - 1].offset(), intervalEndProgress, timingFunctionForKeyframeAtIndex(i - 1));
    }

    // If we end up here, then this means we are dealing with an implicit 100% keyframe.
    // This will be a linear timing function unless we're dealing with a CSS Animation which might have
    // the default timing function for its keyframes defined on its backing Animation object.
    auto& lastExplicitKeyframe = m_blendingKeyframes[m_blendingKeyframes.size() - 1];
    if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
        return progressUntilNextStepInInterval(lastExplicitKeyframe.offset(), 1, cssAnimation->backingAnimation().timingFunction());

    // In any other case, we are not dealing with an interval with a steps() timing function.
    return std::nullopt;
}

bool KeyframeEffect::ticksContinuouslyWhileActive() const
{
    auto doesNotAffectStyles = m_blendingKeyframes.isEmpty() || m_blendingKeyframes.properties().isEmpty();
    if (doesNotAffectStyles)
        return false;

    auto targetHasDisplayContents = [&]() {
        return m_target && !m_pseudoElementIdentifier && m_target->hasDisplayContents();
    };
    if (!renderer() && !m_blendingKeyframes.properties().contains(CSSPropertyDisplay) && !targetHasDisplayContents())
        return false;

    if (isCompletelyAccelerated() && isRunningAccelerated()) {
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
        if (threadedAnimationResolutionEnabled())
            return !m_acceleratedRepresentation || !m_acceleratedRepresentation->disallowedProperties().isEmpty();
#endif
        return false;
    }

    return true;
}

Seconds KeyframeEffect::timeToNextTick(const BasicEffectTiming& timing)
{
    // CSS Animations need to trigger "animationiteration" events even if there is no need to
    // update styles while animating, so if we're dealing with one we must wait until the next iteration.
    // We only do this in case any CSS Animation event was registered since, in the general case, there's
    // a good chance that no such event listeners were registered and we can avoid some unnecessary
    // animation resolution scheduling.
    ASSERT(document());
    if (timing.phase == AnimationEffectPhase::Active && is<CSSAnimation>(animation())
        && document()->hasListenerType(Document::ListenerType::CSSAnimation)
        && !ticksContinuouslyWhileActive()) {
        if (auto iterationProgress = getComputedTiming().simpleIterationProgress)
            return iterationDuration() * (1 - *iterationProgress);
    }

    return AnimationEffect::timeToNextTick(timing);
}

void KeyframeEffect::setIterationComposite(IterationCompositeOperation iterationCompositeOperation)
{
    if (m_iterationCompositeOperation == iterationCompositeOperation)
        return;

    m_iterationCompositeOperation = iterationCompositeOperation;
    invalidate();
}

void KeyframeEffect::setComposite(CompositeOperation compositeOperation)
{
    if (m_compositeOperation == compositeOperation)
        return;

    CanBeAcceleratedMutationScope mutationScope(this);
    m_compositeOperation = compositeOperation;
    invalidate();

#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled())
        updateAcceleratedAnimationIfNecessary();
#endif
}

CompositeOperation KeyframeEffect::bindingsComposite() const
{
    if (auto* styleOriginatedAnimation = dynamicDowncast<StyleOriginatedAnimation>(animation()))
        styleOriginatedAnimation->flushPendingStyleChanges();
    return composite();
}

void KeyframeEffect::setBindingsComposite(CompositeOperation compositeOperation)
{
    setComposite(compositeOperation);
    if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
        cssAnimation->effectCompositeOperationWasSetUsingBindings();
}

void KeyframeEffect::computeHasImplicitKeyframeForAcceleratedProperty()
{
    m_hasImplicitKeyframeForAcceleratedProperty = [&]() {
        if (m_acceleratedPropertiesState == AcceleratedProperties::None)
            return false;

