File: CubicBezierTimingFunction.js

package info (click to toggle)
webkit2gtk 2.48.3-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 295
file content (179 lines) | stat: -rw-r--r-- 5,671 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
 * Copyright (C) 2013 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

WI.CubicBezierTimingFunction = class CubicBezierTimingFunction
{
    constructor(x1, y1, x2, y2)
    {
        this._inPoint = new WI.Point(x1, y1);
        this._outPoint = new WI.Point(x2, y2);

        // Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1).
        this._curveInfo = {
            x: {c: 3.0 * x1},
            y: {c: 3.0 * y1}
        };

        this._curveInfo.x.b = 3.0 * (x2 - x1) - this._curveInfo.x.c;
        this._curveInfo.x.a = 1.0 - this._curveInfo.x.c - this._curveInfo.x.b;

        this._curveInfo.y.b = 3.0 * (y2 - y1) - this._curveInfo.y.c;
        this._curveInfo.y.a = 1.0 - this._curveInfo.y.c - this._curveInfo.y.b;
    }

    // Static

    static fromCoordinates(coordinates)
    {
        if (!coordinates || coordinates.length < 4)
            return null;

        coordinates = coordinates.map(Number);
        if (coordinates.includes(NaN))
            return null;

        return new WI.CubicBezierTimingFunction(coordinates[0], coordinates[1], coordinates[2], coordinates[3]);
    }

    static fromString(text)
    {
        if (!text || !text.length)
            return null;

        var trimmedText = text.toLowerCase().replace(/\s/g, "");
        if (!trimmedText.length)
            return null;

        if (Object.keys(WI.CubicBezierTimingFunction.keywordValues).includes(trimmedText))
            return WI.CubicBezierTimingFunction.fromCoordinates(WI.CubicBezierTimingFunction.keywordValues[trimmedText]);

        var matches = trimmedText.match(/^cubic-bezier\(([-\d.]+),([-\d.]+),([-\d.]+),([-\d.]+)\)$/);
        if (!matches)
            return null;

        matches.splice(0, 1);
        return WI.CubicBezierTimingFunction.fromCoordinates(matches);
    }

    // Public

    get inPoint()
    {
        return this._inPoint;
    }

    get outPoint()
    {
        return this._outPoint;
    }

    copy()
    {
        return new WI.CubicBezierTimingFunction(this._inPoint.x, this._inPoint.y, this._outPoint.x, this._outPoint.y);
    }

    toString()
    {
        var values = [this._inPoint.x, this._inPoint.y, this._outPoint.x, this._outPoint.y];
        for (var key in WI.CubicBezierTimingFunction.keywordValues) {
            if (Array.shallowEqual(WI.CubicBezierTimingFunction.keywordValues[key], values))
                return key;
        }

        return "cubic-bezier(" + values.join(", ") + ")";
    }

    solve(x, epsilon)
    {
        return this._sampleCurveY(this._solveCurveX(x, epsilon));
    }

    // Private

    _sampleCurveX(t)
    {
        // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.
        return ((this._curveInfo.x.a * t + this._curveInfo.x.b) * t + this._curveInfo.x.c) * t;
    }

    _sampleCurveY(t)
    {
        return ((this._curveInfo.y.a * t + this._curveInfo.y.b) * t + this._curveInfo.y.c) * t;
    }

    _sampleCurveDerivativeX(t)
    {
        return (3.0 * this._curveInfo.x.a * t + 2.0 * this._curveInfo.x.b) * t + this._curveInfo.x.c;
    }

    // Given an x value, find a parametric value it came from.
    _solveCurveX(x, epsilon)
    {
        var t0, t1, t2, x2, d2, i;

        // First try a few iterations of Newton's method -- normally very fast.
        for (t2 = x, i = 0; i < 8; i++) {
            x2 = this._sampleCurveX(t2) - x;
            if (Math.abs(x2) < epsilon)
                return t2;
            d2 = this._sampleCurveDerivativeX(t2);
            if (Math.abs(d2) < 1e-6)
                break;
            t2 = t2 - x2 / d2;
        }

        // Fall back to the bisection method for reliability.
        t0 = 0.0;
        t1 = 1.0;
        t2 = x;

        if (t2 < t0)
            return t0;
        if (t2 > t1)
            return t1;

        while (t0 < t1) {
            x2 = this._sampleCurveX(t2);
            if (Math.abs(x2 - x) < epsilon)
                return t2;
            if (x > x2)
                t0 = t2;
            else
                t1 = t2;
            t2 = (t1 - t0) * 0.5 + t0;
        }

        // Failure.
        return t2;
    }
};

WI.CubicBezierTimingFunction.keywordValues = {
    "ease":         [0.25, 0.1, 0.25, 1],
    "ease-in":      [0.42, 0, 1, 1],
    "ease-out":     [0, 0, 0.58, 1],
    "ease-in-out":  [0.42, 0, 0.58, 1],
    "linear":       [0, 0, 1, 1]
};