File: Timer.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (588 lines) | stat: -rw-r--r-- 19,757 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*
 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
 * Copyright (C) 2009 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "Timer.h"

#include "SharedTimer.h"
#include "ThreadGlobalData.h"
#include "ThreadTimers.h"
#include <limits>
#include <math.h>
#include <wtf/MainThread.h>
#include <wtf/RuntimeApplicationChecks.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/Vector.h>

#if PLATFORM(IOS_FAMILY)
#include "WebCoreThread.h"
#endif

#if PLATFORM(COCOA)
#include <wtf/cocoa/RuntimeApplicationChecksCocoa.h>
#endif

namespace WebCore {

WTF_MAKE_TZONE_ALLOCATED_IMPL(TimerBase);
WTF_MAKE_TZONE_ALLOCATED_IMPL(Timer);
WTF_MAKE_TZONE_ALLOCATED_IMPL(DeferrableOneShotTimer);

class TimerHeapReference;

// Timers are stored in a heap data structure, used to implement a priority queue.
// This allows us to efficiently determine which timer needs to fire the soonest.
// Then we set a single shared system timer to fire at that time.
//
// When a timer's "next fire time" changes, we need to move it around in the priority queue.
#if ASSERT_ENABLED
static ThreadTimerHeap& threadGlobalTimerHeap()
{
    return threadGlobalData().threadTimers().timerHeap();
}
#endif

WTF_MAKE_COMPACT_TZONE_OR_ISO_ALLOCATED_IMPL(ThreadTimerHeapItem);

inline ThreadTimerHeapItem::ThreadTimerHeapItem(TimerBase& timer, MonotonicTime time, unsigned insertionOrder)
    : time(time)
    , insertionOrder(insertionOrder)
    , m_threadTimers(threadGlobalData().threadTimers())
    , m_timer(&timer)
{
    ASSERT(m_timer);
}
    
inline RefPtr<ThreadTimerHeapItem> ThreadTimerHeapItem::create(TimerBase& timer, MonotonicTime time, unsigned insertionOrder)
{
    return adoptRef(*new ThreadTimerHeapItem { timer, time, insertionOrder });
}

// ----------------

class TimerHeapPointer {
public:
    TimerHeapPointer(RefPtr<ThreadTimerHeapItem>* pointer)
        : m_pointer(pointer)
    { }

    TimerHeapReference operator*() const;
    RefPtr<ThreadTimerHeapItem>& operator->() const { return *m_pointer; }
private:
    RefPtr<ThreadTimerHeapItem>* m_pointer;
};

class TimerHeapReference {
public:
    TimerHeapReference(RefPtr<ThreadTimerHeapItem>& reference)
        : m_reference(reference)
    { }

    TimerHeapReference(const TimerHeapReference& other)
        : m_reference(other.m_reference)
    { }

    operator RefPtr<ThreadTimerHeapItem>&() const { return m_reference; }
    TimerHeapPointer operator&() const { return &m_reference; }
    TimerHeapReference& operator=(TimerHeapReference&&);
    TimerHeapReference& operator=(RefPtr<ThreadTimerHeapItem>&&);

    void swap(TimerHeapReference& other);

    void updateHeapIndex();

private:
    RefPtr<ThreadTimerHeapItem>& m_reference;

    friend void swap(TimerHeapReference a, TimerHeapReference b);
};

inline TimerHeapReference TimerHeapPointer::operator*() const
{
    return TimerHeapReference { *m_pointer };
}

inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference&& other)
{
    m_reference = WTFMove(other.m_reference);
    updateHeapIndex();
    return *this;
}

inline TimerHeapReference& TimerHeapReference::operator=(RefPtr<ThreadTimerHeapItem>&& item)
{
    m_reference = WTFMove(item);
    updateHeapIndex();
    return *this;
}

inline void TimerHeapReference::swap(TimerHeapReference& other)
{
    m_reference.swap(other.m_reference);
    updateHeapIndex();
    other.updateHeapIndex();
}

inline void TimerHeapReference::updateHeapIndex()
{
    auto& heap = m_reference->timerHeap();
    if (&m_reference >= heap.data() && &m_reference < heap.end())
        m_reference->setHeapIndex(&m_reference - heap.data());
}

inline void swap(TimerHeapReference a, TimerHeapReference b)
{
    a.swap(b);
}

// ----------------

// Class to represent iterators in the heap when calling the standard library heap algorithms.
// Uses a custom pointer and reference type that update indices for pointers in the heap.
class TimerHeapIterator {
public:
    using iterator_category = std::random_access_iterator_tag;
    using value_type = RefPtr<ThreadTimerHeapItem>;
    using difference_type = ptrdiff_t;
    using pointer = TimerHeapPointer;
    using reference = TimerHeapReference;

    explicit TimerHeapIterator(RefPtr<ThreadTimerHeapItem>* pointer) : m_pointer(pointer) { checkConsistency(); }

