File: PixelBufferConversion.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (392 lines) | stat: -rw-r--r-- 18,892 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
 * Copyright (C) 2021-2023 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "PixelBufferConversion.h"

#include "AlphaPremultiplication.h"
#include "DestinationColorSpace.h"
#include "IntSize.h"
#include "PixelFormat.h"
#include <wtf/StdLibExtras.h>
#include <wtf/text/ParsingUtilities.h>

#if USE(ACCELERATE) && USE(CG)
#include <Accelerate/Accelerate.h>
#elif USE(SKIA)
WTF_IGNORE_WARNINGS_IN_THIRD_PARTY_CODE_BEGIN
#include <skia/core/SkPixmap.h>
WTF_IGNORE_WARNINGS_IN_THIRD_PARTY_CODE_END
#endif

namespace WebCore {

#if USE(ACCELERATE) && USE(CG)

static inline vImage_CGImageFormat makeVImageCGImageFormat(const PixelBufferFormat& format)
{
    auto [bitsPerComponent, bitsPerPixel, bitmapInfo] = [] (const PixelBufferFormat& format) -> std::tuple<unsigned, unsigned, CGBitmapInfo> {
        switch (format.pixelFormat) {
        case PixelFormat::RGBA8:
            if (format.alphaFormat == AlphaPremultiplication::Premultiplied)
                return std::make_tuple(8u, 32u, static_cast<CGBitmapInfo>(kCGBitmapByteOrder32Big) | static_cast<CGBitmapInfo>(kCGImageAlphaPremultipliedLast));
            else
                return std::make_tuple(8u, 32u, static_cast<CGBitmapInfo>(kCGBitmapByteOrder32Big) | static_cast<CGBitmapInfo>(kCGImageAlphaLast));

        case PixelFormat::BGRA8:
            if (format.alphaFormat == AlphaPremultiplication::Premultiplied)
                return std::make_tuple(8u, 32u, static_cast<CGBitmapInfo>(kCGBitmapByteOrder32Little) | static_cast<CGBitmapInfo>(kCGImageAlphaPremultipliedFirst));
            else
                return std::make_tuple(8u, 32u, static_cast<CGBitmapInfo>(kCGBitmapByteOrder32Little) | static_cast<CGBitmapInfo>(kCGImageAlphaFirst));

        case PixelFormat::BGRX8:
#if ENABLE(PIXEL_FORMAT_RGB10)
        case PixelFormat::RGB10:
#endif
#if ENABLE(PIXEL_FORMAT_RGB10A8)
        case PixelFormat::RGB10A8:
#endif
#if ENABLE(PIXEL_FORMAT_RGBA16F)
        case PixelFormat::RGBA16F:
#endif
            break;
        }

        // We currently only support 8 bit pixel formats with alpha for these conversions.

        ASSERT_NOT_REACHED();
        return std::make_tuple(8u, 32u, static_cast<CGBitmapInfo>(kCGBitmapByteOrder32Little) | static_cast<CGBitmapInfo>(kCGImageAlphaFirst));
    }(format);

    vImage_CGImageFormat result;

    result.bitsPerComponent = bitsPerComponent;
    result.bitsPerPixel = bitsPerPixel;
    result.colorSpace = format.colorSpace.platformColorSpace();
    result.bitmapInfo = bitmapInfo;
    result.version = 0;
    result.decode = nullptr;
    result.renderingIntent = kCGRenderingIntentDefault;

    return result;
}

template<typename View> static vImage_Buffer makeVImageBuffer(const View& view, const IntSize& size)
{
    vImage_Buffer result;

    result.height = static_cast<vImagePixelCount>(size.height());
    result.width = static_cast<vImagePixelCount>(size.width());
    result.rowBytes = view.bytesPerRow;
    result.data = const_cast<uint8_t*>(view.rows.data());

    return result;
}

static void convertImagePixelsAccelerated(const ConstPixelBufferConversionView& source, const PixelBufferConversionView& destination, const IntSize& destinationSize)
{
    auto sourceVImageBuffer = makeVImageBuffer(source, destinationSize);
    auto destinationVImageBuffer = makeVImageBuffer(destination, destinationSize);

    if (source.format.colorSpace != destination.format.colorSpace) {
        // FIXME: Consider using vImageConvert_AnyToAny for all conversions, not just ones that need a color space conversion,
        // after judiciously performance testing them against each other.

