1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
/*
* Copyright (C) 2016-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "B3InferSwitches.h"
#if ENABLE(B3_JIT)
#include "B3BasicBlockInlines.h"
#include "B3CaseCollectionInlines.h"
#include "B3InsertionSet.h"
#include "B3PhaseScope.h"
#include "B3SwitchValue.h"
#include "B3UseCounts.h"
#include "B3ValueInlines.h"
#include <wtf/ListDump.h>
namespace JSC { namespace B3 {
namespace {
namespace B3InferSwitchesInternal {
static constexpr bool verbose = false;
}
class InferSwitches {
public:
InferSwitches(Procedure& proc)
: m_proc(proc)
, m_insertionSet(proc)
, m_useCounts(proc)
{
}
bool run()
{
if (B3InferSwitchesInternal::verbose)
dataLog("B3 before inferSwitches:\n", m_proc);
bool changed = true;
bool everChanged = false;
while (changed) {
changed = false;
if (B3InferSwitchesInternal::verbose)
dataLog("Performing fixpoint iteration:\n");
for (BasicBlock* block : m_proc)
changed |= attemptToMergeWithPredecessor(block);
everChanged |= changed;
}
if (everChanged) {
m_proc.resetReachability();
m_proc.invalidateCFG();
m_proc.deleteOrphans();
if (B3InferSwitchesInternal::verbose)
dataLog("B3 after inferSwitches:\n", m_proc);
return true;
}
return false;
}
private:
bool attemptToMergeWithPredecessor(BasicBlock* block)
{
// No point in considering the root block. We also don't consider blocks with multiple
// predecessors, but we could handle this if we made this code a bit more general and we were
// not afraid of code bloat.
if (block->numPredecessors() != 1)
return false;
SwitchDescription description = describe(block);
if (B3InferSwitchesInternal::verbose)
dataLog("Description of primary block ", *block, ": ", description, "\n");
if (!description) {
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because not switch-like.\n");
return false;
}
// We know that this block behaves like a switch. But we need to verify that it doesn't also
// perform any effects or do expensive things. We don't want to create a switch if that will
// make expensive things execute unconditionally. We're very conservative about how we define
// "expensive".
for (Value* value : *block) {
if (value->isFree())
continue;
if (value == description.extra)
continue;
if (value == description.branch)
continue;
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because of ", deepDump(m_proc, value), "\n");
return false;
}
BasicBlock* predecessor = block->predecessor(0);
SwitchDescription predecessorDescription = describe(predecessor);
if (B3InferSwitchesInternal::verbose)
dataLog(" Description of predecessor block ", *predecessor, ": ", predecessorDescription, "\n");
if (!predecessorDescription) {
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because not switch-like.\n");
return false;
}
// Both us and the predecessor are switch-like, but that doesn't mean that we're compatible.
// We may be switching on different values!
if (description.source != predecessorDescription.source) {
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because sources don't match.\n");
return false;
}
// We expect that we are the fall-through destination of the predecessor. This is a bit of a
// goofy condition. If we were not the fall-through destination then our switch is probably
// just totally redundant and we should be getting rid of it. But we don't handle that here,
// yet.
if (predecessorDescription.fallThrough.block() != block) {
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because fall-through of predecessor is not the primary block.\n");
return false;
}
// Make sure that there ain't no loops.
if (description.fallThrough.block() == block
|| description.fallThrough.block() == predecessor) {
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because of fall-through loop.\n");
return false;
}
for (SwitchCase switchCase : description.cases) {
if (switchCase.targetBlock() == block
|| switchCase.targetBlock() == predecessor) {
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because of loop in primary cases.\n");
return false;
}
}
for (SwitchCase switchCase : predecessorDescription.cases) {
if (switchCase.targetBlock() == block
|| switchCase.targetBlock() == predecessor) {
if (B3InferSwitchesInternal::verbose)
dataLog(" Bailing because of loop in predecessor cases.\n");
return false;
}
}
if (B3InferSwitchesInternal::verbose)
dataLog(" Doing it!\n");
// We're committed to doing the thing.