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
    TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }

    TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
    TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }

    TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
    TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }

    TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

    TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
    RefPtr<ThreadTimerHeapItem>& operator->() const { return *m_pointer; }

private:
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    void checkConsistency(ptrdiff_t offset = 0) const
    {
        ASSERT(m_pointer >= threadGlobalTimerHeap().data());
        ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
        ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
        ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
    }
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

    friend bool operator==(TimerHeapIterator, TimerHeapIterator) = default;
    friend bool operator<(TimerHeapIterator, TimerHeapIterator);
    friend bool operator>(TimerHeapIterator, TimerHeapIterator);
    friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
    friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
    
    friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
    friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
    
    friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
    friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);

    RefPtr<ThreadTimerHeapItem>* m_pointer;
};

inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }

inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

// ----------------

class TimerHeapLessThanFunction {
public:
    static bool compare(const TimerBase& a, const RefPtr<ThreadTimerHeapItem>& b)
    {
        return compare(a.m_heapItemWithBitfields.pointer()->time, a.m_heapItemWithBitfields.pointer()->insertionOrder, b->time, b->insertionOrder);
    }

    static bool compare(const RefPtr<ThreadTimerHeapItem>& a, const TimerBase& b)
    {
        return compare(a->time, a->insertionOrder, b.m_heapItemWithBitfields.pointer()->time, b.m_heapItemWithBitfields.pointer()->insertionOrder);
    }

    bool operator()(const RefPtr<ThreadTimerHeapItem>& a, const RefPtr<ThreadTimerHeapItem>& b) const
    {
        return compare(a->time, a->insertionOrder, b->time, b->insertionOrder);
    }

private:
    static bool compare(MonotonicTime aTime, unsigned aOrder, MonotonicTime bTime, unsigned bOrder)
    {
        // The comparisons below are "backwards" because the heap puts the largest
        // element first and we want the lowest time to be the first one in the heap.
        if (bTime != aTime)
            return bTime < aTime;
        // We need to look at the difference of the insertion orders instead of comparing the two
        // outright in case of overflow.
        unsigned difference = aOrder - bOrder;
        return difference < std::numeric_limits<unsigned>::max() / 2;
    }
};

// ----------------

static bool shouldSuppressThreadSafetyCheck()
{
#if PLATFORM(IOS_FAMILY)
    return WebThreadIsEnabled() || !linkedOnOrAfterSDKWithBehavior(SDKAlignedBehavior::TimerThreadSafetyChecks);
#elif PLATFORM(MAC)
    return !isInWebProcess() && !linkedOnOrAfterSDKWithBehavior(SDKAlignedBehavior::TimerThreadSafetyChecks);
#else
    return false;
#endif
}

struct SameSizeAsTimer {
    virtual ~SameSizeAsTimer() { }

    WeakPtr<TimerAlignment> timerAlignment;
    double times[2];
    void* pointers[2];
#if CPU(ADDRESS32)
    uint8_t bitfields;
#endif
    void* pointer;
};

static_assert(sizeof(Timer) == sizeof(SameSizeAsTimer), "Timer should stay small");

struct SameSizeAsDeferrableOneShotTimer : public SameSizeAsTimer {
    double delay;
};

static_assert(sizeof(DeferrableOneShotTimer) == sizeof(SameSizeAsDeferrableOneShotTimer), "DeferrableOneShotTimer should stay small");

TimerBase::TimerBase()
{
#if USE(WEB_THREAD)
    RELEASE_ASSERT(WebThreadIsLockedOrDisabledInMainOrWebThread());
#endif
}