        auto sourceCGImageFormat = makeVImageCGImageFormat(source.format);
        auto destinationCGImageFormat = makeVImageCGImageFormat(destination.format);

        vImage_Error converterCreateError = kvImageNoError;
        auto converter = adoptCF(vImageConverter_CreateWithCGImageFormat(&sourceCGImageFormat, &destinationCGImageFormat, nullptr, kvImageNoFlags, &converterCreateError));
        if (converterCreateError != kvImageNoError)
            return;

        vImage_Error converterConvertError = vImageConvert_AnyToAny(converter.get(), &sourceVImageBuffer, &destinationVImageBuffer, nullptr, kvImageNoFlags);
        ASSERT_WITH_MESSAGE_UNUSED(converterConvertError, converterConvertError == kvImageNoError, "vImageConvert_AnyToAny failed conversion with error: %zd", converterConvertError);
        return;
    }

    if (source.format.alphaFormat != destination.format.alphaFormat) {
        if (destination.format.alphaFormat == AlphaPremultiplication::Unpremultiplied) {
            if (source.format.pixelFormat == PixelFormat::RGBA8)
                vImageUnpremultiplyData_RGBA8888(&sourceVImageBuffer, &destinationVImageBuffer, kvImageNoFlags);
            else
                vImageUnpremultiplyData_BGRA8888(&sourceVImageBuffer, &destinationVImageBuffer, kvImageNoFlags);
        } else {
            if (source.format.pixelFormat == PixelFormat::RGBA8)
                vImagePremultiplyData_RGBA8888(&sourceVImageBuffer, &destinationVImageBuffer, kvImageNoFlags);
            else
                vImagePremultiplyData_BGRA8888(&sourceVImageBuffer, &destinationVImageBuffer, kvImageNoFlags);
        }

        sourceVImageBuffer = destinationVImageBuffer;
    }

    if (source.format.pixelFormat != destination.format.pixelFormat) {
        // Swap pixel channels BGRA <-> RGBA.
        const uint8_t map[4] = { 2, 1, 0, 3 };
        vImagePermuteChannels_ARGB8888(&sourceVImageBuffer, &destinationVImageBuffer, map, kvImageNoFlags);
    }
}

#elif USE(SKIA)

static bool convertImagePixelsSkia(const ConstPixelBufferConversionView& source, const PixelBufferConversionView& destination, const IntSize& destinationSize)
{
    auto toSkiaColorType = [](const PixelFormat& pixelFormat) -> std::optional<SkColorType> {
        switch (pixelFormat) {
        case PixelFormat::RGBA8:
            return SkColorType::kRGBA_8888_SkColorType;
        case PixelFormat::BGRA8:
            return SkColorType::kBGRA_8888_SkColorType;
        default:
            break;
        }
        return std::nullopt;
    };
    auto toSkiaAlphaType = [](const AlphaPremultiplication& alphaFormat) {
        switch (alphaFormat) {
        case AlphaPremultiplication::Premultiplied:
            return SkAlphaType::kPremul_SkAlphaType;
        case AlphaPremultiplication::Unpremultiplied:
            return SkAlphaType::kUnpremul_SkAlphaType;
        }
        ASSERT_NOT_REACHED();
        return SkAlphaType::kUnknown_SkAlphaType;
    };
    auto sourceSkiaColorType = toSkiaColorType(source.format.pixelFormat);
    if (!sourceSkiaColorType)
        return false;
    SkImageInfo sourceImageInfo = SkImageInfo::Make(
        destinationSize.width(),
        destinationSize.height(),
        *sourceSkiaColorType,
        toSkiaAlphaType(source.format.alphaFormat),
        source.format.colorSpace.platformColorSpace()
    );
    auto destinationSkiaColorType = toSkiaColorType(destination.format.pixelFormat);
    if (!destinationSkiaColorType)
        return false;
    // Utilize SkPixmap which is a raw bytes wrapper capable of performing conversions.
    SkPixmap sourcePixmap(sourceImageInfo, source.rows.data(), source.bytesPerRow);
    SkImageInfo destinationImageInfo = SkImageInfo::Make(
        destinationSize.width(),
        destinationSize.height(),
        *destinationSkiaColorType,
        toSkiaAlphaType(destination.format.alphaFormat),
        destination.format.colorSpace.platformColorSpace()
    );
    // Read pixels from source to destination and convert pixels if necessary.
    sourcePixmap.readPixels(destinationImageInfo, destination.rows.data(), destination.bytesPerRow);
    return true;
}

