1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
|
/*
* Copyright (C) 2017-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "KeyframeEffect.h"
#include "AnimationTimelinesController.h"
#include "CSSAnimation.h"
#include "CSSKeyframeRule.h"
#include "CSSNumericFactory.h"
#include "CSSParserContext.h"
#include "CSSPropertyAnimation.h"
#include "CSSPropertyNames.h"
#include "CSSPropertyParser.h"
#include "CSSPropertyParserConsumer+Animations.h"
#include "CSSPropertyParserConsumer+Easing.h"
#include "CSSSelector.h"
#include "CSSSerializationContext.h"
#include "CSSStyleDeclaration.h"
#include "CSSTransition.h"
#include "CSSUnitValue.h"
#include "CSSValue.h"
#include "CSSValueKeywords.h"
#include "ComputedStyleExtractor.h"
#include "DocumentInlines.h"
#include "Element.h"
#include "FontCascade.h"
#include "GeometryUtilities.h"
#include "InspectorInstrumentation.h"
#include "JSCompositeOperation.h"
#include "JSCompositeOperationOrAuto.h"
#include "JSDOMConvert.h"
#include "JSKeyframeEffect.h"
#include "KeyframeEffectStack.h"
#include "LocalFrameView.h"
#include "Logging.h"
#include "MutableStyleProperties.h"
#include "PropertyAllowlist.h"
#include "RenderBox.h"
#include "RenderBoxModelObject.h"
#include "RenderElement.h"
#include "RenderStyleInlines.h"
#include "Settings.h"
#include "StyleAdjuster.h"
#include "StyleEasingFunction.h"
#include "StylePendingResources.h"
#include "StyleProperties.h"
#include "StylePropertyShorthand.h"
#include "StyleResolver.h"
#include "StyleScope.h"
#include "StyledElement.h"
#include "TimelineRangeOffset.h"
#include "TimingFunction.h"
#include "TransformOperationData.h"
#include "TransformOperationsSharedPrimitivesPrefix.h"
#include "TranslateTransformOperation.h"
#include "ViewTimeline.h"
#include <JavaScriptCore/Exception.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/UUID.h>
#include <wtf/text/TextStream.h>
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
#include "AcceleratedEffect.h"
#include "AcceleratedEffectStackUpdater.h"
#endif
namespace WebCore {
using namespace JSC;
WTF_MAKE_TZONE_OR_ISO_ALLOCATED_IMPL(KeyframeEffect);
KeyframeEffect::ParsedKeyframe::ParsedKeyframe()
: style(MutableStyleProperties::create())
{
}
KeyframeEffect::ParsedKeyframe::~ParsedKeyframe() = default;
static inline void invalidateElement(const std::optional<const Styleable>& styleable)
{
if (!styleable)
return;
auto& element = styleable->element;
if (!element.document().inStyleRecalc())
element.invalidateStyleForAnimation();
}
String KeyframeEffect::CSSPropertyIDToIDLAttributeName(CSSPropertyID property)
{
// https://drafts.csswg.org/web-animations-1/#animation-property-name-to-idl-attribute-name
// 1. If property follows the <custom-property-name> production, return property.
// 2. If property refers to the CSS float property, return the string "cssFloat".
if (property == CSSPropertyFloat)
return "cssFloat"_s;
// 3. If property refers to the CSS offset property, return the string "cssOffset".
if (property == CSSPropertyOffset)
return "cssOffset"_s;
// 4. Otherwise, return the result of applying the CSS property to IDL attribute algorithm [CSSOM] to property.
return nameForIDL(property);
}
static inline CSSPropertyID IDLAttributeNameToAnimationPropertyName(const AtomString& idlAttributeName)
{
// https://drafts.csswg.org/web-animations-1/#idl-attribute-name-to-animation-property-name
// 1. If attribute conforms to the <custom-property-name> production, return attribute.
// 2. If attribute is the string "cssFloat", then return an animation property representing the CSS float property.
if (idlAttributeName == "cssFloat"_s)
return CSSPropertyFloat;
// 3. If attribute is the string "cssOffset", then return an animation property representing the CSS offset property.
if (idlAttributeName == "cssOffset"_s)
return CSSPropertyOffset;
// If the attribute is the string "fontStretch" return the CSS font-width property that it aliases.
if (idlAttributeName == "fontStretch"_s)
return CSSPropertyFontWidth;
// 4. Otherwise, return the result of applying the IDL attribute to CSS property algorithm [CSSOM] to attribute.
auto cssPropertyId = CSSStyleDeclaration::getCSSPropertyIDFromJavaScriptPropertyName(idlAttributeName);
if (cssPropertyId == CSSPropertyInvalid && isCustomPropertyName(idlAttributeName))
return CSSPropertyCustom;
// We need to check that converting the property back to IDL form yields the same result such that a property passed
// in non-IDL form is rejected, for instance "font-size".
if (idlAttributeName != KeyframeEffect::CSSPropertyIDToIDLAttributeName(cssPropertyId))
return CSSPropertyInvalid;
return cssPropertyId;
}
static SingleTimelineRange::Name rangeStringToSingleTimelineRangeName(const String& rangeString)
{
if (rangeString == "cover"_s)
return SingleTimelineRange::Name::Cover;
if (rangeString == "contain"_s)
return SingleTimelineRange::Name::Contain;
if (rangeString == "entry"_s)
return SingleTimelineRange::Name::Entry;
if (rangeString == "exit"_s)
return SingleTimelineRange::Name::Exit;
if (rangeString == "entry-crossing"_s)
return SingleTimelineRange::Name::EntryCrossing;
if (rangeString == "exit-crossing"_s)
return SingleTimelineRange::Name::ExitCrossing;
return SingleTimelineRange::Name::Normal;
}
static bool isTimelineRangeOffsetValid(const TimelineRangeOffset& timelineRangeOffset)
{
if (rangeStringToSingleTimelineRangeName(timelineRangeOffset.rangeName) == SingleTimelineRange::Name::Normal)
return false;
RefPtr offsetUnitValue = dynamicDowncast<CSSUnitValue>(timelineRangeOffset.offset);
return offsetUnitValue && offsetUnitValue->unitEnum() == CSSUnitType::CSS_PERCENTAGE;
}
static String rangeStringFromSingleTimelineRangeName(SingleTimelineRange::Name rangeName)
{
switch (rangeName) {
case SingleTimelineRange::Name::Normal:
return "normal"_s;
case SingleTimelineRange::Name::Omitted:
return "omitted"_s;
case SingleTimelineRange::Name::Cover:
return "cover"_s;
case SingleTimelineRange::Name::Contain:
return "contain"_s;
case SingleTimelineRange::Name::Entry:
return "entry"_s;
case SingleTimelineRange::Name::Exit:
return "exit"_s;
case SingleTimelineRange::Name::EntryCrossing:
return "entry-crossing"_s;
case SingleTimelineRange::Name::ExitCrossing:
return "exit-crossing"_s;
}
ASSERT_NOT_REACHED();
return "normal"_s;
}
static std::optional<std::variant<double, TimelineRangeOffset>> doubleOrTimelineRangeOffsetFromString(const String& offsetString, const Document& document)
{
bool doubleParsingSuccess = true;
auto doubleValue = offsetString.toDouble(&doubleParsingSuccess);
if (doubleParsingSuccess)
return { doubleValue };
CSSParserContext parserContext(document);
CSSTokenizer tokenizer(offsetString);
auto tokenRange = tokenizer.tokenRange();
auto offsets = CSSPropertyParserHelpers::consumeKeyframeKeyList(tokenRange, parserContext);
if (offsets.size() != 1)
return { };
auto [rangeCSSValueID, value] = offsets[0];
auto rangeName = SingleTimelineRange::timelineName(rangeCSSValueID);
if (rangeName == SingleTimelineRange::Name::Normal)
return value;
return { TimelineRangeOffset { rangeStringFromSingleTimelineRangeName(rangeName), CSSNumericFactory::percent(value * 100) } };
}
static std::optional<KeyframeEffect::KeyframeOffset> validateKeyframeOffset(const KeyframeEffect::KeyframeOffset& offset, const Document& document)
{
if (auto* doubleValue = std::get_if<double>(&offset))
return *doubleValue;
if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&offset)) {
if (!isTimelineRangeOffsetValid(*timelineRangeOffset))
return { };
return *timelineRangeOffset;
}
if (auto* stringOffset = std::get_if<String>(&offset)) {
auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document);
if (!parsedValue)
return { };
if (auto doubleOffset = std::get_if<double>(&*parsedValue))
return *doubleOffset;
return std::get<TimelineRangeOffset>(*parsedValue);
}
ASSERT(std::holds_alternative<std::nullptr_t>(offset));
return nullptr;
};
static double computedOffset(SingleTimelineRange::Name rangeName, double offset, const ViewTimeline* viewTimeline, WebAnimation* animation)
{
if ((rangeName == SingleTimelineRange::Name::Normal || rangeName == SingleTimelineRange::Name::Omitted))
return offset;
if (!viewTimeline)
return std::numeric_limits<double>::quiet_NaN();
Ref timeline { *viewTimeline };
auto [namedRangeStartOffset, namedRangeEndOffset] = timeline->offsetIntervalForTimelineRangeName(rangeName);
auto namedRangeOffsetDelta = namedRangeEndOffset - namedRangeStartOffset;
auto computedOffsetWithinNamedRange = namedRangeStartOffset + offset * namedRangeOffsetDelta;
if (!animation)
return computedOffsetWithinNamedRange;
auto attachmentRange = Ref { *animation }->range();
if (attachmentRange.isDefault())
return computedOffsetWithinNamedRange;
auto [attachmentRangeStartOffset, attachmentRangeEndOffset] = timeline->offsetIntervalForAttachmentRange(attachmentRange);
auto attachmentRangeOffsetDelta = attachmentRangeEndOffset - attachmentRangeStartOffset;
return (computedOffsetWithinNamedRange - attachmentRangeStartOffset) / attachmentRangeOffsetDelta;
}
static inline void computeMissingKeyframeOffsets(Vector<KeyframeEffect::ParsedKeyframe>& keyframes, const ViewTimeline* viewTimeline, WebAnimation* animation)
{
// https://drafts.csswg.org/web-animations-1/#compute-missing-keyframe-offsets
if (keyframes.isEmpty())
return;
Vector<KeyframeEffect::ParsedKeyframe*> keyframesWithDoubleOrNullOffset;
// 1. For each keyframe, in keyframes, let the computed keyframe offset of the keyframe be equal to its keyframe offset value.
// In our implementation, we only set non-null values to avoid making computedOffset std::optional<double>. Instead, we'll know
// that a keyframe hasn't had a computed offset by checking if it has a null offset and a 0 computedOffset, since the first
// keyframe will already have a 0 computedOffset.
for (auto& keyframe : keyframes) {
auto& offset = keyframe.offset;
if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&offset)) {
auto rangeName = rangeStringToSingleTimelineRangeName(timelineRangeOffset->rangeName);
RefPtr offsetUnitValue = dynamicDowncast<CSSUnitValue>(timelineRangeOffset->offset);
ASSERT(offsetUnitValue && offsetUnitValue->unitEnum() == CSSUnitType::CSS_PERCENTAGE);
keyframe.computedOffset = computedOffset(rangeName, offsetUnitValue->value() / 100, viewTimeline, animation);
} else {
keyframesWithDoubleOrNullOffset.append(&keyframe);
if (auto* doubleValue = std::get_if<double>(&offset))
keyframe.computedOffset = *doubleValue;
else
keyframe.computedOffset = std::numeric_limits<double>::quiet_NaN();
}
}
if (keyframesWithDoubleOrNullOffset.isEmpty())
return;
// 2. If keyframes contains more than one keyframe and the computed keyframe offset of the first keyframe in keyframes is null,
// set the computed keyframe offset of the first keyframe to 0.
if (keyframesWithDoubleOrNullOffset.size() > 1 && std::isnan(keyframesWithDoubleOrNullOffset[0]->computedOffset))
keyframesWithDoubleOrNullOffset[0]->computedOffset = 0;
// 3. If the computed keyframe offset of the last keyframe in keyframes is null, set its computed keyframe offset to 1.
if (std::isnan(keyframesWithDoubleOrNullOffset.last()->computedOffset))
keyframesWithDoubleOrNullOffset.last()->computedOffset = 1;
// 4. For each pair of keyframes A and B where:
// - A appears before B in keyframes, and
// - A and B have a computed keyframe offset that is not null, and
// - all keyframes between A and B have a null computed keyframe offset,
// calculate the computed keyframe offset of each keyframe between A and B as follows:
// 1. Let offsetk be the computed keyframe offset of a keyframe k.
// 2. Let n be the number of keyframes between and including A and B minus 1.
// 3. Let index refer to the position of keyframe in the sequence of keyframes between A and B such that the first keyframe after A has an index of 1.
// 4. Set the computed keyframe offset of keyframe to offsetA + (offsetB − offsetA) × index / n.
size_t indexOfLastKeyframeWithNonNullOffset = 0;
for (size_t i = 1; i < keyframesWithDoubleOrNullOffset.size(); ++i) {
auto& keyframe = *keyframesWithDoubleOrNullOffset[i];
// Keyframes with a null offset that don't yet have a non-zero computed offset are keyframes
// with an offset that needs to be computed.
if (std::isnan(keyframe.computedOffset))
continue;
if (indexOfLastKeyframeWithNonNullOffset != i - 1) {
double lastNonNullOffset = keyframesWithDoubleOrNullOffset[indexOfLastKeyframeWithNonNullOffset]->computedOffset;
double offsetDelta = keyframe.computedOffset - lastNonNullOffset;
double offsetIncrement = offsetDelta / (i - indexOfLastKeyframeWithNonNullOffset);
size_t indexOfFirstKeyframeWithNullOffset = indexOfLastKeyframeWithNonNullOffset + 1;
for (size_t j = indexOfFirstKeyframeWithNullOffset; j < i; ++j)
keyframesWithDoubleOrNullOffset[j]->computedOffset = lastNonNullOffset + (j - indexOfLastKeyframeWithNonNullOffset) * offsetIncrement;
}
indexOfLastKeyframeWithNonNullOffset = i;
}
}
static inline ExceptionOr<KeyframeEffect::KeyframeLikeObject> processKeyframeLikeObject(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput, bool allowLists)
{
// https://drafts.csswg.org/web-animations-1/#process-a-keyframe-like-object
VM& vm = lexicalGlobalObject.vm();
auto scope = DECLARE_THROW_SCOPE(vm);
// 1. Run the procedure to convert an ECMAScript value to a dictionary type [WEBIDL] with keyframe input as the ECMAScript value as follows:
//
// If allow lists is true, use the following dictionary type:
//
// dictionary BasePropertyIndexedKeyframe {
// (double? or sequence<double?>) offset = [];
// (DOMString or sequence<DOMString>) easing = [];
// (CompositeOperationOrAuto or sequence<CompositeOperationOrAuto>) composite = [];
// };
//
// Otherwise, use the following dictionary type:
//
// dictionary BaseKeyframe {
// double? offset = null;
// DOMString easing = "linear";
// CompositeOperationOrAuto composite = "auto";
// };
//
// Store the result of this procedure as keyframe output.