// Delete the extra value from the predecessor, since that would break downstream inference
// on the next fixpoint iteration. We would think that this block is too expensive to merge
// because of the Equal or NotEqual value even though that value is dead! We know it's dead
// so we kill it ourselves.
for (Value* value : *predecessor) {
if (value == predecessorDescription.extra)
value->replaceWithNopIgnoringType();
}
// Insert all non-terminal values from our block into our predecessor. We definitely need to
// do this for constants. We must not do it for the extra value, since that would break
// downstream inference on the next fixpoint iteration. As a bonus, we don't do it for nops,
// so that we limit how big blocks get in this phase.
for (unsigned i = 0; i < block->size() - 1; ++i) {
Value* value = block->at(i);
if (value != description.extra && value->opcode() != Nop)
m_insertionSet.insertValue(predecessor->size() - 1, value);
}
m_insertionSet.execute(predecessor);
block->values().shrink(0);
block->appendNew<Value>(m_proc, Oops, description.branch->origin());
block->removePredecessor(predecessor);
for (BasicBlock* successorBlock : description.block->successorBlocks())
successorBlock->replacePredecessor(block, predecessor);
block->clearSuccessors();
SwitchValue* switchValue = predecessor->replaceLastWithNew<SwitchValue>(
m_proc, predecessor->last()->origin(), description.source);
predecessor->clearSuccessors();
switchValue->setFallThrough(description.fallThrough);
Vector<int64_t> predecessorCases;
for (SwitchCase switchCase : predecessorDescription.cases) {
switchValue->appendCase(switchCase);
predecessorCases.append(switchCase.caseValue());
}
std::sort(predecessorCases.begin(), predecessorCases.end());
auto isPredecessorCase = [&] (int64_t value) -> bool {
return !!tryBinarySearch<int64_t>(
predecessorCases, predecessorCases.size(), value,
[] (int64_t* element) -> int64_t { return *element; });
};
for (SwitchCase switchCase : description.cases) {
if (!isPredecessorCase(switchCase.caseValue()))
switchValue->appendCase(switchCase);
}
return true;
}
struct SwitchDescription {
SwitchDescription()
{
}
explicit operator bool() { return !!block; }
void dump(PrintStream& out) const
{
out.print(
"{block = ", pointerDump(block),
", branch = ", pointerDump(branch),
", extra = ", pointerDump(extra),
", source = ", pointerDump(source),
", cases = ", listDump(cases),
", fallThrough = ", fallThrough, "}");
}
BasicBlock* block { nullptr };
Value* branch { nullptr };
Value* extra { nullptr }; // This is the Equal or NotEqual value, if applicable.
Value* source { nullptr };
Vector<SwitchCase, 1> cases;
FrequentedBlock fallThrough;
};
SwitchDescription describe(BasicBlock* block)
{
SwitchDescription result;
result.block = block;
result.branch = block->last();
switch (result.branch->opcode()) {
case Branch: {
Value* predicate = result.branch->child(0);
FrequentedBlock taken = result.block->taken();
FrequentedBlock notTaken = result.block->notTaken();
bool handled = false;
// NOTE: This uses UseCounts that we computed before any transformation. This is fine
// because although we may have mutated the IR, we would not have added any new
// predicates.
if (predicate->numChildren() == 2
&& predicate->child(1)->hasInt()
&& m_useCounts.numUses(predicate) == 1) {
switch (predicate->opcode()) {
case Equal:
result.source = predicate->child(0);
result.extra = predicate;
result.cases.append(SwitchCase(predicate->child(1)->asInt(), taken));
result.fallThrough = notTaken;
handled = true;
break;
case NotEqual:
result.source = predicate->child(0);
result.extra = predicate;
result.cases.append(SwitchCase(predicate->child(1)->asInt(), notTaken));
result.fallThrough = taken;
handled = true;
break;
default:
break;
}
}
if (handled)
break;
result.source = predicate;
result.cases.append(SwitchCase(0, notTaken));
result.fallThrough = taken;
break;
}
case Switch: {
SwitchValue* switchValue = result.branch->as<SwitchValue>();
result.source = switchValue->child(0);
for (SwitchCase switchCase : switchValue->cases(result.block))
result.cases.append(switchCase);
result.fallThrough = result.block->fallThrough();
break;
}
default:
result.block = nullptr;
result.branch = nullptr;
break;
}
return result;
}
Procedure& m_proc;
InsertionSet m_insertionSet;
UseCounts m_useCounts;
};
} // anonymous namespace
bool inferSwitches(Procedure& proc)
{
PhaseScope phaseScope(proc, "inferSwitches"_s);
InferSwitches inferSwitches(proc);
return inferSwitches.run();
}
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)
|