#endif

enum class PixelFormatConversion { None, Permute };

template<PixelFormatConversion pixelFormatConversion>
static void convertSinglePixelPremultipliedToPremultiplied(std::span<const uint8_t, 4> sourcePixel, std::span<uint8_t, 4> destinationPixel)
{
    uint8_t alpha = sourcePixel[3];
    if (!alpha) {
        reinterpretCastSpanStartTo<uint32_t>(destinationPixel) = 0;
        return;
    }

    if constexpr (pixelFormatConversion == PixelFormatConversion::None)
        reinterpretCastSpanStartTo<uint32_t>(destinationPixel) = reinterpretCastSpanStartTo<const uint32_t>(sourcePixel);
    else {
        // Swap pixel channels BGRA <-> RGBA.
        destinationPixel[0] = sourcePixel[2];
        destinationPixel[1] = sourcePixel[1];
        destinationPixel[2] = sourcePixel[0];
        destinationPixel[3] = sourcePixel[3];
    }
}

template<PixelFormatConversion pixelFormatConversion>
static void convertSinglePixelPremultipliedToUnpremultiplied(std::span<const uint8_t, 4> sourcePixel, std::span<uint8_t, 4> destinationPixel)
{
    uint8_t alpha = sourcePixel[3];
    if (!alpha || alpha == 255) {
        convertSinglePixelPremultipliedToPremultiplied<pixelFormatConversion>(sourcePixel, destinationPixel);
        return;
    }

    if constexpr (pixelFormatConversion == PixelFormatConversion::None) {
        destinationPixel[0] = (sourcePixel[0] * 255) / alpha;
        destinationPixel[1] = (sourcePixel[1] * 255) / alpha;
        destinationPixel[2] = (sourcePixel[2] * 255) / alpha;
        destinationPixel[3] = alpha;
    } else {
        // Swap pixel channels BGRA <-> RGBA.
        destinationPixel[0] = (sourcePixel[2] * 255) / alpha;
        destinationPixel[1] = (sourcePixel[1] * 255) / alpha;
        destinationPixel[2] = (sourcePixel[0] * 255) / alpha;
        destinationPixel[3] = alpha;
    }
}

template<PixelFormatConversion pixelFormatConversion>
static void convertSinglePixelUnpremultipliedToPremultiplied(std::span<const uint8_t, 4> sourcePixel, std::span<uint8_t, 4> destinationPixel)
{
    uint8_t alpha = sourcePixel[3];
    if (!alpha || alpha == 255) {
        convertSinglePixelPremultipliedToPremultiplied<pixelFormatConversion>(sourcePixel, destinationPixel);
        return;
    }