KeyframeEffect::BasePropertyIndexedKeyframe baseProperties;
if (allowLists) {
auto basePropertiesConversionResult = convert<IDLDictionary<KeyframeEffect::BasePropertyIndexedKeyframe>>(lexicalGlobalObject, keyframesInput.get());
if (UNLIKELY(basePropertiesConversionResult.hasException(scope)))
return Exception { ExceptionCode::TypeError };
baseProperties = basePropertiesConversionResult.releaseReturnValue();
// Convert string offsets to TimelineRangeOffset in case we were provided with a list of offsets.
if (auto* offsets = std::get_if<Vector<KeyframeEffect::KeyframeOffset>>(&baseProperties.offset)) {
for (auto& offset : *offsets) {
auto* stringOffset = std::get_if<String>(&offset);
if (!stringOffset)
continue;
if (auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document)) {
if (auto doubleOffset = std::get_if<double>(&*parsedValue))
offset = *doubleOffset;
else
offset = std::get<TimelineRangeOffset>(*parsedValue);
} else
return Exception { ExceptionCode::TypeError };
}
}
} else {
auto baseKeyframeConversionResult = convert<IDLDictionary<KeyframeEffect::BaseKeyframe>>(lexicalGlobalObject, keyframesInput.get());
if (UNLIKELY(baseKeyframeConversionResult.hasException(scope)))
return Exception { ExceptionCode::TypeError };
auto baseKeyframe = baseKeyframeConversionResult.releaseReturnValue();
auto* baseKeyframeOffset = &baseKeyframe.offset;
if (auto* doubleValue = std::get_if<double>(baseKeyframeOffset))
baseProperties.offset = *doubleValue;
else if (auto* timelineRangeOffsetValue = std::get_if<TimelineRangeOffset>(baseKeyframeOffset)) {
if (!isTimelineRangeOffsetValid(*timelineRangeOffsetValue)) {
throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
return Exception { ExceptionCode::TypeError };
}
baseProperties.offset = *timelineRangeOffsetValue;
} else if (auto* stringOffset = std::get_if<String>(baseKeyframeOffset)) {
if (auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document)) {
if (auto doubleOffset = std::get_if<double>(&*parsedValue))
baseProperties.offset = *doubleOffset;
else
baseProperties.offset = std::get<TimelineRangeOffset>(*parsedValue);
} else {
throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
return Exception { ExceptionCode::TypeError };
}
} else
baseProperties.offset = nullptr;
baseProperties.easing = baseKeyframe.easing;
baseProperties.composite = baseKeyframe.composite;
}
KeyframeEffect::KeyframeLikeObject keyframeOuput;
keyframeOuput.baseProperties = baseProperties;
// 2. Build up a list of animatable properties as follows:
//
// 1. Let animatable properties be a list of property names (including shorthand properties that have longhand sub-properties
// that are animatable) that can be animated by the implementation.
// 2. Convert each property name in animatable properties to the equivalent IDL attribute by applying the animation property
// name to IDL attribute name algorithm.
// 3. Let input properties be the result of calling the EnumerableOwnNames operation with keyframe input as the object.
PropertyNameArray inputProperties(vm, PropertyNameMode::Strings, PrivateSymbolMode::Exclude);
JSObject::getOwnPropertyNames(keyframesInput.get(), &lexicalGlobalObject, inputProperties, DontEnumPropertiesMode::Exclude);
auto isDirectionAwareShorthand = [](CSSPropertyID property) {
for (auto longhand : shorthandForProperty(property)) {
if (CSSProperty::isDirectionAwareProperty(longhand))
return true;
}
return false;
};
// 4. Make up a new list animation properties that consists of all of the properties that are in both input properties and animatable
// properties, or which are in input properties and conform to the <custom-property-name> production.
Vector<JSC::Identifier> logicalShorthands;
Vector<JSC::Identifier> physicalShorthands;
Vector<JSC::Identifier> logicalLonghands;
Vector<JSC::Identifier> physicalLonghands;
for (auto& inputProperty : inputProperties) {
auto cssProperty = IDLAttributeNameToAnimationPropertyName(inputProperty.string());
if (!isExposed(cssProperty, &document.settings()))
cssProperty = CSSPropertyInvalid;
auto resolvedCSSProperty = CSSProperty::resolveDirectionAwareProperty(cssProperty, WritingMode());
if (CSSPropertyAnimation::isPropertyAnimatable(resolvedCSSProperty)) {
if (isDirectionAwareShorthand(cssProperty))
logicalShorthands.append(inputProperty);
else if (isShorthand(cssProperty))
physicalShorthands.append(inputProperty);
else if (resolvedCSSProperty != cssProperty)
logicalLonghands.append(inputProperty);
else
physicalLonghands.append(inputProperty);
}
}
// 5. Sort animation properties in ascending order by the Unicode codepoints that define each property name.
auto sortPropertiesInAscendingOrder = [](auto& properties) {
std::sort(properties.begin(), properties.end(), [](auto& lhs, auto& rhs) {
return codePointCompareLessThan(lhs.string().string(), rhs.string().string());
});
};
sortPropertiesInAscendingOrder(logicalShorthands);
sortPropertiesInAscendingOrder(physicalShorthands);
sortPropertiesInAscendingOrder(logicalLonghands);
sortPropertiesInAscendingOrder(physicalLonghands);
Vector<JSC::Identifier> animationProperties;
animationProperties.appendVector(logicalShorthands);
animationProperties.appendVector(physicalShorthands);
animationProperties.appendVector(logicalLonghands);
animationProperties.appendVector(physicalLonghands);
// 6. For each property name in animation properties,
size_t numberOfAnimationProperties = animationProperties.size();
for (size_t i = 0; i < numberOfAnimationProperties; ++i) {
// 1. Let raw value be the result of calling the [[Get]] internal method on keyframe input, with property name as the property
// key and keyframe input as the receiver.
auto rawValue = keyframesInput->get(&lexicalGlobalObject, animationProperties[i]);
// 2. Check the completion record of raw value.
RETURN_IF_EXCEPTION(scope, Exception { ExceptionCode::TypeError });
// 3. Convert raw value to a DOMString or sequence of DOMStrings property values as follows:
Vector<String> propertyValues;
if (allowLists) {
// If allow lists is true,
// Let property values be the result of converting raw value to IDL type (DOMString or sequence<DOMString>)
// using the procedures defined for converting an ECMAScript value to an IDL value [WEBIDL].
// If property values is a single DOMString, replace property values with a sequence of DOMStrings with the original value of property
// Values as the only element.
auto propertyValuesConversionResult = convert<IDLUnion<IDLDOMString, IDLSequence<IDLDOMString>>>(lexicalGlobalObject, rawValue);
if (UNLIKELY(propertyValuesConversionResult.hasException(scope)))
return Exception { ExceptionCode::TypeError };
propertyValues = WTF::switchOn(propertyValuesConversionResult.releaseReturnValue(),
[](String&& value) -> Vector<String> {
return { WTFMove(value) };
},
[](Vector<String>&& values) -> Vector<String> {
return values;
}
);
} else {
// Otherwise,
// Let property values be the result of converting raw value to a DOMString using the procedure for converting an ECMAScript value to a DOMString.
auto propertyValuesConversionResult = convert<IDLDOMString>(lexicalGlobalObject, rawValue);
if (UNLIKELY(propertyValuesConversionResult.hasException(scope)))
return Exception { ExceptionCode::TypeError };
propertyValues = { propertyValuesConversionResult.releaseReturnValue() };
}
// 4. Calculate the normalized property name as the result of applying the IDL attribute name to animation property name algorithm to property name.
auto propertyName = animationProperties[i].string();
auto cssPropertyID = IDLAttributeNameToAnimationPropertyName(propertyName);
ASSERT(isExposed(cssPropertyID, &document.settings()));
// 5. Add a property to to keyframe output with normalized property name as the property name, and property values as the property value.
if (cssPropertyID == CSSPropertyCustom)
keyframeOuput.propertiesAndValues.append({ cssPropertyID, propertyName, propertyValues });
else
keyframeOuput.propertiesAndValues.append({ cssPropertyID, emptyAtom(), propertyValues });
}
// 7. Return keyframe output.
return { WTFMove(keyframeOuput) };
}
static inline ExceptionOr<void> processIterableKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput, JSValue method, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes)
{
CSSParserContext parserContext(document);
// 1. Let iter be GetIterator(object, method).
forEachInIterable(lexicalGlobalObject, keyframesInput.get(), method, [&parsedKeyframes, &document, &parserContext](VM& vm, JSGlobalObject& lexicalGlobalObject, JSValue nextValue) -> ExceptionOr<void> {
// Steps 2 through 5 are already implemented by forEachInIterable().
auto scope = DECLARE_THROW_SCOPE(vm);
// 6. If Type(nextItem) is not Undefined, Null or Object, then throw a TypeError and abort these steps.
if (!nextValue.isUndefinedOrNull() && !nextValue.isObject()) {
throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
return { };
}
if (!nextValue.isObject()) {
parsedKeyframes.append({ });
return { };
}
// 7. Append to processed keyframes the result of running the procedure to process a keyframe-like object passing nextItem
// as the keyframe input and with the allow lists flag set to false.
auto processKeyframeLikeObjectResult = processKeyframeLikeObject(lexicalGlobalObject, document, Strong<JSObject>(vm, nextValue.toObject(&lexicalGlobalObject)), false);
if (processKeyframeLikeObjectResult.hasException())
return processKeyframeLikeObjectResult.releaseException();
auto keyframeLikeObject = processKeyframeLikeObjectResult.returnValue();
KeyframeEffect::ParsedKeyframe keyframeOutput;
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only offset
// alternatives we should expect are double and nullptr.
if (auto* doubleValue = std::get_if<double>(&keyframeLikeObject.baseProperties.offset))
keyframeOutput.offset = *doubleValue;
else if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&keyframeLikeObject.baseProperties.offset)) {
if (!isTimelineRangeOffsetValid(*timelineRangeOffset)) {
throwException(&lexicalGlobalObject, scope, JSC::Exception::create(vm, createTypeError(&lexicalGlobalObject)));
return Exception { ExceptionCode::TypeError };
}
keyframeOutput.offset = *timelineRangeOffset;
}
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only easing
// alternative we should expect is String.
ASSERT(std::holds_alternative<String>(keyframeLikeObject.baseProperties.easing));
keyframeOutput.easing = std::get<String>(keyframeLikeObject.baseProperties.easing);
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only composite
// alternatives we should expect is CompositeOperationAuto.
ASSERT(std::holds_alternative<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite));
keyframeOutput.composite = std::get<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite);
for (auto& propertyAndValue : keyframeLikeObject.propertiesAndValues) {
auto cssPropertyId = propertyAndValue.property;
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false,
// there should only ever be a single value for a given property.
ASSERT(propertyAndValue.values.size() == 1);
auto stringValue = propertyAndValue.values[0];
if (cssPropertyId == CSSPropertyCustom) {
auto customProperty = propertyAndValue.customProperty;
if (keyframeOutput.style->setCustomProperty(customProperty, stringValue, parserContext))
keyframeOutput.customStyleStrings.set(customProperty, stringValue);
} else if (keyframeOutput.style->setProperty(cssPropertyId, stringValue, parserContext))
keyframeOutput.styleStrings.set(cssPropertyId, stringValue);
}
parsedKeyframes.append(WTFMove(keyframeOutput));
return { };
});
return { };
}
static inline ExceptionOr<void> processPropertyIndexedKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes, Vector<String>& unusedEasings)
{
// 1. Let property-indexed keyframe be the result of running the procedure to process a keyframe-like object passing object as the keyframe input.
auto processKeyframeLikeObjectResult = processKeyframeLikeObject(lexicalGlobalObject, document, WTFMove(keyframesInput), true);
if (processKeyframeLikeObjectResult.hasException())
return processKeyframeLikeObjectResult.releaseException();
auto propertyIndexedKeyframe = processKeyframeLikeObjectResult.returnValue();
CSSParserContext parserContext(document);
// 2. For each member, m, in property-indexed keyframe, perform the following steps:
for (auto& m : propertyIndexedKeyframe.propertiesAndValues) {
// 1. Let property name be the key for m.
auto propertyName = m.property;
// 2. If property name is “composite”, or “easing”, or “offset”, skip the remaining steps in this loop and continue from the next member in property-indexed
// keyframe after m.
// We skip this test since we split those properties and the actual CSS properties that we're currently iterating over.
// 3. Let property values be the value for m.
auto propertyValues = m.values;
// 4. Let property keyframes be an empty sequence of keyframes.
Vector<KeyframeEffect::ParsedKeyframe> propertyKeyframes;
// 5. For each value, v, in property values perform the following steps:
for (auto& v : propertyValues) {
// 1. Let k be a new keyframe with a null keyframe offset.
KeyframeEffect::ParsedKeyframe k;
// 2. Add the property-value pair, property name → v, to k.
if (propertyName == CSSPropertyCustom) {
auto customProperty = m.customProperty;
if (k.style->setCustomProperty(customProperty, v, parserContext))
k.customStyleStrings.set(customProperty, v);
} else if (k.style->setProperty(propertyName, v, parserContext))
k.styleStrings.set(propertyName, v);
// 3. Append k to property keyframes.
propertyKeyframes.append(WTFMove(k));
}
// 6. Apply the procedure to compute missing keyframe offsets to property keyframes.
computeMissingKeyframeOffsets(propertyKeyframes, nullptr, nullptr);
// 7. Add keyframes in property keyframes to processed keyframes.
parsedKeyframes.appendVector(propertyKeyframes);
}
// 3. Sort processed keyframes by the computed keyframe offset of each keyframe in increasing order.
std::sort(parsedKeyframes.begin(), parsedKeyframes.end(), [](auto& lhs, auto& rhs) {
if (!std::isnan(lhs.computedOffset) && !std::isnan(rhs.computedOffset))
return lhs.computedOffset < rhs.computedOffset;
// This will sort nullopt values prior to other values.
return !std::isnan(lhs.computedOffset);
});
// 4. Merge adjacent keyframes in processed keyframes when they have equal computed keyframe offsets.
size_t i = 1;
while (i < parsedKeyframes.size()) {
auto& keyframe = parsedKeyframes[i];
auto& previousKeyframe = parsedKeyframes[i - 1];
// If the offsets of this keyframe and the previous keyframe are different,
// this means that the two keyframes should not be merged and we can move
// on to the next keyframe.
if (keyframe.computedOffset != previousKeyframe.computedOffset) {
i++;
continue;
}
// Otherwise, both this keyframe and the previous keyframe should be merged.
// Unprocessed keyframes in parsedKeyframes at this stage have at most a single
// property in cssPropertiesAndValues, so just set this on the previous keyframe.
// In case an invalid or null value was originally provided, then the property
// was not set and the property count is 0, in which case there is nothing to merge.
if (keyframe.styleStrings.size()) {
previousKeyframe.style->mergeAndOverrideOnConflict(keyframe.style);
for (auto& [property, value] : keyframe.styleStrings)
previousKeyframe.styleStrings.set(property, value);
}
if (keyframe.customStyleStrings.size()) {
previousKeyframe.style->mergeAndOverrideOnConflict(keyframe.style);
for (auto& [customProperty, value] : keyframe.customStyleStrings)
previousKeyframe.customStyleStrings.set(customProperty, value);
}
// Since we've processed this keyframe, we can remove it and keep i the same
// so that we process the next keyframe in the next loop iteration.
parsedKeyframes.remove(i);
}
// 5. Let offsets be a sequence of nullable double values assigned based on the type of the “offset” member of the property-indexed keyframe as follows:
// - sequence<double?>, the value of “offset” as-is.
