1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/*
* Copyright (C) 2016-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef B3Kind_h
#define B3Kind_h
#if ENABLE(B3_JIT)
#include "B3Opcode.h"
#include <wtf/HashTable.h>
#include <wtf/PrintStream.h>
namespace JSC { namespace B3 {
// A Kind is a terse summary of what a Value does. There is a fixed number of possible
// Kinds. Kind is a tuple of Opcode (see B3Opcode.h) and some extra bits. Most opcodes don't
// get any extra bits, and those bits must remain zero if the Kind's opcode field is set to
// one of those opcodes. The purpose of Kind is to be like an opcode in other IRs, but to
// be multidimensional. For example, a Load has many dimensions of customization that we may
// eventually implement. A Load can have different alignments, alignment failure modes,
// temporality modes, trapping modes, ordering modes, etc. It's fine to put such flags into
// subclasses of Value, but in some cases that would be overkill, particularly since if you
// did that for a pure value then you'd also have to thread it through ValueKey. It's much
// easier to put it in Kind, and then your extra bit will get carried around by everyone who
// knows how to carry around Kinds. Most importantly, putting flags into Kind allows you to
// use them as part of B3::Value's dynamic cast facility. For example we could have a
// trapping Load that uses a Value subclass that has a stackmap while non-trapping Loads
// continue to use the normal MemoryValue.
//
// Note that any code in the compiler that transcribes IR (like a strength reduction that
// replaces an Add with a different Add, or even with a different opcode entirely) will
// probably drop unknown bits by default. This is definitely not correct for many bits (like
// isChill for Div/Mod and all of the envisioned Load/Store flags), so if you add a new bit
// you will probably have to audit the compiler to make sure that phases that transcribe
// your opcode do the right thing with your bit.
class Kind {
public:
Kind(Opcode opcode)
: m_opcode(opcode)
{
}
Kind()
: Kind(Oops)
{
}
Opcode opcode() const { return m_opcode; }
void setOpcode(Opcode opcode) { m_opcode = opcode; }
bool hasExtraBits() const { return m_isChill || m_traps; }
// Chill bit. This applies to division-based arithmetic ops, which may trap on some
// platforms or exhibit bizarre behavior when passed certain inputs. The non-chill
// version will behave as unpredictably as it wants. For example, it's legal to
// constant-fold Div(x, 0) to any value or to replace it with any effectful operation.
// But when it's chill, that means that the semantics when it would have trapped are
// the JS semantics. For example, Div<Chill>(@a, @b) means:
//
// ((a | 0) / (b | 0)) | 0
//
// And Mod<Chill>(a, b) means:
//
// ((a | 0) % (b | 0)) | 0
//
// Note that Div<Chill> matches exactly how ARM handles integer division.
bool hasIsChill() const
{
switch (m_opcode) {
case Div:
case Mod:
return true;
default:
return false;
}
}
bool isChill() const
{
return m_isChill;
}
void setIsChill(bool isChill)
{
ASSERT(hasIsChill());
m_isChill = isChill;
}
// Traps bit. This applies to memory access ops. It means that the instruction could
// trap as part of some check it performs, and that we mean to make this observable. This
// currently only applies to memory accesses (loads and stores). You don't get to find out where
// in the Procedure the trap happened. If you try to work it out using Origin, you'll have a bad
// time because the instruction selector is too sloppy with Origin().
// FIXME: https://bugs.webkit.org/show_bug.cgi?id=162688
bool hasTraps() const
{
switch (m_opcode) {
case Load8Z:
case Load8S:
case Load16Z:
case Load16S:
case Load:
case Store8:
case Store16:
case Store:
case AtomicWeakCAS:
case AtomicStrongCAS:
case AtomicXchgAdd:
case AtomicXchgAnd:
case AtomicXchgOr:
case AtomicXchgSub:
case AtomicXchgXor:
case AtomicXchg:
return true;
default:
return false;
}
}
bool traps() const
{
return m_traps;
}
void setTraps(bool traps)
{
ASSERT(hasTraps());
m_traps = traps;
}
static constexpr bool hasCloningForbidden(Opcode opcode)
{
switch (opcode) {
case Patchpoint:
return true;
default:
return false;
}
}
bool hasCloningForbidden() const
{
return hasCloningForbidden(m_opcode);
}
bool isCloningForbidden() const
{
return m_cloningForbidden;
}
void setIsCloningForbidden(bool isCloningForbidden)
{
ASSERT(hasCloningForbidden());
m_cloningForbidden = isCloningForbidden;
}
// Rules for adding new properties:
// - Put the accessors here.
// - hasBlah() should check if the opcode allows for your property.
// - blah() returns a default value if !hasBlah()
// - setBlah() asserts if !hasBlah()
// - Try not to increase the size of Kind too much. But it wouldn't be the end of the
// world if it bloated to 64 bits.
friend bool operator==(const Kind&, const Kind&) = default;
void dump(PrintStream&) const;
unsigned hash() const
{
// It's almost certainly more important that this hash function is cheap to compute than
// anything else. We can live with some kind hash collisions.
return m_opcode + (static_cast<unsigned>(m_isChill) << 16) + (static_cast<unsigned>(m_traps) << 7) + (static_cast<unsigned>(m_cloningForbidden) << 8);
}
Kind(WTF::HashTableDeletedValueType)
: m_opcode(Oops)
, m_isChill(true)
{
}
bool isHashTableDeletedValue() const
{
return *this == Kind(WTF::HashTableDeletedValue);
}
private:
Opcode m_opcode;
bool m_isChill : 1 { false };
bool m_traps : 1 { false };
bool m_cloningForbidden : 1 { false };
};
// For every flag 'foo' you add, it's customary to create a Kind B3::foo(Kind) function that makes
// a kind with the flag set. For example, for chill, this lets us say:
//
// block->appendNew<Value>(m_proc, chill(Mod), Origin(), a, b);
//
// I like to make the flag name fill in the sentence "Mod _____" (like "isChill" or "traps") while
// the flag constructor fills in the phrase "_____ Mod" (like "chill" or "trapping").
inline Kind chill(Kind kind)
{
kind.setIsChill(true);
return kind;
}
inline Kind trapping(Kind kind)
{
kind.setTraps(true);
return kind;
}
inline Kind cloningForbidden(Kind kind)
{
kind.setIsCloningForbidden(true);
return kind;
}
struct KindHash {
static unsigned hash(const Kind& key) { return key.hash(); }
static bool equal(const Kind& a, const Kind& b) { return a == b; }
static constexpr bool safeToCompareToEmptyOrDeleted = true;
};
} } // namespace JSC::B3
namespace WTF {
template<typename T> struct DefaultHash;
template<> struct DefaultHash<JSC::B3::Kind> : JSC::B3::KindHash { };
template<typename T> struct HashTraits;
template<> struct HashTraits<JSC::B3::Kind> : public SimpleClassHashTraits<JSC::B3::Kind> {
static constexpr bool emptyValueIsZero = false;
};
} // namespace WTF
#endif // ENABLE(B3_JIT)
#endif // B3Kind_h
|