        ASSERT(document());
        auto& settings = document()->settings();

        if (!m_blendingKeyframes.isEmpty()) {
            // We make a list of all animated properties and consider them all
            // implicit until proven otherwise as we iterate through all keyframes.
            auto implicitZeroProperties = m_blendingKeyframes.properties();
            auto implicitOneProperties = m_blendingKeyframes.properties();
            for (auto& keyframe : m_blendingKeyframes) {
                // If the keyframe is for 0% or 100%, let's remove all of its properties from
                // our list of implicit properties.
                if (!implicitZeroProperties.isEmpty() && !keyframe.offset()) {
                    for (auto property : keyframe.properties())
                        implicitZeroProperties.remove(property);
                }
                if (!implicitOneProperties.isEmpty() && keyframe.offset() == 1) {
                    for (auto property : keyframe.properties())
                        implicitOneProperties.remove(property);
                }
            }
            // The only properties left are known to be implicit properties, so we must
            // check them for any accelerated property.
            for (auto implicitProperty : implicitZeroProperties) {
                if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(implicitProperty, settings))
                    return true;
            }
            for (auto implicitProperty : implicitOneProperties) {
                if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(implicitProperty, settings))
                    return true;
            }
            return false;
        }

        // We may not have computed keyframes yet, so we should check our parsed keyframes in the
        // same way we checked computed keyframes.
        for (auto& keyframe : m_parsedKeyframes) {
            // We keep three property lists, one which contains all properties seen across keyframes
            // which will be filtered eventually to only contain implicit properties, one containing
            // properties seen on the 0% keyframe and one containing properties seen on the 100% keyframe.
            UncheckedKeyHashSet<CSSPropertyID> implicitProperties;
            UncheckedKeyHashSet<CSSPropertyID> explicitZeroProperties;
            UncheckedKeyHashSet<CSSPropertyID> explicitOneProperties;
            auto styleProperties = keyframe.style;
            for (auto propertyReference : styleProperties.get()) {
                auto computedOffset = keyframe.computedOffset;
                if (std::isnan(computedOffset))
                    continue;
                auto property = propertyReference.id();
                // All properties may end up being implicit.
                implicitProperties.add(property);
                if (!computedOffset)
                    explicitZeroProperties.add(property);
                else if (computedOffset == 1)
                    explicitOneProperties.add(property);
            }
            // Let's remove all properties found on the 0% and 100% keyframes from the list of potential implicit properties.
            for (auto explicitProperty : explicitZeroProperties)
                implicitProperties.remove(explicitProperty);
            for (auto explicitProperty : explicitOneProperties)
                implicitProperties.remove(explicitProperty);
            // At this point all properties left in implicitProperties are known to be implicit,
            // so we must check them for any accelerated property.
            for (auto implicitProperty : implicitProperties) {
                if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(implicitProperty, settings))
                    return true;
            }
        }
        return false;
    }();
}

void KeyframeEffect::computeHasKeyframeComposingAcceleratedProperty()
{
    m_hasKeyframeComposingAcceleratedProperty = [&]() {
        if (m_acceleratedPropertiesState == AcceleratedProperties::None)
            return false;

        ASSERT(document());
        auto& settings = document()->settings();

        if (!m_blendingKeyframes.isEmpty()) {
            for (auto& keyframe : m_blendingKeyframes) {
                // If we find a keyframe with a composite operation, we check whether one
                // of its properties is accelerated.
                if (auto keyframeComposite = keyframe.compositeOperation()) {
                    if (*keyframeComposite != CompositeOperation::Replace) {
                        for (auto property : keyframe.properties()) {
                            if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings))
                                return true;
                        }
                    }
                }
            }
            return false;
        }

        // We may not have computed keyframes yet, so we should check our parsed keyframes in the
        // same way we checked computed keyframes.
        for (auto& keyframe : m_parsedKeyframes) {
            if (keyframe.composite != CompositeOperationOrAuto::Add && keyframe.composite != CompositeOperationOrAuto::Accumulate)
                continue;
            auto styleProperties = keyframe.style;
            for (auto property : styleProperties.get()) {
                if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(property.id(), settings))
                    return true;
            }
        }
        return false;
    }();
}

void KeyframeEffect::computeHasAcceleratedPropertyOverriddenByCascadeProperty()
{
    if (!m_inTargetEffectStack)
        return;