// - double?, a sequence of length one with the value of “offset” as its single item, i.e. « offset »,
Vector<KeyframeEffect::KeyframeOffset> offsets;
auto* sourceOffsets = &propertyIndexedKeyframe.baseProperties.offset;
if (auto* vectorOfKeyframeOffsets = std::get_if<Vector<KeyframeEffect::KeyframeOffset>>(sourceOffsets)) {
for (auto& keyframeOffset : *vectorOfKeyframeOffsets) {
auto validatedOffset = validateKeyframeOffset(keyframeOffset, document);
if (!validatedOffset)
return Exception { ExceptionCode::TypeError };
offsets.append(*validatedOffset);
}
} else if (auto* doubleValue = std::get_if<double>(sourceOffsets))
offsets.append(*doubleValue);
else if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(sourceOffsets)) {
if (!isTimelineRangeOffsetValid(*timelineRangeOffset))
return Exception { ExceptionCode::TypeError };
offsets.append(*timelineRangeOffset);
} else if (auto* stringOffset = std::get_if<String>(sourceOffsets)) {
if (auto parsedValue = doubleOrTimelineRangeOffsetFromString(*stringOffset, document)) {
if (auto doubleOffset = std::get_if<double>(&*parsedValue))
offsets.append(*doubleOffset);
else
offsets.append(std::get<TimelineRangeOffset>(*parsedValue));
} else
return Exception { ExceptionCode::TypeError };
} else
offsets.append(nullptr);
// 6. Assign each value in offsets to the keyframe offset of the keyframe with corresponding position in property keyframes until the end of either sequence is reached.
for (size_t i = 0; i < offsets.size() && i < parsedKeyframes.size(); ++i)
parsedKeyframes[i].offset = offsets[i];
// 7. Let easings be a sequence of DOMString values assigned based on the type of the “easing” member of the property-indexed keyframe as follows:
// - sequence<DOMString>, the value of “easing” as-is.
// - DOMString, a sequence of length one with the value of “easing” as its single item, i.e. « easing »,
Vector<String> easings;
if (std::holds_alternative<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing))
easings = std::get<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing);
else if (std::holds_alternative<String>(propertyIndexedKeyframe.baseProperties.easing))
easings.append(std::get<String>(propertyIndexedKeyframe.baseProperties.easing));
// 8. If easings is an empty sequence, let it be a sequence of length one containing the single value “linear”, i.e. « "linear" ».
if (easings.isEmpty())
easings.append("linear"_s);
// 9. If easings has fewer items than property keyframes, repeat the elements in easings successively starting from the beginning of the list until easings has as many
// items as property keyframes.
if (easings.size() < parsedKeyframes.size()) {
size_t initialNumberOfEasings = easings.size();
for (i = initialNumberOfEasings; i < parsedKeyframes.size(); ++i)
easings.append(easings[i % initialNumberOfEasings]);
}
// 10. If easings has more items than property keyframes, store the excess items as unused easings.
while (easings.size() > parsedKeyframes.size())
unusedEasings.append(easings.takeLast());
// 11. Assign each value in easings to a property named “easing” on the keyframe with the corresponding position in property keyframes until the end of property keyframes
// is reached.
for (size_t i = 0; i < parsedKeyframes.size(); ++i)
parsedKeyframes[i].easing = easings[i];
// 12. If the “composite” member of the property-indexed keyframe is not an empty sequence:
Vector<CompositeOperationOrAuto> compositeModes;
if (std::holds_alternative<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite))
compositeModes = std::get<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite);
else if (std::holds_alternative<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite))
compositeModes.append(std::get<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite));
if (!compositeModes.isEmpty()) {
// 1. Let composite modes be a sequence of CompositeOperationOrAuto values assigned from the “composite” member of property-indexed keyframe. If that member is a single
// CompositeOperationOrAuto value operation, let composite modes be a sequence of length one, with the value of the “composite” as its single item.
// 2. As with easings, if composite modes has fewer items than processed keyframes, repeat the elements in composite modes successively starting from the beginning of
// the list until composite modes has as many items as processed keyframes.
if (compositeModes.size() < parsedKeyframes.size()) {
size_t initialNumberOfCompositeModes = compositeModes.size();
for (i = initialNumberOfCompositeModes; i < parsedKeyframes.size(); ++i)
compositeModes.append(compositeModes[i % initialNumberOfCompositeModes]);
}
// 3. Assign each value in composite modes that is not auto to the keyframe-specific composite operation on the keyframe with the corresponding position in processed
// keyframes until the end of processed keyframes is reached.
for (size_t i = 0; i < compositeModes.size() && i < parsedKeyframes.size(); ++i) {
if (compositeModes[i] != CompositeOperationOrAuto::Auto)
parsedKeyframes[i].composite = compositeModes[i];
}
}
return { };
}
ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(JSGlobalObject& lexicalGlobalObject, Document& document, Element* target, Strong<JSObject>&& keyframes, std::optional<std::variant<double, KeyframeEffectOptions>>&& options)
{
auto keyframeEffect = adoptRef(*new KeyframeEffect(target, { }));
keyframeEffect->m_document = document;
if (options) {
OptionalEffectTiming timing;
auto optionsValue = options.value();
if (std::holds_alternative<double>(optionsValue)) {
std::variant<double, String> duration = std::get<double>(optionsValue);
timing.duration = duration;
} else {
auto keyframeEffectOptions = std::get<KeyframeEffectOptions>(optionsValue);
auto setPseudoElementResult = keyframeEffect->setPseudoElement(keyframeEffectOptions.pseudoElement);
if (setPseudoElementResult.hasException())
return setPseudoElementResult.releaseException();
auto convertedDuration = keyframeEffectOptions.durationAsDoubleOrString();
if (!convertedDuration)
return Exception { ExceptionCode::TypeError };
timing = {
*convertedDuration,
keyframeEffectOptions.iterations,
keyframeEffectOptions.delay,
keyframeEffectOptions.endDelay,
keyframeEffectOptions.iterationStart,
keyframeEffectOptions.easing,
keyframeEffectOptions.fill,
keyframeEffectOptions.direction
};
keyframeEffect->setComposite(keyframeEffectOptions.composite);
keyframeEffect->setIterationComposite(keyframeEffectOptions.iterationComposite);
}
auto updateTimingResult = keyframeEffect->updateTiming(document, timing);
if (updateTimingResult.hasException())
return updateTimingResult.releaseException();
}
auto processKeyframesResult = keyframeEffect->processKeyframes(lexicalGlobalObject, document, WTFMove(keyframes));
if (processKeyframesResult.hasException())
return processKeyframesResult.releaseException();
return keyframeEffect;
}
Ref<KeyframeEffect> KeyframeEffect::create(Ref<KeyframeEffect>&& source)
{
auto keyframeEffect = adoptRef(*new KeyframeEffect(nullptr, { }));
keyframeEffect->copyPropertiesFromSource(WTFMove(source));
return keyframeEffect;
}
Ref<KeyframeEffect> KeyframeEffect::create(const Element& target, const std::optional<Style::PseudoElementIdentifier>& pseudoElementIdentifier)
{
return adoptRef(*new KeyframeEffect(const_cast<Element*>(&target), pseudoElementIdentifier));
}
KeyframeEffect::KeyframeEffect(Element* target, const std::optional<Style::PseudoElementIdentifier>& pseudoElementIdentifier)
: m_keyframesName(makeAtomString("keyframe-effect-"_s, WTF::UUID::createVersion4Weak()))
, m_target(target)
, m_pseudoElementIdentifier(pseudoElementIdentifier)
{
if (m_target)
m_document = m_target->document();
}
void KeyframeEffect::copyPropertiesFromSource(Ref<KeyframeEffect>&& source)
{
m_target = source->m_target;
m_pseudoElementIdentifier = source->m_pseudoElementIdentifier;
m_document = source->m_document;
m_compositeOperation = source->m_compositeOperation;
m_iterationCompositeOperation = source->m_iterationCompositeOperation;
Vector<ParsedKeyframe> parsedKeyframes;
for (auto& sourceParsedKeyframe : source->m_parsedKeyframes) {
ParsedKeyframe parsedKeyframe;
parsedKeyframe.easing = sourceParsedKeyframe.easing;
parsedKeyframe.offset = sourceParsedKeyframe.offset;
parsedKeyframe.composite = sourceParsedKeyframe.composite;
parsedKeyframe.styleStrings = sourceParsedKeyframe.styleStrings;
parsedKeyframe.customStyleStrings = sourceParsedKeyframe.customStyleStrings;
parsedKeyframe.computedOffset = sourceParsedKeyframe.computedOffset;
parsedKeyframe.timingFunction = sourceParsedKeyframe.timingFunction;
parsedKeyframe.style = sourceParsedKeyframe.style->mutableCopy();
parsedKeyframes.append(WTFMove(parsedKeyframe));
}
m_parsedKeyframes = WTFMove(parsedKeyframes);
setFill(source->fill());
setDelay(source->specifiedDelay());
setEndDelay(source->specifiedEndDelay());
setDirection(source->direction());
setIterations(source->iterations());
setTimingFunction(source->timingFunction());
setIterationStart(source->iterationStart());
setIterationDuration(source->specifiedIterationDuration());
BlendingKeyframes blendingKeyframes(m_keyframesName);
blendingKeyframes.copyKeyframes(source->m_blendingKeyframes);
setBlendingKeyframes(WTFMove(blendingKeyframes));
}
static TimelineRangeOffset timelineRangeOffsetFromSpecifiedOffset(const BlendingKeyframe::Offset& specifiedOffset)
{
auto name = rangeStringFromSingleTimelineRangeName(specifiedOffset.name);
return TimelineRangeOffset { name, CSSNumericFactory::percent(specifiedOffset.value * 100) };
}
auto KeyframeEffect::getKeyframes() -> Vector<ComputedKeyframe>
{
// https://drafts.csswg.org/web-animations-1/#dom-keyframeeffectreadonly-getkeyframes
if (auto* styleOriginatedAnimation = dynamicDowncast<StyleOriginatedAnimation>(animation()))
styleOriginatedAnimation->flushPendingStyleChanges();
updateComputedKeyframeOffsetsIfNeeded();
Vector<ComputedKeyframe> computedKeyframes;
if (!m_parsedKeyframes.isEmpty() || m_animationType == WebAnimationType::WebAnimation || !m_blendingKeyframes.containsAnimatableCSSProperty()) {
for (size_t i = 0; i < m_parsedKeyframes.size(); ++i) {
auto& parsedKeyframe = m_parsedKeyframes[i];
ComputedKeyframe computedKeyframe { parsedKeyframe };
for (auto& [cssPropertyId, stringValue] : computedKeyframe.styleStrings) {
if (cssPropertyId == CSSPropertyCustom)
continue;
if (auto cssValue = parsedKeyframe.style->getPropertyCSSValue(cssPropertyId))
stringValue = cssValue->cssText(CSS::defaultSerializationContext());
}
computedKeyframe.easing = timingFunctionForKeyframeAtIndex(i)->cssText();
computedKeyframes.append(WTFMove(computedKeyframe));
}
return computedKeyframes;
}
auto* target = m_target.get();
auto* lastStyleChangeEventStyle = targetStyleable()->lastStyleChangeEventStyle();
auto& elementStyle = lastStyleChangeEventStyle ? *lastStyleChangeEventStyle : currentStyle();
ComputedStyleExtractor computedStyleExtractor { target, false, m_pseudoElementIdentifier };
BlendingKeyframes computedBlendingKeyframes(m_blendingKeyframes.animationName());
computedBlendingKeyframes.copyKeyframes(m_blendingKeyframes);
if (computedBlendingKeyframes.hasKeyframeNotUsingRangeOffset() || activeViewTimeline())
computedBlendingKeyframes.fillImplicitKeyframes(*this, elementStyle);
auto keyframeRules = [&]() -> const Vector<Ref<StyleRuleKeyframe>> {
auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation());
if (!cssAnimation)
return { };
if (!m_target || !m_target->isConnected())
return { };
auto& backingAnimation = cssAnimation->backingAnimation();
auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.name().scopeOrdinal);
if (!styleScope)
return { };
return styleScope->resolver().keyframeRulesForName(computedBlendingKeyframes.animationName(), backingAnimation.timingFunction());
}();
auto matchingStyleRuleKeyframe = [&](const BlendingKeyframe& keyframe) -> StyleRuleKeyframe* {
auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation());
if (!cssAnimation)
return nullptr;
auto& backingAnimation = cssAnimation->backingAnimation();
auto defaultCompositeOperation = backingAnimation.compositeOperation();
auto* defaultTimingFunction = backingAnimation.timingFunction();
auto compositeOperation = keyframe.compositeOperation().value_or(defaultCompositeOperation);
auto* timingFunction = keyframe.timingFunction();
if (!timingFunction)
timingFunction = defaultTimingFunction;
auto compositeOperationForStyleRuleKeyframe = [&](Ref<StyleRuleKeyframe>& styleRuleKeyframe) {
if (auto compositeOperationCSSValue = styleRuleKeyframe->properties().getPropertyCSSValue(CSSPropertyAnimationComposition)) {
if (auto compositeOperation = toCompositeOperation(*compositeOperationCSSValue))
return *compositeOperation;
}
return defaultCompositeOperation;
};
auto timingFunctionForStyleRuleKeyframe = [&](Ref<StyleRuleKeyframe>& styleRuleKeyframe) -> RefPtr<const TimingFunction> {
if (auto timingFunctionCSSValue = styleRuleKeyframe->properties().getPropertyCSSValue(CSSPropertyAnimationTimingFunction)) {
if (auto timingFunction = Style::createTimingFunctionDeprecated(*timingFunctionCSSValue))
return timingFunction;
}
if (defaultTimingFunction)
return defaultTimingFunction;
return &CubicBezierTimingFunction::defaultTimingFunction();
};
auto& specifiedOffset = keyframe.specifiedOffset();
StyleRuleKeyframe::Key key { SingleTimelineRange::valueID(specifiedOffset.name), specifiedOffset.value };
for (auto& keyframeRule : keyframeRules) {
if (compositeOperationForStyleRuleKeyframe(keyframeRule) != compositeOperation)
continue;
if (timingFunctionForStyleRuleKeyframe(keyframeRule) != timingFunction)
continue;
for (auto keyframeRuleKey : keyframeRule->keys()) {
if (keyframeRuleKey == key)
return keyframeRule.ptr();
}
}
return nullptr;
};
auto styleProperties = MutableStyleProperties::create();
if (m_animationType == WebAnimationType::CSSAnimation && m_target->isConnected()) {
auto matchingRules = m_target->styleResolver().pseudoStyleRulesForElement(target, m_pseudoElementIdentifier, Style::Resolver::AllCSSRules);
for (auto& matchedRule : matchingRules)
styleProperties->mergeAndOverrideOnConflict(matchedRule->properties());
if (auto* target = dynamicDowncast<StyledElement>(m_target.get()); target && !m_pseudoElementIdentifier) {
if (auto* inlineProperties = target->inlineStyle())
styleProperties->mergeAndOverrideOnConflict(*inlineProperties);
}
}
Vector<ComputedKeyframe> computedKeyframesWithTimelineRangeOffset;
Vector<ComputedKeyframe> computedKeyframesWithDoubleOffset;
for (auto& keyframe : computedBlendingKeyframes) {
auto& style = *keyframe.style();
auto* keyframeRule = matchingStyleRuleKeyframe(keyframe);
ComputedKeyframe computedKeyframe;
computedKeyframe.offset = [&] -> KeyframeOffset {
if (keyframe.usesRangeOffset())
return timelineRangeOffsetFromSpecifiedOffset(keyframe.specifiedOffset());
return keyframe.specifiedOffset().value;
}();
computedKeyframe.computedOffset = keyframe.offset();
// For CSS transitions, all keyframes should return "linear" since the effect's global timing function applies.
computedKeyframe.easing = is<CSSTransition>(animation()) ? "linear"_s : timingFunctionForBlendingKeyframe(keyframe)->cssText();
if (auto compositeOperation = keyframe.compositeOperation())
computedKeyframe.composite = toCompositeOperationOrAuto(*compositeOperation);
auto addPropertyToKeyframe = [&](CSSPropertyID cssPropertyId) {
String styleString = emptyString();
if (keyframeRule) {
if (auto cssValue = keyframeRule->properties().getPropertyCSSValue(cssPropertyId)) {
if (!cssValue->hasVariableReferences())
styleString = keyframeRule->properties().getPropertyValue(cssPropertyId);
}
}
if (styleString.isEmpty()) {
if (auto cssValue = styleProperties->getPropertyCSSValue(cssPropertyId)) {
if (!cssValue->hasVariableReferences())
styleString = styleProperties->getPropertyValue(cssPropertyId);
}
}
if (styleString.isEmpty()) {
if (auto cssValue = computedStyleExtractor.valueForPropertyInStyle(style, cssPropertyId, nullptr, ComputedStyleExtractor::PropertyValueType::Computed))
styleString = cssValue->cssText(CSS::defaultSerializationContext());
}
computedKeyframe.styleStrings.set(cssPropertyId, styleString);
};
auto addCustomPropertyToKeyframe = [&](const AtomString& customProperty) {
String styleString = emptyString();
if (keyframeRule) {
if (auto cssValue = keyframeRule->properties().getCustomPropertyCSSValue(customProperty)) {
if (!cssValue->hasVariableReferences())
styleString = keyframeRule->properties().getCustomPropertyValue(customProperty);
}
}
if (styleString.isEmpty()) {
if (auto cssValue = styleProperties->getCustomPropertyCSSValue(customProperty)) {
if (!cssValue->hasVariableReferences())
styleString = styleProperties->getCustomPropertyValue(customProperty);
}
}
if (styleString.isEmpty()) {
if (auto* cssValue = style.customPropertyValue(customProperty))
styleString = cssValue->cssText(CSS::defaultSerializationContext());
}
computedKeyframe.customStyleStrings.set(customProperty, styleString);
};
for (auto property : keyframe.properties()) {
WTF::switchOn(property,
[&] (CSSPropertyID cssProperty) {
addPropertyToKeyframe(cssProperty);
},
[&] (const AtomString& customProperty) {
if (m_animationType != WebAnimationType::CSSAnimation)
addCustomPropertyToKeyframe(customProperty);
}
);
}
// FIXME: this is so that we mimic the Chrome behavior since this isn't
// spec'd out, but it makes little sense to me. Items ought to be sorted
// by computed offset just like BlendingKeyframes would organize its keyframes.