    if constexpr (pixelFormatConversion == PixelFormatConversion::None) {
        destinationPixel[0] = (sourcePixel[0] * alpha + 254) / 255;
        destinationPixel[1] = (sourcePixel[1] * alpha + 254) / 255;
        destinationPixel[2] = (sourcePixel[2] * alpha + 254) / 255;
        destinationPixel[3] = alpha;
    } else {
        // Swap pixel channels BGRA <-> RGBA.
        destinationPixel[0] = (sourcePixel[2] * alpha + 254) / 255;
        destinationPixel[1] = (sourcePixel[1] * alpha + 254) / 255;
        destinationPixel[2] = (sourcePixel[0] * alpha + 254) / 255;
        destinationPixel[3] = alpha;
    }
}

template<PixelFormatConversion pixelFormatConversion>
static void convertSinglePixelUnpremultipliedToUnpremultiplied(std::span<const uint8_t, 4> sourcePixel, std::span<uint8_t, 4> destinationPixel)
{
    if constexpr (pixelFormatConversion == PixelFormatConversion::None)
        reinterpretCastSpanStartTo<uint32_t>(destinationPixel) = reinterpretCastSpanStartTo<const uint32_t>(sourcePixel);
    else {
        // Swap pixel channels BGRA <-> RGBA.
        destinationPixel[0] = sourcePixel[2];
        destinationPixel[1] = sourcePixel[1];
        destinationPixel[2] = sourcePixel[0];
        destinationPixel[3] = sourcePixel[3];
    }
}

template<void (*convertFunctor)(std::span<const uint8_t, 4>, std::span<uint8_t, 4>)>
static void convertImagePixelsUnaccelerated(const ConstPixelBufferConversionView& source, const PixelBufferConversionView& destination, const IntSize& destinationSize)
{
    size_t bytesPerRow = destinationSize.width() * 4;
    for (int y = 0; y < destinationSize.height(); ++y) {
        auto sourceRow = source.rows.subspan(source.bytesPerRow * y);
        auto destinationRow = destination.rows.subspan(destination.bytesPerRow * y);
        for (size_t x = 0; x < bytesPerRow; x += 4)
            convertFunctor(sourceRow.subspan(x).subspan<0, 4>(), destinationRow.subspan(x).subspan<0, 4>());
    }
}

#if !(USE(ACCELERATE) && USE(CG))
static void copyImagePixels(const ConstPixelBufferConversionView& source, const PixelBufferConversionView& destination, const IntSize& destinationSize)
{
    size_t bytesPerRow = destinationSize.width() * 4;

    if (bytesPerRow == source.bytesPerRow && bytesPerRow == destination.bytesPerRow) {
        memcpySpan(destination.rows, source.rows.first(bytesPerRow * destinationSize.height()));
        return;
    }

    for (int y = 0; y < destinationSize.height(); ++y) {
        auto sourceRow = source.rows.subspan(source.bytesPerRow * y);
        auto destinationRow = destination.rows.subspan(destination.bytesPerRow * y);
        memcpySpan(destinationRow, sourceRow.first(bytesPerRow));
    }
}
#endif

void convertImagePixels(const ConstPixelBufferConversionView& source, const PixelBufferConversionView& destination, const IntSize& destinationSize)
{
    // We currently only support converting between RGBA8, BGRA8, and BGRX8.
    ASSERT(source.format.pixelFormat == PixelFormat::RGBA8 || source.format.pixelFormat == PixelFormat::BGRA8 || source.format.pixelFormat == PixelFormat::BGRX8);
    ASSERT(destination.format.pixelFormat == PixelFormat::RGBA8 || destination.format.pixelFormat == PixelFormat::BGRA8 || destination.format.pixelFormat == PixelFormat::BGRX8);