    ASSERT(m_target);
    auto* effectStack = m_target->keyframeEffectStack(m_pseudoElementIdentifier);
    if (!effectStack)
        return;

    auto relevantAcceleratedPropertiesOverriddenByCascade = effectStack->acceleratedPropertiesOverriddenByCascade().intersectionWith(animatedProperties());
    m_hasAcceleratedPropertyOverriddenByCascadeProperty = !relevantAcceleratedPropertiesOverriddenByCascade.isEmpty();
}

void KeyframeEffect::computeHasReferenceFilter()
{
    m_hasReferenceFilter = [&]() {
        if (m_blendingKeyframes.isEmpty())
            return false;

        auto animatesFilterProperty = [&]() {
            if (m_blendingKeyframes.containsProperty(CSSPropertyFilter))
                return true;
            if (m_blendingKeyframes.containsProperty(CSSPropertyWebkitBackdropFilter) || m_blendingKeyframes.containsProperty(CSSPropertyBackdropFilter))
                return true;
            return false;
        }();

        if (!animatesFilterProperty)
            return false;

        auto styleContainsFilter = [](const RenderStyle& style) {
            if (style.filter().hasReferenceFilter())
                return true;
            if (style.backdropFilter().hasReferenceFilter())
                return true;
            return false;
        };

        if (auto target = targetStyleable()) {
            if (auto* style = target->lastStyleChangeEventStyle()) {
                if (m_blendingKeyframes.hasImplicitKeyframes() && styleContainsFilter(*style))
                    return true;
            }
        }

        for (auto& keyframe : m_blendingKeyframes) {
            if (auto* style = keyframe.style()) {
                if (styleContainsFilter(*style))
                    return true;
            }
        }

        return false;
    }();
}

void KeyframeEffect::computeHasSizeDependentTransform()
{
    m_animatesSizeAndSizeDependentTransform = (m_blendingKeyframes.hasWidthDependentTransform() && m_blendingKeyframes.containsProperty(CSSPropertyWidth))
        || (m_blendingKeyframes.hasHeightDependentTransform() && m_blendingKeyframes.containsProperty(CSSPropertyHeight));

    // If this is a ::view-transition-group pseudo element with the UA-generated transform
    // and width/height animations, then prevent the transform component from being applied
    // asynchronously to ensure they remain synchronized. Since the transform usually animates
    // the position at the same time as the size animates, even slight desynchronizations look
    // stuttery.
    if (auto target = targetStyleable()) {
        if (target->pseudoElementIdentifier && target->pseudoElementIdentifier->pseudoId == PseudoId::ViewTransitionGroup)
            m_animatesSizeAndSizeDependentTransform |= ((m_blendingKeyframes.containsProperty(CSSPropertyWidth) || m_blendingKeyframes.containsProperty(CSSPropertyHeight)) && m_blendingKeyframes.containsProperty(CSSPropertyTransform));
    }
}

void KeyframeEffect::effectStackNoLongerPreventsAcceleration()
{
    if (m_runningAccelerated == RunningAccelerated::Failed)
        return;

    if (m_runningAccelerated == RunningAccelerated::Prevented)
        m_runningAccelerated = RunningAccelerated::NotStarted;

    updateAcceleratedActions();
}

void KeyframeEffect::effectStackNoLongerAllowsAcceleration()
{
    addPendingAcceleratedAction(AcceleratedAction::Stop);
}

void KeyframeEffect::effectStackNoLongerAllowsAccelerationDuringAcceleratedActionApplication()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        ASSERT_NOT_REACHED();
        return;
    }
#endif

    m_pendingAcceleratedActions.append(AcceleratedAction::Stop);
    m_lastRecordedAcceleratedAction = AcceleratedAction::Stop;
    applyPendingAcceleratedActions();
    m_pendingAcceleratedActions.clear();
}

void KeyframeEffect::abilityToBeAcceleratedDidChange()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        updateAssociatedThreadedEffectStack();
        return;
    }
#endif

    if (!m_inTargetEffectStack)
        return;

    ASSERT(m_target);
    if (auto* effectStack = m_target->keyframeEffectStack(m_pseudoElementIdentifier))
        effectStack->effectAbilityToBeAcceleratedDidChange(*this);
}

void KeyframeEffect::acceleratedPropertiesOverriddenByCascadeDidChange()
{
    CanBeAcceleratedMutationScope mutationScope(this);
    computeHasAcceleratedPropertyOverriddenByCascadeProperty();
}

KeyframeEffect::CanBeAcceleratedMutationScope::CanBeAcceleratedMutationScope(KeyframeEffect* effect)
    : m_effect(effect)
{
    ASSERT(effect);
    m_couldOriginallyPreventAcceleration = effect->preventsAcceleration();
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    m_couldOriginallyBeAccelerated = effect->canBeAccelerated();
#endif
}