// https://github.com/w3c/csswg-drafts/issues/11467
if (std::holds_alternative<double>(computedKeyframe.offset))
computedKeyframesWithDoubleOffset.append(WTFMove(computedKeyframe));
else
computedKeyframesWithTimelineRangeOffset.append(WTFMove(computedKeyframe));
}
computedKeyframes.appendVector(WTFMove(computedKeyframesWithDoubleOffset));
computedKeyframes.appendVector(WTFMove(computedKeyframesWithTimelineRangeOffset));
return computedKeyframes;
}
ExceptionOr<void> KeyframeEffect::setBindingsKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput)
{
auto retVal = setKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput));
if (!retVal.hasException()) {
if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
cssAnimation->effectKeyframesWereSetUsingBindings();
}
return retVal;
}
ExceptionOr<void> KeyframeEffect::setKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput)
{
auto processKeyframesResult = processKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput));
if (!processKeyframesResult.hasException() && animation()) {
animation()->effectTimingDidChange();
// Need a full style invalidation since the new keyframes may interact differently with the base style.
if (auto target = targetStyleable())
target->element.invalidateStyleInternal();
}
return processKeyframesResult;
}
void KeyframeEffect::keyframesRuleDidChange()
{
ASSERT(is<CSSAnimation>(animation()));
clearBlendingKeyframes();
invalidate();
}
void KeyframeEffect::customPropertyRegistrationDidChange(const AtomString& customProperty)
{
// If the registration of a custom property is changed, we should recompute keyframes
// at the next opportunity as the initial value, inherited value, etc. could have changed.
if (!m_blendingKeyframes.properties().contains(customProperty))
return;
clearBlendingKeyframes();
invalidate();
}
ExceptionOr<void> KeyframeEffect::processKeyframes(JSGlobalObject& lexicalGlobalObject, Document& document, Strong<JSObject>&& keyframesInput)
{
Ref protectedDocument { document };
// 1. If object is null, return an empty sequence of keyframes.
if (!keyframesInput.get())
return { };
VM& vm = lexicalGlobalObject.vm();
auto scope = DECLARE_THROW_SCOPE(vm);
// 2. Let processed keyframes be an empty sequence of keyframes.
Vector<ParsedKeyframe> parsedKeyframes;
// 3. Let method be the result of GetMethod(object, @@iterator).
auto method = keyframesInput.get()->get(&lexicalGlobalObject, vm.propertyNames->iteratorSymbol);
// 4. Check the completion record of method.
RETURN_IF_EXCEPTION(scope, Exception { ExceptionCode::TypeError });
// 5. Perform the steps corresponding to the first matching condition from below,
Vector<String> unusedEasings;
if (!method.isUndefined()) {
auto retVal = processIterableKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput), WTFMove(method), parsedKeyframes);
if (retVal.hasException())
return retVal.releaseException();
} else {
auto retVal = processPropertyIndexedKeyframes(lexicalGlobalObject, document, WTFMove(keyframesInput), parsedKeyframes, unusedEasings);
if (retVal.hasException())
return retVal.releaseException();
}
// 6. If processed keyframes is not loosely sorted by offset, throw a TypeError and abort these steps.
// 7. If there exist any keyframe in processed keyframes whose keyframe offset is non-null and less than
// zero or greater than one, throw a TypeError and abort these steps.
double lastNonNullOffset = -1;
for (auto& keyframe : parsedKeyframes) {
auto* doubleOffset = std::get_if<double>(&keyframe.offset);
if (!doubleOffset)
continue;
auto offset = *doubleOffset;
if (offset < lastNonNullOffset || offset < 0 || offset > 1)
return Exception { ExceptionCode::TypeError };
lastNonNullOffset = offset;
}
// We take a slight detour from the spec text and compute the missing keyframe offsets right away
// since they can be computed up-front.
computeMissingKeyframeOffsets(parsedKeyframes, activeViewTimeline(), animation());
CSSParserContext parserContext(document);
// 8. For each frame in processed keyframes, perform the following steps:
for (auto& keyframe : parsedKeyframes) {
// Let the timing function of frame be the result of parsing the “easing” property on frame using the CSS syntax
// defined for the easing property of the AnimationEffectTiming interface.
// If parsing the “easing” property fails, throw a TypeError and abort this procedure.
// FIXME: Determine the how calc() and relative units should be resolved and switch to the non-deprecated parsing function.
auto timingFunctionResult = CSSPropertyParserHelpers::parseEasingFunctionDeprecated(keyframe.easing, parserContext);
if (!timingFunctionResult)
return Exception { ExceptionCode::TypeError };
keyframe.timingFunction = WTFMove(timingFunctionResult);
}
// 9. Parse each of the values in unused easings using the CSS syntax defined for easing property of the
// AnimationEffectTiming interface, and if any of the values fail to parse, throw a TypeError
// and abort this procedure.
for (auto& easing : unusedEasings) {
// FIXME: Determine the how calc() and relative units should be resolved and switch to the non-deprecated parsing function.
auto timingFunctionResult = CSSPropertyParserHelpers::parseEasingFunctionDeprecated(easing, parserContext);
if (!timingFunctionResult)
return Exception { ExceptionCode::TypeError };
}
m_parsedKeyframes = WTFMove(parsedKeyframes);
clearBlendingKeyframes();
invalidate();
return { };
}
static BlendingKeyframe::Offset specifiedOffsetForParsedKeyframe(const KeyframeEffect::ParsedKeyframe& keyframe)
{
if (auto* timelineRangeOffset = std::get_if<TimelineRangeOffset>(&keyframe.offset)) {
auto rangeName = rangeStringToSingleTimelineRangeName(timelineRangeOffset->rangeName);
RefPtr offsetUnitValue = dynamicDowncast<CSSUnitValue>(timelineRangeOffset->offset);
ASSERT(offsetUnitValue && offsetUnitValue->unitEnum() == CSSUnitType::CSS_PERCENTAGE);
return { rangeName, offsetUnitValue->value() / 100 };
}
ASSERT(!std::isnan(keyframe.computedOffset));
return keyframe.computedOffset;
}
void KeyframeEffect::updateBlendingKeyframes(RenderStyle& elementStyle, const Style::ResolutionContext& resolutionContext)
{
updateComputedKeyframeOffsetsIfNeeded();
if (!m_blendingKeyframes.isEmpty() || !m_target)
return;
BlendingKeyframes blendingKeyframes(m_keyframesName);
auto& styleResolver = m_target->styleResolver();
for (auto& keyframe : m_parsedKeyframes) {
BlendingKeyframe blendingKeyframe(specifiedOffsetForParsedKeyframe(keyframe), nullptr);
blendingKeyframe.setTimingFunction(keyframe.timingFunction->clone());
switch (keyframe.composite) {
case CompositeOperationOrAuto::Replace:
blendingKeyframe.setCompositeOperation(CompositeOperation::Replace);
break;
case CompositeOperationOrAuto::Add:
blendingKeyframe.setCompositeOperation(CompositeOperation::Add);
break;
case CompositeOperationOrAuto::Accumulate:
blendingKeyframe.setCompositeOperation(CompositeOperation::Accumulate);
break;
case CompositeOperationOrAuto::Auto:
break;
}
auto keyframeRule = StyleRuleKeyframe::create(keyframe.style->immutableCopyIfNeeded());
blendingKeyframe.setStyle(styleResolver.styleForKeyframe(*m_target, elementStyle, resolutionContext, keyframeRule.get(), blendingKeyframe));
blendingKeyframes.insert(WTFMove(blendingKeyframe));
blendingKeyframes.updatePropertiesMetadata(keyframeRule->properties());
}
setBlendingKeyframes(WTFMove(blendingKeyframes));
}
const UncheckedKeyHashSet<AnimatableCSSProperty>& KeyframeEffect::animatedProperties()
{
if (!m_blendingKeyframes.isEmpty())
return m_blendingKeyframes.properties();
if (m_animatedProperties.isEmpty()) {
for (auto& keyframe : m_parsedKeyframes) {
for (auto keyframeCustomProperty : keyframe.customStyleStrings.keys())
m_animatedProperties.add(keyframeCustomProperty);
for (auto keyframeProperty : keyframe.styleStrings.keys())
m_animatedProperties.add(keyframeProperty);
}
}
return m_animatedProperties;
}
bool KeyframeEffect::animatesProperty(const AnimatableCSSProperty& property) const
{
if (!m_blendingKeyframes.isEmpty())
return m_blendingKeyframes.containsProperty(property);
return WTF::switchOn(property,
[&](CSSPropertyID cssProperty) {
return m_parsedKeyframes.findIf([&](const auto& keyframe) {
for (auto keyframeProperty : keyframe.styleStrings.keys()) {
if (keyframeProperty == cssProperty)
return true;
}
return false;
});
},
[&](const AtomString& customProperty) {
return m_parsedKeyframes.findIf([&](const auto& keyframe) {
for (auto keyframeProperty : keyframe.customStyleStrings.keys()) {
if (keyframeProperty == customProperty)
return true;
}
return false;
});
}) != notFound;
}
bool KeyframeEffect::forceLayoutIfNeeded()
{
if (!m_needsForcedLayout || !m_target)
return false;
auto* renderer = this->renderer();
if (!renderer || !renderer->parent())
return false;
ASSERT(document());
auto* frameView = document()->view();
if (!frameView)
return false;
frameView->forceLayout();
return true;
}
void KeyframeEffect::clearBlendingKeyframes()
{
m_animationType = WebAnimationType::WebAnimation;
m_blendingKeyframes.clear();
}
void KeyframeEffect::setBlendingKeyframes(BlendingKeyframes&& blendingKeyframes)
{
CanBeAcceleratedMutationScope mutationScope(this);
m_blendingKeyframes = WTFMove(blendingKeyframes);
m_animatedProperties.clear();
m_needsComputedKeyframeOffsetsUpdate = true;
computedNeedsForcedLayout();
computeStackingContextImpact();
computeAcceleratedPropertiesState();
computeSomeKeyframesUseStepsOrLinearTimingFunctionWithPoints();
computeHasImplicitKeyframeForAcceleratedProperty();
computeHasKeyframeComposingAcceleratedProperty();
computeHasAcceleratedPropertyOverriddenByCascadeProperty();
computeHasReferenceFilter();
computeHasSizeDependentTransform();
analyzeAcceleratedProperties();
checkForMatchingTransformFunctionLists();
updateAcceleratedAnimationIfNecessary();
}
void KeyframeEffect::analyzeAcceleratedProperties()
{
m_acceleratedProperties.clear();
m_acceleratedPropertiesWithImplicitKeyframe.clear();
ASSERT(document());
auto& settings = document()->settings();
for (auto& property : m_blendingKeyframes.properties()) {
if (!CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings))
continue;
m_acceleratedProperties.add(property);
if (m_blendingKeyframes.hasImplicitKeyframeForProperty(property))
m_acceleratedPropertiesWithImplicitKeyframe.add(property);
}
}
void KeyframeEffect::checkForMatchingTransformFunctionLists()
{
if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) {
m_transformFunctionListsMatchPrefix = 0;
return;
}
TransformOperationsSharedPrimitivesPrefix prefix;
for (const auto& keyframe : m_blendingKeyframes)
prefix.update(keyframe.style()->transform());
m_transformFunctionListsMatchPrefix = prefix.primitives().size();
}
std::optional<unsigned> KeyframeEffect::transformFunctionListPrefix() const
{
auto isTransformFunctionListsMatchPrefixRelevant = [&]() {
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
// The prefix is only relevant if the animation is fully replaced.
if (m_compositeOperation != CompositeOperation::Replace || m_hasKeyframeComposingAcceleratedProperty)
return false;
}
#endif
// The CoreAnimation animation code can only use direct function interpolation when all keyframes share the same
// prefix of shared transform function primitives, whereas software animations simply calls blend(...) which can do
// direct interpolation based on the function list of any two particular keyframes. The prefix serves as a way to
// make sure that the results of blend(...) can be made to return the same results as rendered by the hardware
// animation code.
return !preventsAcceleration();
};
return isTransformFunctionListsMatchPrefixRelevant() ? std::optional<unsigned>(m_transformFunctionListsMatchPrefix) : std::nullopt;
}
void KeyframeEffect::computeStyleOriginatedAnimationBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle, const Style::ResolutionContext& resolutionContext)
{
ASSERT(is<StyleOriginatedAnimation>(animation()));
if (is<CSSAnimation>(animation()))
computeCSSAnimationBlendingKeyframes(newStyle, resolutionContext);
else if (is<CSSTransition>(animation())) {
ASSERT(oldStyle);
computeCSSTransitionBlendingKeyframes(*oldStyle, newStyle);
}
}
void KeyframeEffect::computeCSSAnimationBlendingKeyframes(const RenderStyle& unanimatedStyle, const Style::ResolutionContext& resolutionContext)
{
ASSERT(document());
auto& backingAnimation = downcast<CSSAnimation>(*animation()).backingAnimation();
BlendingKeyframes blendingKeyframes(AtomString { backingAnimation.name().name });
if (m_target) {
if (auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.name().scopeOrdinal))
styleScope->resolver().keyframeStylesForAnimation(*m_target, unanimatedStyle, resolutionContext, blendingKeyframes, backingAnimation.timingFunction());
// Ensure resource loads for all the frames.