#if USE(ACCELERATE) && USE(CG)
    if (source.format.alphaFormat == destination.format.alphaFormat && source.format.pixelFormat == destination.format.pixelFormat && source.format.colorSpace == destination.format.colorSpace) {
        // FIXME: Can thes both just use per-row memcpy?
        if (source.format.alphaFormat == AlphaPremultiplication::Premultiplied)
            convertImagePixelsUnaccelerated<convertSinglePixelPremultipliedToPremultiplied<PixelFormatConversion::None>>(source, destination, destinationSize);
        else
            convertImagePixelsUnaccelerated<convertSinglePixelUnpremultipliedToUnpremultiplied<PixelFormatConversion::None>>(source, destination, destinationSize);
    } else
        convertImagePixelsAccelerated(source, destination, destinationSize);
#else
    if (source.format.alphaFormat == destination.format.alphaFormat && source.format.pixelFormat == destination.format.pixelFormat && source.format.colorSpace == destination.format.colorSpace) {
        copyImagePixels(source, destination, destinationSize);
        return;
    }
#if USE(SKIA)
    if (convertImagePixelsSkia(source, destination, destinationSize))
        return;
#endif
    // FIXME: We don't currently support converting pixel data between different color spaces in the non-accelerated path.
    // This could be added using conversion functions from ColorConversion.h.
    ASSERT(source.format.colorSpace == destination.format.colorSpace);

    // FIXME: In Linux platform the following paths could be optimized with ORC.

    if (source.format.alphaFormat == destination.format.alphaFormat) {
        if (source.format.pixelFormat == destination.format.pixelFormat) {
            if (source.format.alphaFormat == AlphaPremultiplication::Premultiplied)
                convertImagePixelsUnaccelerated<convertSinglePixelPremultipliedToPremultiplied<PixelFormatConversion::None>>(source, destination, destinationSize);
            else
                convertImagePixelsUnaccelerated<convertSinglePixelUnpremultipliedToUnpremultiplied<PixelFormatConversion::None>>(source, destination, destinationSize);
        } else {
            if (destination.format.alphaFormat == AlphaPremultiplication::Premultiplied)
                convertImagePixelsUnaccelerated<convertSinglePixelPremultipliedToPremultiplied<PixelFormatConversion::Permute>>(source, destination, destinationSize);
            else
                convertImagePixelsUnaccelerated<convertSinglePixelUnpremultipliedToUnpremultiplied<PixelFormatConversion::Permute>>(source, destination, destinationSize);
        }
    } else {
        if (source.format.pixelFormat == destination.format.pixelFormat) {
            if (source.format.alphaFormat == AlphaPremultiplication::Premultiplied)
                convertImagePixelsUnaccelerated<convertSinglePixelPremultipliedToUnpremultiplied<PixelFormatConversion::None>>(source, destination, destinationSize);
            else
                convertImagePixelsUnaccelerated<convertSinglePixelUnpremultipliedToPremultiplied<PixelFormatConversion::None>>(source, destination, destinationSize);
        } else {
            if (destination.format.alphaFormat == AlphaPremultiplication::Premultiplied)
                convertImagePixelsUnaccelerated<convertSinglePixelUnpremultipliedToPremultiplied<PixelFormatConversion::Permute>>(source, destination, destinationSize);
            else
                convertImagePixelsUnaccelerated<convertSinglePixelPremultipliedToUnpremultiplied<PixelFormatConversion::Permute>>(source, destination, destinationSize);
        }
    }
#endif
}

void copyRowsInternal(unsigned sourceBytesPerRow, std::span<const uint8_t> source, unsigned destinationBytesPerRow, std::span<uint8_t> destination, unsigned rows, unsigned copyBytesPerRow)
{
    if (sourceBytesPerRow == destinationBytesPerRow && copyBytesPerRow == sourceBytesPerRow)
        memcpySpan(destination, source.first(copyBytesPerRow * rows));
    else {
        for (unsigned row = 0; row < rows; ++row) {
            memcpySpan(destination, source.first(copyBytesPerRow));
            if (sourceBytesPerRow > source.size() || destinationBytesPerRow > destination.size())
                break;
            skip(source, sourceBytesPerRow);
            skip(destination, destinationBytesPerRow);
        }
    }
}

}