TimerBase::~TimerBase()
{
    ASSERT(canCurrentThreadAccessThreadLocalData(m_thread));
    RELEASE_ASSERT(canCurrentThreadAccessThreadLocalData(m_thread) || shouldSuppressThreadSafetyCheck());
    stop();
    ASSERT(!inHeap());
    if (auto* item = m_heapItemWithBitfields.pointer())
        item->clearTimer();
    m_unalignedNextFireTime = MonotonicTime::nan();
}

void TimerBase::start(Seconds nextFireInterval, Seconds repeatInterval)
{
    ASSERT(canCurrentThreadAccessThreadLocalData(m_thread));

    m_repeatInterval = repeatInterval;
    setNextFireTime(MonotonicTime::now() + nextFireInterval);
}

void TimerBase::stopSlowCase()
{
    ASSERT(canCurrentThreadAccessThreadLocalData(m_thread));

    m_repeatInterval = 0_s;
    setNextFireTime(MonotonicTime { });

    ASSERT(!static_cast<bool>(nextFireTime()));
    ASSERT(m_repeatInterval == 0_s);
    ASSERT(!inHeap());
}

Seconds TimerBase::nextFireInterval() const
{
    ASSERT(isActive());
    ASSERT(m_heapItemWithBitfields.pointer());
    MonotonicTime current = MonotonicTime::now();
    auto fireTime = nextFireTime();
    if (fireTime < current)
        return 0_s;
    return fireTime - current;
}

inline void TimerBase::checkHeapIndex() const
{
#if ASSERT_ENABLED
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    auto& heap = item->timerHeap();
    ASSERT(&heap == &threadGlobalTimerHeap());
    ASSERT(!heap.isEmpty());
    ASSERT(item->isInHeap());
    ASSERT(item->heapIndex() < heap.size());
    ASSERT(heap[item->heapIndex()] == item);
    for (unsigned i = 0, size = heap.size(); i < size; i++)
        ASSERT(heap[i]->heapIndex() == i);
#endif
}

inline void TimerBase::checkConsistency() const
{
    // Timers should be in the heap if and only if they have a non-zero next fire time.
    ASSERT(inHeap() == static_cast<bool>(nextFireTime()));
    if (inHeap())
        checkHeapIndex();
}

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
void TimerBase::heapDecreaseKey()
{
    ASSERT(static_cast<bool>(nextFireTime()));
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    checkHeapIndex();
    auto* heapData = item->timerHeap().data();
    std::push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + item->heapIndex() + 1), TimerHeapLessThanFunction());
    checkHeapIndex();
}
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

inline void TimerBase::heapDelete()
{
    ASSERT(!static_cast<bool>(nextFireTime()));
    heapPop();
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    item->timerHeap().removeLast();
    item->setNotInHeap();
}

void TimerBase::heapDeleteMin()
{
    ASSERT(!static_cast<bool>(nextFireTime()));
    heapPopMin();
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    item->timerHeap().removeLast();
    item->setNotInHeap();
}

inline void TimerBase::heapIncreaseKey()
{
    ASSERT(static_cast<bool>(nextFireTime()));
    heapPop();
    heapDecreaseKey();
}

inline void TimerBase::heapInsert()
{
    ASSERT(!inHeap());
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    auto& heap = item->timerHeap();
    heap.append(item);
    item->setHeapIndex(heap.size() - 1);
    heapDecreaseKey();
}

inline void TimerBase::heapPop()
{
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    // Temporarily force this timer to have the minimum key so we can pop it.
    MonotonicTime fireTime = item->time;
    item->time = -MonotonicTime::infinity();
    heapDecreaseKey();
    heapPopMin();
    item->time = fireTime;
}

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
void TimerBase::heapPopMin()
{
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    ASSERT(item == item->timerHeap().first());
    checkHeapIndex();
    auto& heap = item->timerHeap();
    auto* heapData = heap.data();
    std::pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
    checkHeapIndex();
    ASSERT(item == item->timerHeap().last());
}

void TimerBase::heapDeleteNullMin(ThreadTimerHeap& heap)
{
    RELEASE_ASSERT(!heap.first()->hasTimer());
    heap.first()->time = -MonotonicTime::infinity();
    auto* heapData = heap.data();
    std::pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
    heap.removeLast();
}
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

static inline bool parentHeapPropertyHolds(const TimerBase* current, const ThreadTimerHeap& heap, unsigned currentIndex)
{
    if (!currentIndex)
        return true;
    unsigned parentIndex = (currentIndex - 1) / 2;
    return TimerHeapLessThanFunction::compare(*current, heap[parentIndex]);
}