for (auto& keyframe : blendingKeyframes) {
if (auto* style = const_cast<RenderStyle*>(keyframe.style()))
Style::loadPendingResources(*style, *document(), m_target.get());
}
}
m_animationType = WebAnimationType::CSSAnimation;
setBlendingKeyframes(WTFMove(blendingKeyframes));
}
void KeyframeEffect::computeCSSTransitionBlendingKeyframes(const RenderStyle& oldStyle, const RenderStyle& newStyle)
{
ASSERT(document());
if (m_blendingKeyframes.size())
return;
auto property = downcast<CSSTransition>(animation())->property();
auto toStyle = RenderStyle::clonePtr(newStyle);
if (m_target)
Style::loadPendingResources(*toStyle, *document(), m_target.get());
BlendingKeyframes blendingKeyframes(m_keyframesName);
BlendingKeyframe fromBlendingKeyframe(0, RenderStyle::clonePtr(oldStyle));
fromBlendingKeyframe.addProperty(property);
blendingKeyframes.insert(WTFMove(fromBlendingKeyframe));
BlendingKeyframe toBlendingKeyframe(1, WTFMove(toStyle));
toBlendingKeyframe.addProperty(property);
blendingKeyframes.insert(WTFMove(toBlendingKeyframe));
m_animationType = WebAnimationType::CSSTransition;
setBlendingKeyframes(WTFMove(blendingKeyframes));
}
void KeyframeEffect::computedNeedsForcedLayout()
{
m_needsForcedLayout = [&]() {
if (is<CSSTransition>(animation()))
return false;
return m_blendingKeyframes.hasWidthDependentTransform() || m_blendingKeyframes.hasHeightDependentTransform();
}();
}
void KeyframeEffect::computeStackingContextImpact()
{
m_triggersStackingContext = false;
for (auto property : m_blendingKeyframes.properties()) {
if (std::holds_alternative<CSSPropertyID>(property) && WillChangeData::propertyCreatesStackingContext(std::get<CSSPropertyID>(property))) {
m_triggersStackingContext = true;
break;
}
}
}
void KeyframeEffect::updateIsAssociatedWithProgressBasedTimeline()
{
auto wasAssociatedWithProgressBasedTimeline = m_isAssociatedWithProgressBasedTimeline;
m_isAssociatedWithProgressBasedTimeline = [&] {
if (RefPtr animation = this->animation()) {
if (RefPtr timeline = animation->timeline())
return timeline->isProgressBased();
}
return false;
}();
if (wasAssociatedWithProgressBasedTimeline != m_isAssociatedWithProgressBasedTimeline)
updateAcceleratedAnimationIfNecessary();
}
void KeyframeEffect::animationTimelineDidChange(const AnimationTimeline* timeline)
{
AnimationEffect::animationTimelineDidChange(timeline);
updateIsAssociatedWithProgressBasedTimeline();
updateEffectStackMembership();
m_needsComputedKeyframeOffsetsUpdate = true;
}
void KeyframeEffect::animationRelevancyDidChange()
{
updateEffectStackMembership();
}
void KeyframeEffect::updateEffectStackMembership()
{
auto target = targetStyleable();
if (!target)
return;
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
StackMembershipMutationScope stackMembershipMutationScope(*this);
#endif
bool isRelevant = animation() && animation()->isRelevant();
if (isRelevant && !m_inTargetEffectStack)
target->ensureKeyframeEffectStack().addEffect(*this);
else if (!isRelevant && m_inTargetEffectStack)
target->ensureKeyframeEffectStack().removeEffect(*this);
}
void KeyframeEffect::setAnimation(WebAnimation* animation)
{
bool animationChanged = animation != this->animation();
AnimationEffect::setAnimation(animation);
if (!animationChanged)
return;
if (m_animationType == WebAnimationType::CSSAnimation)
clearBlendingKeyframes();
updateEffectStackMembership();
updateIsAssociatedWithProgressBasedTimeline();
}
const std::optional<const Styleable> KeyframeEffect::targetStyleable() const
{
if (m_target)
return Styleable(*m_target, m_pseudoElementIdentifier);
return std::nullopt;
}
bool KeyframeEffect::targetsPseudoElement() const
{
return m_target.get() && m_pseudoElementIdentifier;
}
void KeyframeEffect::setTarget(RefPtr<Element>&& newTarget)
{
if (m_target == newTarget)
return;
auto& previousTargetStyleable = targetStyleable();
RefPtr<Element> protector;
if (previousTargetStyleable)
protector = &previousTargetStyleable->element;
m_target = WTFMove(newTarget);
didChangeTargetStyleable(previousTargetStyleable);
}
const String KeyframeEffect::pseudoElement() const
{
// https://drafts.csswg.org/web-animations/#dom-keyframeeffect-pseudoelement
// The target pseudo-selector. null if this effect has no effect target or if the effect target is an element (i.e. not a pseudo-element).
// When the effect target is a pseudo-element, this specifies the pseudo-element selector (e.g. ::before).
if (targetsPseudoElement())
return pseudoElementIdentifierAsString(m_pseudoElementIdentifier);
return { };
}
ExceptionOr<void> KeyframeEffect::setPseudoElement(const String& pseudoElement)
{
// https://drafts.csswg.org/web-animations-1/#dom-keyframeeffect-pseudoelement
auto [parsed, pseudoElementIdentifier] = pseudoElementIdentifierFromString(pseudoElement, document());
if (!parsed)
return Exception { ExceptionCode::SyntaxError, "Parsing pseudo-element selector failed"_s };
if (m_pseudoElementIdentifier == pseudoElementIdentifier)
return { };
auto& previousTargetStyleable = targetStyleable();
m_pseudoElementIdentifier = pseudoElementIdentifier;
didChangeTargetStyleable(previousTargetStyleable);
return { };
}
void KeyframeEffect::didChangeTargetStyleable(const std::optional<const Styleable>& previousTargetStyleable)
{
auto newTargetStyleable = targetStyleable();
if (auto* effectAnimation = animation())
effectAnimation->effectTargetDidChange(previousTargetStyleable, newTargetStyleable);
clearBlendingKeyframes();
// We need to invalidate the effect now that the target has changed
// to ensure the effect's styles are applied to the new target right away.
invalidate();
// Likewise, we need to invalidate styles on the previous target so that
// any animated styles are removed immediately.
invalidateElement(previousTargetStyleable);
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
StackMembershipMutationScope stackMembershipMutationScope(*this);
#endif
if (previousTargetStyleable)
previousTargetStyleable->ensureKeyframeEffectStack().removeEffect(*this);
if (newTargetStyleable)
newTargetStyleable->ensureKeyframeEffectStack().addEffect(*this);
}
OptionSet<AnimationImpact> KeyframeEffect::apply(RenderStyle& targetStyle, const Style::ResolutionContext& resolutionContext, std::optional<Seconds> startTime)
{
OptionSet<AnimationImpact> impact;
if (!m_target)
return impact;
updateBlendingKeyframes(targetStyle, resolutionContext);
auto computedTiming = getComputedTiming(startTime);
if (!startTime) {
if (m_phaseAtLastApplication != computedTiming.phase) {
m_phaseAtLastApplication = computedTiming.phase;
impact.add(AnimationImpact::RequiresRecomposite);
}
if (auto target = targetStyleable())
InspectorInstrumentation::willApplyKeyframeEffect(*target, *this, computedTiming);
}
if (!computedTiming.progress)
return impact;
ASSERT(computedTiming.currentIteration);
setAnimatedPropertiesInStyle(targetStyle, computedTiming);
return impact;
}
bool KeyframeEffect::isRunningAccelerated() const
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
if (!m_inTargetEffectStack || !canBeAccelerated())
return false;
auto* animation = this->animation();
ASSERT(animation);
return !animation->isSuspended() && animation->playState() == WebAnimation::PlayState::Running;
}
#endif
return m_runningAccelerated == RunningAccelerated::Yes;
}
bool KeyframeEffect::isCurrentlyAffectingProperty(CSSPropertyID property, Accelerated accelerated) const
{
if (accelerated == Accelerated::Yes && !isRunningAccelerated() && !isAboutToRunAccelerated())
return false;
if (!m_blendingKeyframes.properties().contains(property))
return false;
if (m_pseudoElementIdentifier && m_pseudoElementIdentifier->pseudoId == PseudoId::Marker && !Style::isValidMarkerStyleProperty(property))
return false;
return m_phaseAtLastApplication == AnimationEffectPhase::Active;
}
bool KeyframeEffect::isRunningAcceleratedAnimationForProperty(CSSPropertyID property) const
{
if (!isRunningAccelerated())
return false;
ASSERT(document());
return CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, document()->settings()) && m_blendingKeyframes.properties().contains(property);
}
static bool propertiesContainTransformRelatedProperty(const UncheckedKeyHashSet<AnimatableCSSProperty>& properties)
{
return properties.contains(CSSPropertyTranslate)
|| properties.contains(CSSPropertyScale)
|| properties.contains(CSSPropertyRotate)
|| properties.contains(CSSPropertyTransform);
}
bool KeyframeEffect::isRunningAcceleratedTransformRelatedAnimation() const
{
return isRunningAccelerated() && propertiesContainTransformRelatedProperty(m_blendingKeyframes.properties());
}
void KeyframeEffect::invalidate()
{
LOG_WITH_STREAM(Animations, stream << "KeyframeEffect::invalidate on element " << ValueOrNull(m_target.get()));
invalidateElement(targetStyleable());
}
void KeyframeEffect::computeAcceleratedPropertiesState()
{
bool hasSomeAcceleratedProperties = false;
bool hasSomeUnacceleratedProperties = false;
if (auto* document = this->document()) {
auto& settings = document->settings();
for (auto property : m_blendingKeyframes.properties()) {
// If any animated property can be accelerated, then the animation should run accelerated.
if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings))
hasSomeAcceleratedProperties = true;
else
hasSomeUnacceleratedProperties = true;
if (hasSomeAcceleratedProperties && hasSomeUnacceleratedProperties)
break;
}
}
if (!hasSomeAcceleratedProperties)
m_acceleratedPropertiesState = AcceleratedProperties::None;
else if (hasSomeUnacceleratedProperties)
m_acceleratedPropertiesState = AcceleratedProperties::Some;
else
m_acceleratedPropertiesState = AcceleratedProperties::All;
}
static bool isLinearTimingFunctionWithPoints(const TimingFunction* timingFunction)
{
auto* linearTimingFunction = dynamicDowncast<LinearTimingFunction>(timingFunction);
return linearTimingFunction && !linearTimingFunction->points().isEmpty();
}
void KeyframeEffect::computeSomeKeyframesUseStepsOrLinearTimingFunctionWithPoints()
{
m_someKeyframesUseStepsTimingFunction = false;
m_someKeyframesUseLinearTimingFunctionWithPoints = false;
// If we're dealing with a CSS Animation and it specifies a default steps() or linear() timing function,
// we need to check that any of the specified keyframes either does not have an explicit timing
// function or specifies an explicit steps() or linear() timing function.
if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation())) {
auto* defaultTimingFunction = cssAnimation->backingAnimation().timingFunction();
auto defaultTimingFunctionIsSteps = is<StepsTimingFunction>(defaultTimingFunction);
auto defaultTimingFunctionIsLinearWithPoints = isLinearTimingFunctionWithPoints(defaultTimingFunction);
if (defaultTimingFunctionIsSteps || defaultTimingFunctionIsLinearWithPoints) {
for (auto& keyframe : m_blendingKeyframes) {
auto* timingFunction = keyframe.timingFunction();
if (defaultTimingFunctionIsSteps && !m_someKeyframesUseStepsTimingFunction)
m_someKeyframesUseStepsTimingFunction = !timingFunction || is<StepsTimingFunction>(timingFunction);
else if (defaultTimingFunctionIsLinearWithPoints && !m_someKeyframesUseLinearTimingFunctionWithPoints)
m_someKeyframesUseLinearTimingFunctionWithPoints = !timingFunction || isLinearTimingFunctionWithPoints(timingFunction);
if (defaultTimingFunctionIsSteps == m_someKeyframesUseStepsTimingFunction && defaultTimingFunctionIsLinearWithPoints == m_someKeyframesUseLinearTimingFunctionWithPoints)
break;
}
return;
}
}
// For any other type of animation, we just need to check whether any of the keyframes specify
// an explicit steps() or linear() timing function.
for (auto& keyframe : m_blendingKeyframes) {
auto* timingFunction = keyframe.timingFunction();
if (!m_someKeyframesUseStepsTimingFunction && is<StepsTimingFunction>(timingFunction))
m_someKeyframesUseStepsTimingFunction = true;
if (!m_someKeyframesUseLinearTimingFunctionWithPoints && isLinearTimingFunctionWithPoints(timingFunction))
m_someKeyframesUseLinearTimingFunctionWithPoints = true;
if (m_someKeyframesUseStepsTimingFunction && m_someKeyframesUseLinearTimingFunctionWithPoints)
return;
}
}
bool KeyframeEffect::hasImplicitKeyframes() const
{
auto numberOfKeyframes = m_parsedKeyframes.size();
// If we have no keyframes, then there cannot be any implicit keyframes.
if (!numberOfKeyframes)
return false;
// If we have a single keyframe, then there has to be at least one implicit keyframe.
if (numberOfKeyframes == 1)
return true;
// If we have two or more keyframes, then we have implicit keyframes if the first and last
// keyframes don't have 0 and 1 respectively as their computed offset.
return m_parsedKeyframes[0].computedOffset || m_parsedKeyframes[numberOfKeyframes - 1].computedOffset != 1;
}
void KeyframeEffect::getAnimatedStyle(std::unique_ptr<RenderStyle>& animatedStyle)
{
if (!renderer() || !animation())
return;
auto computedTiming = getComputedTiming();
LOG_WITH_STREAM(Animations, stream << "KeyframeEffect " << this << " getAnimatedStyle - progress " << computedTiming.progress);
if (!computedTiming.progress)
return;
if (!animatedStyle) {
if (auto* style = targetStyleable()->lastStyleChangeEventStyle())
animatedStyle = RenderStyle::clonePtr(*style);
else
animatedStyle = RenderStyle::clonePtr(renderer()->style());
}
ASSERT(computedTiming.currentIteration);
setAnimatedPropertiesInStyle(*animatedStyle.get(), computedTiming);
}
void KeyframeEffect::setAnimatedPropertiesInStyle(RenderStyle& targetStyle, const ComputedEffectTiming& computedTiming)
{
ASSERT(computedTiming.progress);
ASSERT(computedTiming.currentIteration);
auto iterationProgress = *computedTiming.progress;
auto currentIteration = *computedTiming.currentIteration;
auto before = computedTiming.before;
auto& properties = m_blendingKeyframes.properties();
// In the case of CSS Transitions we already know that there are only two keyframes, one where offset=0 and one where offset=1,
// and only a single CSS property so we can simply blend based on the style available on those keyframes with the provided iteration
// progress which already accounts for the transition's timing function.
if (m_animationType == WebAnimationType::CSSTransition) {
ASSERT(properties.size() == 1);
CSSPropertyAnimation::blendProperty(*this, *properties.begin(), targetStyle, *m_blendingKeyframes[0].style(), *m_blendingKeyframes[1].style(), iterationProgress, m_compositeOperation);
return;
}
// 4.4.3. The effect value of a keyframe effect
// https://drafts.csswg.org/web-animations-1/#the-effect-value-of-a-keyframe-animation-effect
//
// The effect value of a single property referenced by a keyframe effect as one of its target properties,
// for a given iteration progress, current iteration and underlying value is calculated as follows.
