1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
/*
* Copyright (C) 2015-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(B3_JIT)
#include "B3Origin.h"
#include "B3PCToOriginMap.h"
#include "B3SparseCollection.h"
#include "B3Type.h"
#include "B3ValueKey.h"
#include "JITOpaqueByproducts.h"
#include "PureNaN.h"
#include "RegisterAtOffsetList.h"
#include <wtf/Bag.h>
#include <wtf/FastMalloc.h>
#include <wtf/HashSet.h>
#include <wtf/IndexedContainerIterator.h>
#include <wtf/Noncopyable.h>
#include <wtf/PrintStream.h>
#include <wtf/SharedTask.h>
#include <wtf/TZoneMalloc.h>
#include <wtf/TriState.h>
#include <wtf/Vector.h>
namespace JSC {
class CCallHelpers;
namespace B3 {
class BackwardsCFG;
class BackwardsDominators;
class BasicBlock;
class BlockInsertionSet;
class CFG;
class Dominators;
class NaturalLoops;
class Value;
class Variable;
class WasmBoundsCheckValue;
namespace Air {
class Code;
class StackSlot;
} // namespace Air
typedef void WasmBoundsCheckGeneratorFunction(CCallHelpers&, WasmBoundsCheckValue*, GPRReg);
typedef SharedTask<WasmBoundsCheckGeneratorFunction> WasmBoundsCheckGenerator;
// This represents B3's view of a piece of code. Note that this object must exist in a 1:1
// relationship with Air::Code. B3::Procedure and Air::Code are just different facades of the B3
// compiler's knowledge about a piece of code. Some kinds of state aren't perfect fits for either
// Procedure or Code, and are placed in one or the other based on convenience. Procedure always
// allocates a Code, and a Code cannot be allocated without an owning Procedure and they always
// have references to each other.
class Procedure {
WTF_MAKE_NONCOPYABLE(Procedure);
WTF_MAKE_TZONE_ALLOCATED(Procedure);
public:
JS_EXPORT_PRIVATE Procedure(bool usesSIMD = false);
JS_EXPORT_PRIVATE ~Procedure();
template<typename Callback>
void setOriginPrinter(Callback&& callback)
{
m_originPrinter = createSharedTask<void(PrintStream&, Origin)>(
std::forward<Callback>(callback));
}
// Usually you use this via OriginDump, though it's cool to use it directly.
void printOrigin(PrintStream& out, Origin origin) const;
// This is a debugging hack. Sometimes while debugging B3 you need to break the abstraction
// and get at the DFG Graph, or whatever data structure the frontend used to describe the
// program. The FTL passes the DFG Graph.
void setFrontendData(const void* value) { m_frontendData = value; }
const void* frontendData() const { return m_frontendData; }
JS_EXPORT_PRIVATE BasicBlock* addBlock(double frequency = 1);
// Changes the order of basic blocks to be as in the supplied vector. The vector does not
// need to mention every block in the procedure. Blocks not mentioned will be placed after
// these blocks in the same order as they were in originally.
template<typename BlockIterable>
void setBlockOrder(const BlockIterable& iterable)
{
Vector<BasicBlock*> blocks;
for (BasicBlock* block : iterable)
blocks.append(block);
setBlockOrderImpl(blocks);
}
JS_EXPORT_PRIVATE Air::StackSlot* addStackSlot(uint64_t byteSize);
JS_EXPORT_PRIVATE Variable* addVariable(Type);
JS_EXPORT_PRIVATE Type addTuple(Vector<Type>&& types);
const Vector<Vector<Type>>& tuples() const { return m_tuples; };
bool isValidTuple(Type tuple) const;
Type extractFromTuple(Type tuple, unsigned index) const;
JS_EXPORT_PRIVATE const Vector<Type>& tupleForType(Type tuple) const;
unsigned resultCount(Type type) const { return type.isTuple() ? tupleForType(type).size() : type.isNumeric(); }
Type typeAtOffset(Type type, unsigned index) const { ASSERT(index < resultCount(type)); return type.isTuple() ? extractFromTuple(type, index) : type; }
template<typename ValueType, typename... Arguments>
ValueType* add(Arguments...);
Value* clone(Value*);
Value* addIntConstant(Origin, Type, int64_t value);
Value* addIntConstant(Value*, int64_t value);
// bits is a std::bit_cast of the constant you want.
JS_EXPORT_PRIVATE Value* addConstant(Origin, Type, uint64_t bits);
JS_EXPORT_PRIVATE Value* addConstant(Origin, Type, v128_t bits);
// You're guaranteed that bottom is zero.
Value* addBottom(Origin, Type);
Value* addBottom(Value*);
// Returns null for TriState::Indeterminate.
Value* addBoolConstant(Origin, TriState);
void resetValueOwners();
JS_EXPORT_PRIVATE void resetReachability();
// This destroys CFG analyses. If we ask for them again, we will recompute them. Usually you
// should call this anytime you call resetReachability().
void invalidateCFG();
JS_EXPORT_PRIVATE void dump(PrintStream&) const;
unsigned size() const { return m_blocks.size(); }
BasicBlock* at(unsigned index) const { return m_blocks[index].get(); }
BasicBlock* operator[](unsigned index) const { return at(index); }
typedef WTF::IndexedContainerIterator<Procedure> iterator;
iterator begin() const { return iterator(*this, 0); }
iterator end() const { return iterator(*this, size()); }
Vector<BasicBlock*> blocksInPreOrder();
Vector<BasicBlock*> blocksInPostOrder();
SparseCollection<Air::StackSlot>& stackSlots();
const SparseCollection<Air::StackSlot>& stackSlots() const;
SparseCollection<Variable>& variables() { return m_variables; }
const SparseCollection<Variable>& variables() const { return m_variables; }
// Short for variables().remove(). It's better to call this method since it's out of line.