KeyframeEffect::CanBeAcceleratedMutationScope::~CanBeAcceleratedMutationScope()
{
    if (!m_effect)
        return;

    if (m_couldOriginallyPreventAcceleration != m_effect->preventsAcceleration())
        m_effect->abilityToBeAcceleratedDidChange();
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    else if (m_couldOriginallyBeAccelerated != m_effect->canBeAccelerated())
        m_effect->abilityToBeAcceleratedDidChange();
#endif
}

#if ENABLE(THREADED_ANIMATION_RESOLUTION)
static bool acceleratedPropertyDidChange(AnimatableCSSProperty property, const RenderStyle& previousStyle, const RenderStyle& currentStyle, const Settings& settings)
{
#if ASSERT_ENABLED
    ASSERT(CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings));
#else
    UNUSED_PARAM(settings);
#endif
    ASSERT(std::holds_alternative<CSSPropertyID>(property));

    switch (std::get<CSSPropertyID>(property)) {
    case CSSPropertyOpacity:
        return previousStyle.opacity() != currentStyle.opacity();
    case CSSPropertyTransform:
        return previousStyle.transform() != currentStyle.transform();
    case CSSPropertyTranslate:
        return previousStyle.translate() != currentStyle.translate();
    case CSSPropertyScale:
        return previousStyle.scale() != currentStyle.scale();
    case CSSPropertyRotate:
        return previousStyle.rotate() != currentStyle.rotate();
    case CSSPropertyOffsetPath:
        return previousStyle.offsetPath() != currentStyle.offsetPath();
    case CSSPropertyOffsetDistance:
        return previousStyle.offsetDistance() != currentStyle.offsetDistance();
    case CSSPropertyOffsetPosition:
        return previousStyle.offsetPosition() != currentStyle.offsetPosition();
    case CSSPropertyOffsetAnchor:
        return previousStyle.offsetAnchor() != currentStyle.offsetAnchor();
    case CSSPropertyOffsetRotate:
        return previousStyle.offsetRotate() != currentStyle.offsetRotate();
    case CSSPropertyFilter:
        return previousStyle.filter() != currentStyle.filter();
    case CSSPropertyBackdropFilter:
    case CSSPropertyWebkitBackdropFilter:
        return previousStyle.backdropFilter() != currentStyle.backdropFilter();
    default:
        ASSERT_NOT_REACHED();
        break;
    }

    return false;
}
#endif

void KeyframeEffect::lastStyleChangeEventStyleDidChange(const RenderStyle* previousStyle, const RenderStyle* currentStyle)
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
    if (threadedAnimationResolutionEnabled()) {
        if (!isRunningAccelerated())
            return;

        if ((previousStyle && !currentStyle) || (!previousStyle && currentStyle)) {
            updateAssociatedThreadedEffectStack();
            return;
        }

        ASSERT(document());
        auto& settings = document()->settings();

        ASSERT(previousStyle && currentStyle);
        auto numberOfProperties = CSSPropertyAnimation::getNumProperties();
        for (int propertyIndex = 0; propertyIndex < numberOfProperties; ++propertyIndex) {
            if (auto property = CSSPropertyAnimation::getAcceleratedPropertyAtIndex(propertyIndex, settings)) {
                if (acceleratedPropertyDidChange(*property, *previousStyle, *currentStyle, settings)) {
                    updateAssociatedThreadedEffectStack();
                    return;
                }
            }
        }

        return;
    }
#endif

    auto hasMotionPath = [](const RenderStyle* style) {
        return style && style->offsetPath();
    };

    if (hasMotionPath(previousStyle) != hasMotionPath(currentStyle))
        abilityToBeAcceleratedDidChange();
}

bool KeyframeEffect::preventsAnimationReadiness() const
{
    // https://drafts.csswg.org/web-animations-1/#ready
    // An animation cannot be ready if it's associated with a document that does not have a browsing
    // context since this will prevent the first frame of the animmation from being rendered.
    return document() && !document()->hasBrowsingContext();
}

#if ENABLE(THREADED_ANIMATION_RESOLUTION)
KeyframeEffect::StackMembershipMutationScope::StackMembershipMutationScope(KeyframeEffect& effect)
    : m_effect(&effect)
{
    if (effect.m_target) {
        m_originalTarget = effect.m_target;
        m_originalPseudoElementIdentifier = effect.m_pseudoElementIdentifier;
    }
}