updateBlendingKeyframes(targetStyle, { nullptr });
if (m_blendingKeyframes.isEmpty())
return;
BlendingKeyframe propertySpecificKeyframeWithZeroOffset(0, RenderStyle::clonePtr(targetStyle));
BlendingKeyframe propertySpecificKeyframeWithOneOffset(1, RenderStyle::clonePtr(targetStyle));
for (auto property : properties) {
auto interval = interpolationKeyframes(property, iterationProgress, propertySpecificKeyframeWithZeroOffset, propertySpecificKeyframeWithOneOffset);
if (interval.endpoints.isEmpty())
continue;
auto* startBlendingKeyframe = dynamicDowncast<BlendingKeyframe>(interval.endpoints.first());
auto* endBlendingKeyframe = dynamicDowncast<BlendingKeyframe>(interval.endpoints.last());
if (!startBlendingKeyframe || !endBlendingKeyframe) {
ASSERT_NOT_REACHED();
continue;
}
auto startKeyframeStyle = RenderStyle::clone(*startBlendingKeyframe->style());
auto endKeyframeStyle = RenderStyle::clone(*endBlendingKeyframe->style());
KeyframeInterpolation::CompositionCallback composeProperty = [&] (const KeyframeInterpolation::Keyframe& keyframe, CompositeOperation compositeOperation) {
auto* blendingKeyframe = dynamicDowncast<BlendingKeyframe>(keyframe);
if (!blendingKeyframe) {
ASSERT_NOT_REACHED();
return;
}
if (blendingKeyframe->offset() == startBlendingKeyframe->offset())
CSSPropertyAnimation::blendProperty(*this, property, startKeyframeStyle, targetStyle, *blendingKeyframe->style(), 1, compositeOperation);
else
CSSPropertyAnimation::blendProperty(*this, property, endKeyframeStyle, targetStyle, *blendingKeyframe->style(), 1, compositeOperation);
};
KeyframeInterpolation::AccumulationCallback accumulateProperty = [&](const KeyframeInterpolation::Keyframe& keyframe) {
auto* blendingKeyframe = dynamicDowncast<BlendingKeyframe>(keyframe);
if (!blendingKeyframe) {
ASSERT_NOT_REACHED();
return;
}
if (blendingKeyframe->offset() == startBlendingKeyframe->offset())
CSSPropertyAnimation::blendProperty(*this, property, startKeyframeStyle, *endBlendingKeyframe->style(), startKeyframeStyle, 1, CompositeOperation::Accumulate);
else
CSSPropertyAnimation::blendProperty(*this, property, endKeyframeStyle, *endBlendingKeyframe->style(), endKeyframeStyle, 1, CompositeOperation::Accumulate);
};
KeyframeInterpolation::InterpolationCallback interpolateProperty = [&](double intervalProgress, double currentIteration, IterationCompositeOperation iterationCompositeOperation) {
CSSPropertyAnimation::blendProperty(*this, property, targetStyle, startKeyframeStyle, endKeyframeStyle, intervalProgress, CompositeOperation::Replace, iterationCompositeOperation, currentIteration);
};
KeyframeInterpolation::RequiresBlendingForAccumulativeIterationCallback requiresBlendingForAccumulativeIterationCallback = [&]() {
return CSSPropertyAnimation::propertyRequiresBlendingForAccumulativeIteration(*this, property, startKeyframeStyle, endKeyframeStyle);
};
interpolateKeyframes(property, interval, iterationProgress, currentIteration, iterationDuration(), before, composeProperty, accumulateProperty, interpolateProperty, requiresBlendingForAccumulativeIterationCallback);
}
// In case one of the animated properties has its value set to "inherit" in one of the keyframes,
// let's mark the resulting animated style as having an explicitly inherited property such that
// a future style update accounts for this in a future call to TreeResolver::determineResolutionType().
if (m_blendingKeyframes.hasExplicitlyInheritedKeyframeProperty())
targetStyle.setHasExplicitlyInheritedProperties();
}
const TimingFunction* KeyframeEffect::timingFunctionForBlendingKeyframe(const BlendingKeyframe& keyframe) const
{
if (auto* styleOriginatedAnimation = dynamicDowncast<StyleOriginatedAnimation>(animation())) {
// If we're dealing with a CSS Animation, the timing function is specified either on the keyframe itself.
if (is<CSSAnimation>(styleOriginatedAnimation)) {
if (auto* timingFunction = keyframe.timingFunction())
return timingFunction;
}
// Failing that, or for a CSS Transition, the timing function is inherited from the backing Animation object.
return styleOriginatedAnimation->backingAnimation().timingFunction();
}
return keyframe.timingFunction();
}
const TimingFunction* KeyframeEffect::timingFunctionForKeyframeAtIndex(size_t index) const
{
if (!m_parsedKeyframes.isEmpty()) {
if (index >= m_parsedKeyframes.size())
return nullptr;
return m_parsedKeyframes[index].timingFunction.get();
}
if (index >= m_blendingKeyframes.size())
return nullptr;
return timingFunctionForBlendingKeyframe(m_blendingKeyframes[index]);
}
bool KeyframeEffect::canBeAccelerated() const
{
if (!animation())
return false;
if (m_acceleratedPropertiesState == AcceleratedProperties::None)
return false;
if (m_isAssociatedWithProgressBasedTimeline)
return false;
if (m_hasAcceleratedPropertyOverriddenByCascadeProperty)
return false;
if (m_hasReferenceFilter)
return false;
if (m_animatesSizeAndSizeDependentTransform)
return false;
if (m_blendingKeyframes.hasDiscreteTransformInterval())
return false;
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
return true;
#endif
if (m_someKeyframesUseStepsTimingFunction || is<StepsTimingFunction>(timingFunction()))
return false;
if (m_someKeyframesUseLinearTimingFunctionWithPoints || isLinearTimingFunctionWithPoints(timingFunction()))
return false;
if (m_compositeOperation != CompositeOperation::Replace)
return false;
if (m_hasKeyframeComposingAcceleratedProperty)
return false;
return true;
}
bool KeyframeEffect::preventsAcceleration() const
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
return false;
#endif
// We cannot run accelerated transform animations if a motion path is applied
// to an element, either through the underlying style, or through a keyframe.
if (auto target = targetStyleable()) {
if (auto* lastStyleChangeEventStyle = target->lastStyleChangeEventStyle()) {
if (lastStyleChangeEventStyle->offsetPath())
return true;
}
}
if (animatesProperty(CSSPropertyOffsetAnchor)
|| animatesProperty(CSSPropertyOffsetDistance)
|| animatesProperty(CSSPropertyOffsetPath)
|| animatesProperty(CSSPropertyOffsetPosition)
|| animatesProperty(CSSPropertyOffsetRotate)) {
return true;
}
if (m_acceleratedPropertiesState == AcceleratedProperties::None)
return false;
return !canBeAccelerated() || m_runningAccelerated == RunningAccelerated::Failed;
}
void KeyframeEffect::updateAcceleratedActions()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
return;
#endif
auto* renderer = this->renderer();
if (!renderer || !renderer->isComposited())
return;
if (!canBeAccelerated())
return;
auto computedTiming = getComputedTiming();
// If we're not already running accelerated, the only thing we're interested in is whether we need to start the animation
// which we need to do once we're in the active phase. Otherwise, there's no change in accelerated state to consider.
bool isActive = computedTiming.phase == AnimationEffectPhase::Active;
if (m_runningAccelerated == RunningAccelerated::NotStarted) {
if (isActive && animation()->playState() == WebAnimation::PlayState::Running)
addPendingAcceleratedAction(AcceleratedAction::Play);
return;
}
// If we're no longer active, we need to remove the accelerated animation.
if (!isActive) {
addPendingAcceleratedAction(AcceleratedAction::Stop);
return;
}
auto playState = animation()->playState();
// The only thing left to consider is whether we need to pause or resume the animation following a change of play-state.
if (playState == WebAnimation::PlayState::Paused) {
if (m_lastRecordedAcceleratedAction != AcceleratedAction::Pause) {
if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop)
addPendingAcceleratedAction(AcceleratedAction::Play);
addPendingAcceleratedAction(AcceleratedAction::Pause);
}
} else if (playState == WebAnimation::PlayState::Running && isActive) {
if (m_lastRecordedAcceleratedAction != AcceleratedAction::Play)
addPendingAcceleratedAction(AcceleratedAction::Play);
}
}
void KeyframeEffect::addPendingAcceleratedAction(AcceleratedAction action)
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
return;
#endif
if (m_runningAccelerated == RunningAccelerated::Prevented || m_runningAccelerated == RunningAccelerated::Failed)
return;
if (action == m_lastRecordedAcceleratedAction)
return;
if (action == AcceleratedAction::Stop)
m_pendingAcceleratedActions.clear();
m_pendingAcceleratedActions.append(action);
if (action != AcceleratedAction::UpdateProperties && action != AcceleratedAction::TransformChange)
m_lastRecordedAcceleratedAction = action;
animation()->acceleratedStateDidChange();
}
void KeyframeEffect::animationDidTick()
{
invalidate();
updateAcceleratedActions();
if (auto* viewTimeline = activeViewTimeline())
computeMissingKeyframeOffsets(m_parsedKeyframes, viewTimeline, animation());
}
void KeyframeEffect::animationDidChangeTimingProperties()
{
computeSomeKeyframesUseStepsOrLinearTimingFunctionWithPoints();
updateAcceleratedAnimationIfNecessary();
invalidate();
}
void KeyframeEffect::updateAcceleratedAnimationIfNecessary()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
if (canBeAccelerated())
updateAssociatedThreadedEffectStack();
return;
}
#endif
if (isRunningAccelerated() || isAboutToRunAccelerated()) {
if (canBeAccelerated())
addPendingAcceleratedAction(AcceleratedAction::UpdateProperties);
else {
abilityToBeAcceleratedDidChange();
addPendingAcceleratedAction(AcceleratedAction::Stop);
}
} else if (canBeAccelerated())
m_runningAccelerated = RunningAccelerated::NotStarted;
}
void KeyframeEffect::animationDidFinish()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
updateAcceleratedAnimationIfNecessary();
#endif
}
void KeyframeEffect::transformRelatedPropertyDidChange()
{
ASSERT(isRunningAcceleratedTransformRelatedAnimation());
auto hasTransformRelatedPropertyWithImplicitKeyframe = propertiesContainTransformRelatedProperty(m_acceleratedPropertiesWithImplicitKeyframe);
addPendingAcceleratedAction(hasTransformRelatedPropertyWithImplicitKeyframe ? AcceleratedAction::UpdateProperties : AcceleratedAction::TransformChange);
}
std::optional<KeyframeEffect::RecomputationReason> KeyframeEffect::recomputeKeyframesIfNecessary(const RenderStyle* previousUnanimatedStyle, const RenderStyle& unanimatedStyle, const Style::ResolutionContext& resolutionContext)
{
if (m_animationType == WebAnimationType::CSSTransition)
return { };
auto fontSizeChanged = [&]() {
return previousUnanimatedStyle && previousUnanimatedStyle->computedFontSize() != unanimatedStyle.computedFontSize();
};
auto fontWeightChanged = [&]() {
return m_blendingKeyframes.usesRelativeFontWeight() && previousUnanimatedStyle
&& previousUnanimatedStyle->fontWeight() != unanimatedStyle.fontWeight();
};
auto cssVariableChanged = [&]() {
if (previousUnanimatedStyle && m_blendingKeyframes.hasCSSVariableReferences()) {
if (!previousUnanimatedStyle->customPropertiesEqual(unanimatedStyle))
return true;
}
return false;
};
auto hasPropertyExplicitlySetToInherit = [&]() {
return !m_blendingKeyframes.propertiesSetToInherit().isEmpty();
};
auto propertySetToCurrentColorChanged = [&]() {
// If the "color" property itself is set to "currentcolor" on a keyframe, we always recompute keyframes.
if (m_blendingKeyframes.hasColorSetToCurrentColor())
return true;
// For all other color-related properties set to "currentcolor" on a keyframe, it's sufficient to check
// whether the value "color" resolves to has changed since the last style resolution.
return m_blendingKeyframes.hasPropertySetToCurrentColor() && previousUnanimatedStyle
&& previousUnanimatedStyle->color() != unanimatedStyle.color();
};
auto logicalPropertyChanged = [&]() {
if (!previousUnanimatedStyle)
return false;
if (previousUnanimatedStyle->writingMode() == unanimatedStyle.writingMode())
return false;
if (!m_blendingKeyframes.isEmpty())
return m_blendingKeyframes.containsDirectionAwareProperty();
for (auto& keyframe : m_parsedKeyframes) {
for (auto property : keyframe.styleStrings.keys()) {
if (CSSProperty::isDirectionAwareProperty(property))
return true;
}
}
return false;
}();
auto usesAnchorFunctions = m_blendingKeyframes.usesAnchorFunctions();
if (logicalPropertyChanged || fontSizeChanged() || fontWeightChanged() || cssVariableChanged() || hasPropertyExplicitlySetToInherit() || propertySetToCurrentColorChanged() || usesAnchorFunctions) {
switch (m_animationType) {
case WebAnimationType::CSSTransition:
ASSERT_NOT_REACHED();
break;
case WebAnimationType::CSSAnimation:
computeCSSAnimationBlendingKeyframes(unanimatedStyle, resolutionContext);
break;
case WebAnimationType::WebAnimation:
clearBlendingKeyframes();
break;
}
return logicalPropertyChanged ? KeyframeEffect::RecomputationReason::LogicalPropertyChange : KeyframeEffect::RecomputationReason::Other;
}
return { };
}
void KeyframeEffect::animationWasCanceled()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
updateAcceleratedAnimationIfNecessary();
return;
}
#endif
if (isRunningAccelerated() || isAboutToRunAccelerated())
addPendingAcceleratedAction(AcceleratedAction::Stop);
}
void KeyframeEffect::wasAddedToEffectStack()
{
m_inTargetEffectStack = true;
invalidate();
}
void KeyframeEffect::wasRemovedFromEffectStack()
{
m_inTargetEffectStack = false;
}
void KeyframeEffect::willChangeRenderer()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
updateAcceleratedAnimationIfNecessary();
return;
}
#endif
if (isRunningAccelerated() || isAboutToRunAccelerated())
addPendingAcceleratedAction(AcceleratedAction::Stop);
}
void KeyframeEffect::animationSuspensionStateDidChange(bool animationIsSuspended)
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
updateAssociatedThreadedEffectStack();
return;
}
#endif
if (isRunningAccelerated() || isAboutToRunAccelerated())
addPendingAcceleratedAction(animationIsSuspended ? AcceleratedAction::Pause : AcceleratedAction::Play);
}
void KeyframeEffect::applyPendingAcceleratedActionsOrUpdateTimingProperties()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
return;
#endif
if (m_pendingAcceleratedActions.isEmpty()) {
if (!canBeAccelerated() || getComputedTiming().phase != AnimationEffectPhase::Active)
return;
m_pendingAcceleratedActions.append(AcceleratedAction::UpdateProperties);
m_lastRecordedAcceleratedAction = AcceleratedAction::Play;
applyPendingAcceleratedActions();
m_pendingAcceleratedActions.clear();
} else
applyPendingAcceleratedActions();
}
void KeyframeEffect::applyPendingAcceleratedActions()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
return;
#endif
CanBeAcceleratedMutationScope mutationScope(this);
// Once an accelerated animation has been committed, we no longer want to force a layout.