static inline bool childHeapPropertyHolds(const TimerBase* current, const ThreadTimerHeap& heap, unsigned childIndex)
{
    if (childIndex >= heap.size())
        return true;
    return TimerHeapLessThanFunction::compare(heap[childIndex], *current);
}

bool TimerBase::hasValidHeapPosition() const
{
    ASSERT(nextFireTime());
    RefPtr item = m_heapItemWithBitfields.pointer();
    ASSERT(item);
    if (!inHeap())
        return false;
    // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
    // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
    // in updateHeapIfNeeded() will get hit.
    const auto& heap = item->timerHeap();
    unsigned heapIndex = item->heapIndex();
    if (!parentHeapPropertyHolds(this, heap, heapIndex))
        return false;
    unsigned childIndex1 = 2 * heapIndex + 1;
    unsigned childIndex2 = childIndex1 + 1;
    return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
}

void TimerBase::updateHeapIfNeeded(MonotonicTime oldTime)
{
    auto fireTime = nextFireTime();
    if (fireTime && hasValidHeapPosition())
        return;

#if ASSERT_ENABLED
    std::optional<unsigned> oldHeapIndex;
    auto* item = m_heapItemWithBitfields.pointer();
    if (item->isInHeap())
        oldHeapIndex = item->heapIndex();
#endif

    if (!oldTime)
        heapInsert();
    else if (!fireTime)
        heapDelete();
    else if (fireTime < oldTime)
        heapDecreaseKey();
    else
        heapIncreaseKey();

#if ASSERT_ENABLED
    std::optional<unsigned> newHeapIndex;
    if (item->isInHeap())
        newHeapIndex = item->heapIndex();
    ASSERT(newHeapIndex != oldHeapIndex);
#endif

    ASSERT(!inHeap() || hasValidHeapPosition());
}

void TimerBase::setNextFireTime(MonotonicTime newTime)
{
#if USE(WEB_THREAD)
    RELEASE_ASSERT(WebThreadIsLockedOrDisabledInMainOrWebThread());
#endif
    ASSERT(canCurrentThreadAccessThreadLocalData(m_thread));
    RELEASE_ASSERT(canCurrentThreadAccessThreadLocalData(m_thread) || shouldSuppressThreadSafetyCheck());
    bool timerHasBeenDeleted = m_unalignedNextFireTime.isNaN();
    RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(!timerHasBeenDeleted);

    if (m_unalignedNextFireTime != newTime) {
        RELEASE_ASSERT(!newTime.isNaN());
        m_unalignedNextFireTime = newTime;
    }

    // Keep heap valid while changing the next-fire time.
    MonotonicTime oldTime = nextFireTime();
    // Don't realign zero-delay timers.
    if (auto* alignment = m_alignment.get(); newTime && alignment) {
        if (auto newAlignedTime = alignment->alignedFireTime(hasReachedMaxNestingLevel(), newTime))
            newTime = newAlignedTime.value();
    }

    if (oldTime != newTime) {
        auto newOrder = threadGlobalData().threadTimers().nextHeapInsertionCount();

        RefPtr item = m_heapItemWithBitfields.pointer();
        if (!item) {
            m_heapItemWithBitfields.setPointer(ThreadTimerHeapItem::create(*this, newTime, 0));
            item = m_heapItemWithBitfields.pointer();
        }
        item->time = newTime;
        item->insertionOrder = newOrder;

        bool wasFirstTimerInHeap = item->isFirstInHeap();

        updateHeapIfNeeded(oldTime);

        bool isFirstTimerInHeap = item->isFirstInHeap();

        if (wasFirstTimerInHeap || isFirstTimerInHeap)
            threadGlobalData().threadTimers().updateSharedTimer();
    }

    checkConsistency();
}

void TimerBase::fireTimersInNestedEventLoop()
{
    // Redirect to ThreadTimers.
    threadGlobalData().threadTimers().fireTimersInNestedEventLoop();
}

void TimerBase::didChangeAlignmentInterval()
{
    setNextFireTime(m_unalignedNextFireTime);
}

Seconds TimerBase::nextUnalignedFireInterval() const
{
    ASSERT(isActive());
    auto result = std::max(m_unalignedNextFireTime - MonotonicTime::now(), 0_s);
    RELEASE_ASSERT(result.isFinite());
    return result;
}

} // namespace WebCore