KeyframeEffect::StackMembershipMutationScope::~StackMembershipMutationScope()
{
    auto originalTargetStyleable = [&]() -> const std::optional<const Styleable> {
        if (m_originalTarget)
            return Styleable(*m_originalTarget, m_originalPseudoElementIdentifier);
        return std::nullopt;
    }();

    RefPtr effect = m_effect;
    if (effect->isRunningAccelerated()) {
        if (originalTargetStyleable != effect->targetStyleable())
            effect->updateAssociatedThreadedEffectStack(originalTargetStyleable);
        effect->updateAssociatedThreadedEffectStack();
    }
}

bool KeyframeEffect::threadedAnimationResolutionEnabled() const
{
    auto* document = this->document();
    return document && document->settings().threadedAnimationResolutionEnabled();
}

void KeyframeEffect::updateAssociatedThreadedEffectStack(const std::optional<const Styleable>& previousTarget)
{
    if (!threadedAnimationResolutionEnabled())
        return;

    ASSERT(document());
    if (!document()->page())
        return;

    ASSERT(document()->timelinesController());
    auto& acceleratedEffectStackUpdater = CheckedPtr { document()->timelinesController() }->acceleratedEffectStackUpdater();
    if (previousTarget)
        acceleratedEffectStackUpdater.updateEffectStackForTarget(*previousTarget);
    if (auto currentTarget = targetStyleable())
        acceleratedEffectStackUpdater.updateEffectStackForTarget(*currentTarget);

    if (auto* animation = this->animation())
        animation->acceleratedStateDidChange();
}
#endif

const KeyframeInterpolation::Keyframe& KeyframeEffect::keyframeAtIndex(size_t index) const
{
    ASSERT(index < m_blendingKeyframes.size());
    return m_blendingKeyframes[index];
}

const TimingFunction* KeyframeEffect::timingFunctionForKeyframe(const KeyframeInterpolation::Keyframe& keyframe) const
{
    if (auto* blendingKeyframe = dynamicDowncast<BlendingKeyframe>(keyframe))
        return timingFunctionForBlendingKeyframe(*blendingKeyframe);

    ASSERT_NOT_REACHED();
    return nullptr;
}

bool KeyframeEffect::isPropertyAdditiveOrCumulative(KeyframeInterpolation::Property property) const
{
    return WTF::switchOn(property, [&](AnimatableCSSProperty& animatableCSSProperty) {
        return CSSPropertyAnimation::isPropertyAdditiveOrCumulative(animatableCSSProperty);
    }, [] (auto&) {
        ASSERT_NOT_REACHED();
        return false;
    });
}

const ViewTimeline* KeyframeEffect::activeViewTimeline()
{
    RefPtr animation = this->animation();
    if (!animation)
        return nullptr;

    RefPtr viewTimeline = dynamicDowncast<ViewTimeline>(animation->timeline());
    if (viewTimeline && viewTimeline->currentTime())
        return viewTimeline.get();

    return nullptr;
}

void KeyframeEffect::animationProgressBasedTimelineSourceDidChangeMetrics(const TimelineRange& animationAttachmentRange)
{
    AnimationEffect::animationProgressBasedTimelineSourceDidChangeMetrics(animationAttachmentRange);
    m_needsComputedKeyframeOffsetsUpdate = true;
}

void KeyframeEffect::updateComputedKeyframeOffsetsIfNeeded()
{
    if (!m_needsComputedKeyframeOffsetsUpdate)
        return;

    // FIXME: also call this when metrics of the view timeline changes.

    RefPtr animation = this->animation();
    if (!animation)
        return;

    RefPtr viewTimeline = dynamicDowncast<ViewTimeline>(animation->timeline());
    if (viewTimeline && !viewTimeline->currentTime())
        return;

    if (!m_parsedKeyframes.isEmpty())
        computeMissingKeyframeOffsets(m_parsedKeyframes, viewTimeline.get(), animation.get());

    m_blendingKeyframes.updatedComputedOffsets([&](auto& specifiedOffset) {
        return computedOffset(specifiedOffset.name, specifiedOffset.value, viewTimeline.get(), animation.get());
    });

    m_needsComputedKeyframeOffsetsUpdate = false;
};

} // namespace WebCore