// This should have been performed by a call to forceLayoutIfNeeded() prior to applying
// pending accelerated actions.
m_needsForcedLayout = false;
if (m_pendingAcceleratedActions.isEmpty())
return;
auto* renderer = this->renderer();
if (!renderer || !renderer->isComposited()) {
// The renderer may no longer be composited because the accelerated animation ended before we had a chance to update it,
// in which case if we asked for the animation to stop, we can discard the current set of accelerated actions.
if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop) {
m_pendingAcceleratedActions.clear();
m_runningAccelerated = RunningAccelerated::NotStarted;
}
return;
}
auto pendingAcceleratedActions = m_pendingAcceleratedActions;
m_pendingAcceleratedActions.clear();
auto timeOffset = [&] {
// To simplify the code we use a default of 0s for an unresolved current time since for a Stop action that is acceptable.
auto cssNumberishTimeOffset = animation()->currentTime().value_or(0_s) - delay();
ASSERT(cssNumberishTimeOffset.time());
return cssNumberishTimeOffset.time()->seconds();
};
auto startAnimation = [&]() -> RunningAccelerated {
if (isRunningAccelerated())
renderer->animationFinished(m_blendingKeyframes.animationName());
ASSERT(m_target);
auto* effectStack = m_target->keyframeEffectStack(m_pseudoElementIdentifier);
ASSERT(effectStack);
if ((m_blendingKeyframes.hasWidthDependentTransform() && effectStack->containsProperty(CSSPropertyWidth))
|| (m_blendingKeyframes.hasHeightDependentTransform() && effectStack->containsProperty(CSSPropertyHeight)))
return RunningAccelerated::Prevented;
if (!effectStack->allowsAcceleration())
return RunningAccelerated::Prevented;
if (!m_hasImplicitKeyframeForAcceleratedProperty)
return renderer->startAnimation(timeOffset(), backingAnimationForCompositedRenderer(), m_blendingKeyframes) ? RunningAccelerated::Yes : RunningAccelerated::Failed;
// We need to resolve all animations up to this point to ensure any forward-filling
// effect is accounted for when computing the "from" value for the accelerated animation.
auto underlyingStyle = [&]() {
if (auto* lastStyleChangeEventStyle = m_target->lastStyleChangeEventStyle(m_pseudoElementIdentifier))
return RenderStyle::clonePtr(*lastStyleChangeEventStyle);
return RenderStyle::clonePtr(renderer->style());
}();
for (const auto& effect : effectStack->sortedEffects()) {
if (this == effect.get())
break;
auto computedTiming = effect->getComputedTiming();
if (computedTiming.progress)
effect->setAnimatedPropertiesInStyle(*underlyingStyle, computedTiming);
}
BlendingKeyframes explicitKeyframes(m_blendingKeyframes.animationName());
explicitKeyframes.copyKeyframes(m_blendingKeyframes);
explicitKeyframes.fillImplicitKeyframes(*this, *underlyingStyle);
return renderer->startAnimation(timeOffset(), backingAnimationForCompositedRenderer(), explicitKeyframes) ? RunningAccelerated::Yes : RunningAccelerated::Failed;
};
for (const auto& action : pendingAcceleratedActions) {
switch (action) {
case AcceleratedAction::Play:
m_runningAccelerated = startAnimation();
LOG_WITH_STREAM(Animations, stream << "KeyframeEffect " << this << " applyPendingAcceleratedActions " << m_blendingKeyframes.animationName() << " Play, started accelerated: " << isRunningAccelerated());
if (!isRunningAccelerated()) {
m_lastRecordedAcceleratedAction = AcceleratedAction::Stop;
return;
}
break;
case AcceleratedAction::Pause:
renderer->animationPaused(timeOffset(), m_blendingKeyframes.animationName());
break;
case AcceleratedAction::UpdateProperties:
m_runningAccelerated = startAnimation();
LOG_WITH_STREAM(Animations, stream << "KeyframeEffect " << this << " applyPendingAcceleratedActions " << m_blendingKeyframes.animationName() << " UpdateProperties, started accelerated: " << isRunningAccelerated());
if (animation()->playState() == WebAnimation::PlayState::Paused)
renderer->animationPaused(timeOffset(), m_blendingKeyframes.animationName());
break;
case AcceleratedAction::Stop:
ASSERT(document());
renderer->animationFinished(m_blendingKeyframes.animationName());
if (!document()->renderTreeBeingDestroyed())
m_target->invalidateStyleAndLayerComposition();
m_runningAccelerated = canBeAccelerated() ? RunningAccelerated::NotStarted : RunningAccelerated::Prevented;
break;
case AcceleratedAction::TransformChange:
renderer->transformRelatedPropertyDidChange();
break;
}
}
}
Ref<const Animation> KeyframeEffect::backingAnimationForCompositedRenderer()
{
auto effectAnimation = animation();
// FIXME: The iterationStart and endDelay AnimationEffectTiming properties do not have
// corresponding Animation properties.
auto animation = Animation::create();
animation->setDuration(iterationDuration().time()->seconds());
animation->setDelay(delay().time()->seconds());
animation->setIterationCount(iterations());
animation->setTimingFunction(timingFunction()->clone());
animation->setPlaybackRate(effectAnimation->playbackRate());
animation->setCompositeOperation(m_compositeOperation);
switch (fill()) {
case FillMode::None:
case FillMode::Auto:
animation->setFillMode(AnimationFillMode::None);
break;
case FillMode::Backwards:
animation->setFillMode(AnimationFillMode::Backwards);
break;
case FillMode::Forwards:
animation->setFillMode(AnimationFillMode::Forwards);
break;
case FillMode::Both:
animation->setFillMode(AnimationFillMode::Both);
break;
}
switch (direction()) {
case PlaybackDirection::Normal:
animation->setDirection(Animation::Direction::Normal);
break;
case PlaybackDirection::Alternate:
animation->setDirection(Animation::Direction::Alternate);
break;
case PlaybackDirection::Reverse:
animation->setDirection(Animation::Direction::Reverse);
break;
case PlaybackDirection::AlternateReverse:
animation->setDirection(Animation::Direction::AlternateReverse);
break;
}
// In the case of CSS Animations, we must set the default timing function for keyframes to match
// the current value set for animation-timing-function on the target element which affects only
// keyframes and not the animation-wide timing.
if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(effectAnimation))
animation->setDefaultTimingFunctionForKeyframes(cssAnimation->backingAnimation().timingFunction());
return animation;
}
Document* KeyframeEffect::document() const
{
if (m_document)
return m_document.get();
return m_target ? &m_target->document() : nullptr;
}
RenderElement* KeyframeEffect::renderer() const
{
if (auto target = targetStyleable())
return target->renderer();
return nullptr;
}
const RenderStyle& KeyframeEffect::currentStyle() const
{
if (auto* renderer = this->renderer())
return renderer->style();
return RenderStyle::defaultStyle();
}
bool KeyframeEffect::computeExtentOfTransformAnimation(LayoutRect& bounds) const
{
ASSERT(m_blendingKeyframes.containsProperty(CSSPropertyTransform));
auto* box = dynamicDowncast<RenderBox>(renderer());
if (!box)
return true; // Non-boxes don't get transformed;
auto rendererBox = snapRectToDevicePixels(box->borderBoxRect(), box->document().deviceScaleFactor());
LayoutRect cumulativeBounds;
auto* implicitStyle = [&]() {
if (auto target = targetStyleable()) {
if (auto* lastStyleChangeEventStyle = target->lastStyleChangeEventStyle())
return lastStyleChangeEventStyle;
}
return &box->style();
}();
auto addStyleToCumulativeBounds = [&](const RenderStyle* style) -> bool {
auto keyframeBounds = bounds;
bool canCompute;
if (transformFunctionListPrefix() > 0)
canCompute = computeTransformedExtentViaTransformList(rendererBox, *style, keyframeBounds);
else
canCompute = computeTransformedExtentViaMatrix(rendererBox, *style, keyframeBounds);
if (!canCompute)
return false;
cumulativeBounds.unite(keyframeBounds);
return true;
};
for (const auto& keyframe : m_blendingKeyframes) {
const auto* keyframeStyle = keyframe.style();
// FIXME: maybe for style-originated animations we always say it's true for the first and last keyframe.
if (!keyframe.animatesProperty(CSSPropertyTransform)) {
// If the first keyframe is missing transform style, use the current style.
if (!keyframe.offset())
keyframeStyle = implicitStyle;
else
continue;
}
if (!addStyleToCumulativeBounds(keyframeStyle))
return false;
}
if (m_blendingKeyframes.hasImplicitKeyframes()) {
if (!addStyleToCumulativeBounds(implicitStyle))
return false;
}
bounds = cumulativeBounds;
return true;
}
bool KeyframeEffect::computeTransformedExtentViaTransformList(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const
{
FloatRect floatBounds = bounds;
FloatPoint transformOrigin;
bool applyTransformOrigin = style.transform().hasTransformOfType<TransformOperation::Type::Rotate>() || style.transform().affectedByTransformOrigin();
if (applyTransformOrigin) {
transformOrigin = style.computeTransformOrigin(rendererBox).xy();
// Ignore transformOriginZ because we'll bail if we encounter any 3D transforms.
floatBounds.moveBy(-transformOrigin);
}
for (const auto& operation : style.transform()) {
if (operation->type() == TransformOperation::Type::Rotate) {
// For now, just treat this as a full rotation. This could take angle into account to reduce inflation.
floatBounds = boundsOfRotatingRect(floatBounds);
} else {
TransformationMatrix transform;
operation->apply(transform, rendererBox.size());
if (!transform.isAffine())
return false;
if (operation->type() == TransformOperation::Type::Matrix || operation->type() == TransformOperation::Type::Matrix3D) {
TransformationMatrix::Decomposed2Type toDecomp;
// Any rotation prevents us from using a simple start/end rect union.
if (!transform.decompose2(toDecomp) || toDecomp.angle)
return false;
}
floatBounds = transform.mapRect(floatBounds);
}
}
if (applyTransformOrigin)
floatBounds.moveBy(transformOrigin);
bounds = LayoutRect(floatBounds);
return true;
}
bool KeyframeEffect::computeTransformedExtentViaMatrix(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const
{
TransformationMatrix transform;
style.applyTransform(transform, TransformOperationData(rendererBox, renderer()));
if (!transform.isAffine())
return false;
TransformationMatrix::Decomposed2Type fromDecomp;
// Any rotation prevents us from using a simple start/end rect union.
if (!transform.decompose2(fromDecomp) || fromDecomp.angle)
return false;
bounds = LayoutRect(transform.mapRect(bounds));
return true;
}
bool KeyframeEffect::requiresPseudoElement() const
{
return m_animationType == WebAnimationType::WebAnimation && targetsPseudoElement();
}
std::optional<double> KeyframeEffect::progressUntilNextStep(double iterationProgress) const
{
ASSERT(iterationProgress >= 0 && iterationProgress <= 1);
if (auto progress = AnimationEffect::progressUntilNextStep(iterationProgress))
return progress;
if (!is<LinearTimingFunction>(timingFunction()) || !m_someKeyframesUseStepsTimingFunction)
return std::nullopt;
if (m_blendingKeyframes.isEmpty())
return std::nullopt;
auto progressUntilNextStepInInterval = [iterationProgress](double intervalStartProgress, double intervalEndProgress, const TimingFunction* timingFunction) -> std::optional<double> {
auto* stepsTimingFunction = dynamicDowncast<StepsTimingFunction>(timingFunction);
if (!stepsTimingFunction)
return std::nullopt;
auto numberOfSteps = stepsTimingFunction->numberOfSteps();
auto intervalProgress = intervalEndProgress - intervalStartProgress;
auto iterationProgressMappedToCurrentInterval = (iterationProgress - intervalStartProgress) / intervalProgress;
auto nextStepProgress = ceil(iterationProgressMappedToCurrentInterval * numberOfSteps) / numberOfSteps;
return (nextStepProgress - iterationProgressMappedToCurrentInterval) * intervalProgress;
};
for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) {
auto intervalEndProgress = m_blendingKeyframes[i].offset();
// We can stop once we find a keyframe for which the progress is more than the provided iteration progress.
if (intervalEndProgress <= iterationProgress)
continue;
// In case we're on the first keyframe, then this means we are dealing with an implicit 0% keyframe.
// This will be a linear timing function unless we're dealing with a CSS Animation which might have
// the default timing function for its keyframes defined on its backing Animation object.
if (!i) {
if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
return progressUntilNextStepInInterval(0, intervalEndProgress, cssAnimation->backingAnimation().timingFunction());
return std::nullopt;
}
return progressUntilNextStepInInterval(m_blendingKeyframes[i - 1].offset(), intervalEndProgress, timingFunctionForKeyframeAtIndex(i - 1));
}
// If we end up here, then this means we are dealing with an implicit 100% keyframe.
// This will be a linear timing function unless we're dealing with a CSS Animation which might have
// the default timing function for its keyframes defined on its backing Animation object.
auto& lastExplicitKeyframe = m_blendingKeyframes[m_blendingKeyframes.size() - 1];
if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
return progressUntilNextStepInInterval(lastExplicitKeyframe.offset(), 1, cssAnimation->backingAnimation().timingFunction());
// In any other case, we are not dealing with an interval with a steps() timing function.
return std::nullopt;
}
bool KeyframeEffect::ticksContinuouslyWhileActive() const
{
auto doesNotAffectStyles = m_blendingKeyframes.isEmpty() || m_blendingKeyframes.properties().isEmpty();
if (doesNotAffectStyles)
return false;
auto targetHasDisplayContents = [&]() {
return m_target && !m_pseudoElementIdentifier && m_target->hasDisplayContents();
};
if (!renderer() && !m_blendingKeyframes.properties().contains(CSSPropertyDisplay) && !targetHasDisplayContents())
return false;
if (isCompletelyAccelerated() && isRunningAccelerated()) {
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
return !m_acceleratedRepresentation || !m_acceleratedRepresentation->disallowedProperties().isEmpty();
#endif
return false;
}
return true;
}
Seconds KeyframeEffect::timeToNextTick(const BasicEffectTiming& timing)
{
// CSS Animations need to trigger "animationiteration" events even if there is no need to
// update styles while animating, so if we're dealing with one we must wait until the next iteration.
// We only do this in case any CSS Animation event was registered since, in the general case, there's
// a good chance that no such event listeners were registered and we can avoid some unnecessary
// animation resolution scheduling.
ASSERT(document());
if (timing.phase == AnimationEffectPhase::Active && is<CSSAnimation>(animation())
&& document()->hasListenerType(Document::ListenerType::CSSAnimation)
&& !ticksContinuouslyWhileActive()) {
if (auto iterationProgress = getComputedTiming().simpleIterationProgress)
return iterationDuration() * (1 - *iterationProgress);
}
return AnimationEffect::timeToNextTick(timing);
}
void KeyframeEffect::setIterationComposite(IterationCompositeOperation iterationCompositeOperation)
{
if (m_iterationCompositeOperation == iterationCompositeOperation)
return;
m_iterationCompositeOperation = iterationCompositeOperation;
invalidate();
}
void KeyframeEffect::setComposite(CompositeOperation compositeOperation)
{
if (m_compositeOperation == compositeOperation)
return;
CanBeAcceleratedMutationScope mutationScope(this);
m_compositeOperation = compositeOperation;
invalidate();
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled())
updateAcceleratedAnimationIfNecessary();
#endif
}
CompositeOperation KeyframeEffect::bindingsComposite() const
{
if (auto* styleOriginatedAnimation = dynamicDowncast<StyleOriginatedAnimation>(animation()))
styleOriginatedAnimation->flushPendingStyleChanges();
return composite();
}
void KeyframeEffect::setBindingsComposite(CompositeOperation compositeOperation)
{
setComposite(compositeOperation);
if (auto* cssAnimation = dynamicDowncast<CSSAnimation>(animation()))
cssAnimation->effectCompositeOperationWasSetUsingBindings();
}
void KeyframeEffect::computeHasImplicitKeyframeForAcceleratedProperty()
{
m_hasImplicitKeyframeForAcceleratedProperty = [&]() {
if (m_acceleratedPropertiesState == AcceleratedProperties::None)
return false;
ASSERT(document());
auto& settings = document()->settings();
if (!m_blendingKeyframes.isEmpty()) {
// We make a list of all animated properties and consider them all
// implicit until proven otherwise as we iterate through all keyframes.
auto implicitZeroProperties = m_blendingKeyframes.properties();
auto implicitOneProperties = m_blendingKeyframes.properties();
for (auto& keyframe : m_blendingKeyframes) {
// If the keyframe is for 0% or 100%, let's remove all of its properties from
// our list of implicit properties.
if (!implicitZeroProperties.isEmpty() && !keyframe.offset()) {
for (auto property : keyframe.properties())
implicitZeroProperties.remove(property);
}
if (!implicitOneProperties.isEmpty() && keyframe.offset() == 1) {
for (auto property : keyframe.properties())
implicitOneProperties.remove(property);
}
}
// The only properties left are known to be implicit properties, so we must
// check them for any accelerated property.
for (auto implicitProperty : implicitZeroProperties) {
if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(implicitProperty, settings))
return true;
}
for (auto implicitProperty : implicitOneProperties) {
if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(implicitProperty, settings))
return true;
}
return false;
}
// We may not have computed keyframes yet, so we should check our parsed keyframes in the
// same way we checked computed keyframes.
for (auto& keyframe : m_parsedKeyframes) {
// We keep three property lists, one which contains all properties seen across keyframes
// which will be filtered eventually to only contain implicit properties, one containing
// properties seen on the 0% keyframe and one containing properties seen on the 100% keyframe.
UncheckedKeyHashSet<CSSPropertyID> implicitProperties;
UncheckedKeyHashSet<CSSPropertyID> explicitZeroProperties;
UncheckedKeyHashSet<CSSPropertyID> explicitOneProperties;
auto styleProperties = keyframe.style;
for (auto propertyReference : styleProperties.get()) {
auto computedOffset = keyframe.computedOffset;
if (std::isnan(computedOffset))
continue;
auto property = propertyReference.id();
// All properties may end up being implicit.
implicitProperties.add(property);
if (!computedOffset)
explicitZeroProperties.add(property);
else if (computedOffset == 1)
explicitOneProperties.add(property);
}
// Let's remove all properties found on the 0% and 100% keyframes from the list of potential implicit properties.
for (auto explicitProperty : explicitZeroProperties)
implicitProperties.remove(explicitProperty);
for (auto explicitProperty : explicitOneProperties)
implicitProperties.remove(explicitProperty);
// At this point all properties left in implicitProperties are known to be implicit,
// so we must check them for any accelerated property.
for (auto implicitProperty : implicitProperties) {
if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(implicitProperty, settings))
return true;
}
}
return false;
}();
}
void KeyframeEffect::computeHasKeyframeComposingAcceleratedProperty()
{
m_hasKeyframeComposingAcceleratedProperty = [&]() {
if (m_acceleratedPropertiesState == AcceleratedProperties::None)
return false;
ASSERT(document());
auto& settings = document()->settings();
if (!m_blendingKeyframes.isEmpty()) {
for (auto& keyframe : m_blendingKeyframes) {
// If we find a keyframe with a composite operation, we check whether one
// of its properties is accelerated.
if (auto keyframeComposite = keyframe.compositeOperation()) {
if (*keyframeComposite != CompositeOperation::Replace) {
for (auto property : keyframe.properties()) {
if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings))
return true;
}
}
}
}
return false;
}
// We may not have computed keyframes yet, so we should check our parsed keyframes in the
// same way we checked computed keyframes.
for (auto& keyframe : m_parsedKeyframes) {
if (keyframe.composite != CompositeOperationOrAuto::Add && keyframe.composite != CompositeOperationOrAuto::Accumulate)
continue;
auto styleProperties = keyframe.style;
for (auto property : styleProperties.get()) {
if (CSSPropertyAnimation::animationOfPropertyIsAccelerated(property.id(), settings))
return true;
}
}
return false;
}();
}
void KeyframeEffect::computeHasAcceleratedPropertyOverriddenByCascadeProperty()
{
if (!m_inTargetEffectStack)
return;
ASSERT(m_target);
auto* effectStack = m_target->keyframeEffectStack(m_pseudoElementIdentifier);
if (!effectStack)
return;
auto relevantAcceleratedPropertiesOverriddenByCascade = effectStack->acceleratedPropertiesOverriddenByCascade().intersectionWith(animatedProperties());
m_hasAcceleratedPropertyOverriddenByCascadeProperty = !relevantAcceleratedPropertiesOverriddenByCascade.isEmpty();
}
void KeyframeEffect::computeHasReferenceFilter()
{
m_hasReferenceFilter = [&]() {
if (m_blendingKeyframes.isEmpty())
return false;
auto animatesFilterProperty = [&]() {
if (m_blendingKeyframes.containsProperty(CSSPropertyFilter))
return true;
if (m_blendingKeyframes.containsProperty(CSSPropertyWebkitBackdropFilter) || m_blendingKeyframes.containsProperty(CSSPropertyBackdropFilter))
return true;
return false;
}();
if (!animatesFilterProperty)
return false;
auto styleContainsFilter = [](const RenderStyle& style) {
if (style.filter().hasReferenceFilter())
return true;
if (style.backdropFilter().hasReferenceFilter())
return true;
return false;
};
if (auto target = targetStyleable()) {
if (auto* style = target->lastStyleChangeEventStyle()) {
if (m_blendingKeyframes.hasImplicitKeyframes() && styleContainsFilter(*style))
return true;
}
}
for (auto& keyframe : m_blendingKeyframes) {
if (auto* style = keyframe.style()) {
if (styleContainsFilter(*style))
return true;
}
}
return false;
}();
}
void KeyframeEffect::computeHasSizeDependentTransform()
{
m_animatesSizeAndSizeDependentTransform = (m_blendingKeyframes.hasWidthDependentTransform() && m_blendingKeyframes.containsProperty(CSSPropertyWidth))
|| (m_blendingKeyframes.hasHeightDependentTransform() && m_blendingKeyframes.containsProperty(CSSPropertyHeight));
// If this is a ::view-transition-group pseudo element with the UA-generated transform
// and width/height animations, then prevent the transform component from being applied
// asynchronously to ensure they remain synchronized. Since the transform usually animates
// the position at the same time as the size animates, even slight desynchronizations look
// stuttery.
if (auto target = targetStyleable()) {
if (target->pseudoElementIdentifier && target->pseudoElementIdentifier->pseudoId == PseudoId::ViewTransitionGroup)
m_animatesSizeAndSizeDependentTransform |= ((m_blendingKeyframes.containsProperty(CSSPropertyWidth) || m_blendingKeyframes.containsProperty(CSSPropertyHeight)) && m_blendingKeyframes.containsProperty(CSSPropertyTransform));
}
}
void KeyframeEffect::effectStackNoLongerPreventsAcceleration()
{
if (m_runningAccelerated == RunningAccelerated::Failed)
return;
if (m_runningAccelerated == RunningAccelerated::Prevented)
m_runningAccelerated = RunningAccelerated::NotStarted;
updateAcceleratedActions();
}
void KeyframeEffect::effectStackNoLongerAllowsAcceleration()
{
addPendingAcceleratedAction(AcceleratedAction::Stop);
}
void KeyframeEffect::effectStackNoLongerAllowsAccelerationDuringAcceleratedActionApplication()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
ASSERT_NOT_REACHED();
return;
}
#endif
m_pendingAcceleratedActions.append(AcceleratedAction::Stop);
m_lastRecordedAcceleratedAction = AcceleratedAction::Stop;
applyPendingAcceleratedActions();
m_pendingAcceleratedActions.clear();
}
void KeyframeEffect::abilityToBeAcceleratedDidChange()
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
updateAssociatedThreadedEffectStack();
return;
}
#endif
if (!m_inTargetEffectStack)
return;
ASSERT(m_target);
if (auto* effectStack = m_target->keyframeEffectStack(m_pseudoElementIdentifier))
effectStack->effectAbilityToBeAcceleratedDidChange(*this);
}
void KeyframeEffect::acceleratedPropertiesOverriddenByCascadeDidChange()
{
CanBeAcceleratedMutationScope mutationScope(this);
computeHasAcceleratedPropertyOverriddenByCascadeProperty();
}
KeyframeEffect::CanBeAcceleratedMutationScope::CanBeAcceleratedMutationScope(KeyframeEffect* effect)
: m_effect(effect)
{
ASSERT(effect);
m_couldOriginallyPreventAcceleration = effect->preventsAcceleration();
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
m_couldOriginallyBeAccelerated = effect->canBeAccelerated();
#endif
}
KeyframeEffect::CanBeAcceleratedMutationScope::~CanBeAcceleratedMutationScope()
{
if (!m_effect)
return;
if (m_couldOriginallyPreventAcceleration != m_effect->preventsAcceleration())
m_effect->abilityToBeAcceleratedDidChange();
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
else if (m_couldOriginallyBeAccelerated != m_effect->canBeAccelerated())
m_effect->abilityToBeAcceleratedDidChange();
#endif
}
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
static bool acceleratedPropertyDidChange(AnimatableCSSProperty property, const RenderStyle& previousStyle, const RenderStyle& currentStyle, const Settings& settings)
{
#if ASSERT_ENABLED
ASSERT(CSSPropertyAnimation::animationOfPropertyIsAccelerated(property, settings));
#else
UNUSED_PARAM(settings);
#endif
ASSERT(std::holds_alternative<CSSPropertyID>(property));
switch (std::get<CSSPropertyID>(property)) {
case CSSPropertyOpacity:
return previousStyle.opacity() != currentStyle.opacity();
case CSSPropertyTransform:
return previousStyle.transform() != currentStyle.transform();
case CSSPropertyTranslate:
return previousStyle.translate() != currentStyle.translate();
case CSSPropertyScale:
return previousStyle.scale() != currentStyle.scale();
case CSSPropertyRotate:
return previousStyle.rotate() != currentStyle.rotate();
case CSSPropertyOffsetPath:
return previousStyle.offsetPath() != currentStyle.offsetPath();
case CSSPropertyOffsetDistance:
return previousStyle.offsetDistance() != currentStyle.offsetDistance();
case CSSPropertyOffsetPosition:
return previousStyle.offsetPosition() != currentStyle.offsetPosition();
case CSSPropertyOffsetAnchor:
return previousStyle.offsetAnchor() != currentStyle.offsetAnchor();
case CSSPropertyOffsetRotate:
return previousStyle.offsetRotate() != currentStyle.offsetRotate();
case CSSPropertyFilter:
return previousStyle.filter() != currentStyle.filter();
case CSSPropertyBackdropFilter:
case CSSPropertyWebkitBackdropFilter:
return previousStyle.backdropFilter() != currentStyle.backdropFilter();
default:
ASSERT_NOT_REACHED();
break;
}
return false;
}
#endif
void KeyframeEffect::lastStyleChangeEventStyleDidChange(const RenderStyle* previousStyle, const RenderStyle* currentStyle)
{
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
if (threadedAnimationResolutionEnabled()) {
if (!isRunningAccelerated())
return;
if ((previousStyle && !currentStyle) || (!previousStyle && currentStyle)) {
updateAssociatedThreadedEffectStack();
return;
}
ASSERT(document());
auto& settings = document()->settings();
ASSERT(previousStyle && currentStyle);
auto numberOfProperties = CSSPropertyAnimation::getNumProperties();
for (int propertyIndex = 0; propertyIndex < numberOfProperties; ++propertyIndex) {
if (auto property = CSSPropertyAnimation::getAcceleratedPropertyAtIndex(propertyIndex, settings)) {
if (acceleratedPropertyDidChange(*property, *previousStyle, *currentStyle, settings)) {
updateAssociatedThreadedEffectStack();
return;
}
}
}
return;
}
#endif
auto hasMotionPath = [](const RenderStyle* style) {
return style && style->offsetPath();
};
if (hasMotionPath(previousStyle) != hasMotionPath(currentStyle))
abilityToBeAcceleratedDidChange();
}
bool KeyframeEffect::preventsAnimationReadiness() const
{
// https://drafts.csswg.org/web-animations-1/#ready
// An animation cannot be ready if it's associated with a document that does not have a browsing
// context since this will prevent the first frame of the animmation from being rendered.
return document() && !document()->hasBrowsingContext();
}
#if ENABLE(THREADED_ANIMATION_RESOLUTION)
KeyframeEffect::StackMembershipMutationScope::StackMembershipMutationScope(KeyframeEffect& effect)
: m_effect(&effect)
{
if (effect.m_target) {
m_originalTarget = effect.m_target;
m_originalPseudoElementIdentifier = effect.m_pseudoElementIdentifier;
}
}
KeyframeEffect::StackMembershipMutationScope::~StackMembershipMutationScope()
{
auto originalTargetStyleable = [&]() -> const std::optional<const Styleable> {
if (m_originalTarget)
return Styleable(*m_originalTarget, m_originalPseudoElementIdentifier);
return std::nullopt;
}();
RefPtr effect = m_effect;
if (effect->isRunningAccelerated()) {
if (originalTargetStyleable != effect->targetStyleable())
effect->updateAssociatedThreadedEffectStack(originalTargetStyleable);
effect->updateAssociatedThreadedEffectStack();
}
}
bool KeyframeEffect::threadedAnimationResolutionEnabled() const
{
auto* document = this->document();
return document && document->settings().threadedAnimationResolutionEnabled();
}
void KeyframeEffect::updateAssociatedThreadedEffectStack(const std::optional<const Styleable>& previousTarget)
{
if (!threadedAnimationResolutionEnabled())
return;
ASSERT(document());
if (!document()->page())
return;
ASSERT(document()->timelinesController());
auto& acceleratedEffectStackUpdater = CheckedPtr { document()->timelinesController() }->acceleratedEffectStackUpdater();
if (previousTarget)
acceleratedEffectStackUpdater.updateEffectStackForTarget(*previousTarget);
if (auto currentTarget = targetStyleable())
acceleratedEffectStackUpdater.updateEffectStackForTarget(*currentTarget);
if (auto* animation = this->animation())
animation->acceleratedStateDidChange();
}
#endif
const KeyframeInterpolation::Keyframe& KeyframeEffect::keyframeAtIndex(size_t index) const
{
ASSERT(index < m_blendingKeyframes.size());
return m_blendingKeyframes[index];
}
const TimingFunction* KeyframeEffect::timingFunctionForKeyframe(const KeyframeInterpolation::Keyframe& keyframe) const
{
if (auto* blendingKeyframe = dynamicDowncast<BlendingKeyframe>(keyframe))
return timingFunctionForBlendingKeyframe(*blendingKeyframe);
ASSERT_NOT_REACHED();
return nullptr;
}
bool KeyframeEffect::isPropertyAdditiveOrCumulative(KeyframeInterpolation::Property property) const
{
return WTF::switchOn(property, [&](AnimatableCSSProperty& animatableCSSProperty) {
return CSSPropertyAnimation::isPropertyAdditiveOrCumulative(animatableCSSProperty);
}, [] (auto&) {
ASSERT_NOT_REACHED();
return false;
});
}
const ViewTimeline* KeyframeEffect::activeViewTimeline()
{
RefPtr animation = this->animation();
if (!animation)
return nullptr;
RefPtr viewTimeline = dynamicDowncast<ViewTimeline>(animation->timeline());
if (viewTimeline && viewTimeline->currentTime())
return viewTimeline.get();
return nullptr;
}
void KeyframeEffect::animationProgressBasedTimelineSourceDidChangeMetrics(const TimelineRange& animationAttachmentRange)
{
AnimationEffect::animationProgressBasedTimelineSourceDidChangeMetrics(animationAttachmentRange);
m_needsComputedKeyframeOffsetsUpdate = true;
}
void KeyframeEffect::updateComputedKeyframeOffsetsIfNeeded()
{
if (!m_needsComputedKeyframeOffsetsUpdate)
return;
// FIXME: also call this when metrics of the view timeline changes.
RefPtr animation = this->animation();
if (!animation)
return;
RefPtr viewTimeline = dynamicDowncast<ViewTimeline>(animation->timeline());
if (viewTimeline && !viewTimeline->currentTime())
return;
if (!m_parsedKeyframes.isEmpty())
computeMissingKeyframeOffsets(m_parsedKeyframes, viewTimeline.get(), animation.get());
m_blendingKeyframes.updatedComputedOffsets([&](auto& specifiedOffset) {
return computedOffset(specifiedOffset.name, specifiedOffset.value, viewTimeline.get(), animation.get());
});
m_needsComputedKeyframeOffsetsUpdate = false;
};
} // namespace WebCore
|