void deleteVariable(Variable*);
SparseCollection<Value>& values() { return m_values; }
const SparseCollection<Value>& values() const { return m_values; }
// Short for values().remove(). It's better to call this method since it's out of line.
void deleteValue(Value*);
// A valid procedure cannot contain any orphan values. An orphan is a value that is not in
// any basic block. It is possible to create an orphan value during code generation or during
// transformation. If you know that you may have created some, you can call this method to
// delete them, making the procedure valid again.
void deleteOrphans();
CFG& cfg() const { return *m_cfg; }
Dominators& dominators();
JS_EXPORT_PRIVATE NaturalLoops& naturalLoops();
BackwardsCFG& backwardsCFG();
BackwardsDominators& backwardsDominators();
void addFastConstant(const ValueKey&);
bool isFastConstant(const ValueKey&);
unsigned numEntrypoints() const { return m_numEntrypoints; }
JS_EXPORT_PRIVATE void setNumEntrypoints(unsigned);
// The name has to be a string literal, since we don't do any memory management for the string.
void setLastPhaseName(const char* name)
{
m_lastPhaseName = name;
}
const char* lastPhaseName() const { return m_lastPhaseName; }
// Allocates a slab of memory that will be kept alive by anyone who keeps the resulting code
// alive. Great for compiler-generated data sections, like switch jump tables and constant pools.
// This returns memory that has been zero-initialized.
JS_EXPORT_PRIVATE void* addDataSection(size_t);
// Some operations are specified in B3 IR to behave one way but on this given CPU they behave a
// different way. When true, those B3 IR ops switch to behaving the CPU way, and the optimizer may
// start taking advantage of it.
//
// One way to think of it is like this. Imagine that you find that the cleanest way of lowering
// something in lowerMacros is to unconditionally replace one opcode with another. This is a shortcut
// where you instead keep the same opcode, but rely on the opcode's meaning changes once lowerMacros
// sets hasQuirks.
bool hasQuirks() const { return m_hasQuirks; }
void setHasQuirks(bool value) { m_hasQuirks = value; }
OpaqueByproducts& byproducts() { return *m_byproducts; }
// Below are methods that make sense to call after you have generated code for the procedure.
// You have to call this method after calling generate(). The code generated by B3::generate()
// will require you to keep this object alive for as long as that code is runnable. Usually, this
// just keeps alive things like the double constant pool and switch lookup tables. If this sounds
// confusing, you should probably be using the JSC::Compilation API to compile code. If you use
// that API, then you don't have to worry about this.
std::unique_ptr<OpaqueByproducts> releaseByproducts() { return WTFMove(m_byproducts); }
// This gives you direct access to Code. However, the idea is that clients of B3 shouldn't have to
// call this. So, Procedure has some methods (below) that expose some Air::Code functionality.
const Air::Code& code() const { return *m_code; }
Air::Code& code() { return *m_code; }
unsigned callArgAreaSizeInBytes() const;
void requestCallArgAreaSizeInBytes(unsigned size);
// This tells the register allocators to stay away from this register.
JS_EXPORT_PRIVATE void pinRegister(Reg);
JS_EXPORT_PRIVATE void setOptLevel(unsigned value);
unsigned optLevel() const { return m_optLevel; }
// You can turn off used registers calculation. This may speed up compilation a bit. But if
// you turn it off then you cannot use StackmapGenerationParams::usedRegisters() or
// StackmapGenerationParams::unavailableRegisters().
void setNeedsUsedRegisters(bool value) { m_needsUsedRegisters = value; }
bool needsUsedRegisters() const { return m_needsUsedRegisters; }
JS_EXPORT_PRIVATE unsigned frameSize() const;
JS_EXPORT_PRIVATE RegisterAtOffsetList calleeSaveRegisterAtOffsetList() const;
PCToOriginMap& pcToOriginMap() { return m_pcToOriginMap; }
PCToOriginMap releasePCToOriginMap()
{
RELEASE_ASSERT(needsPCToOriginMap());
return WTFMove(m_pcToOriginMap);
}
JS_EXPORT_PRIVATE void setWasmBoundsCheckGenerator(RefPtr<WasmBoundsCheckGenerator>);
template<typename Functor>
void setWasmBoundsCheckGenerator(const Functor& functor)
{
setWasmBoundsCheckGenerator(RefPtr<WasmBoundsCheckGenerator>(createSharedTask<WasmBoundsCheckGeneratorFunction>(functor)));
}
JS_EXPORT_PRIVATE RegisterSetBuilder mutableGPRs();
void setNeedsPCToOriginMap();
bool needsPCToOriginMap() { return m_needsPCToOriginMap; }
JS_EXPORT_PRIVATE void freeUnneededB3ValuesAfterLowering();
bool shouldDumpIR() const { return m_shouldDumpIR; }
JS_EXPORT_PRIVATE void setShouldDumpIR();
void setUsessSIMD()
{
RELEASE_ASSERT(Options::useWasmSIMD());
m_usesSIMD = true;
}
bool usesSIMD() const
{
// See also: WasmModuleInformation::usesSIMD().
if (!Options::useWasmSIMD())
return false;
if (Options::forceAllFunctionsToUseSIMD())
return true;
// The LLInt discovers this value.
ASSERT(Options::useWasmLLInt() || Options::useWasmIPInt());
return m_usesSIMD;
}
private:
friend class BlockInsertionSet;
JS_EXPORT_PRIVATE Value* addValueImpl(Value*);
void setBlockOrderImpl(Vector<BasicBlock*>&);
SparseCollection<Variable> m_variables;
Vector<Vector<Type>> m_tuples;
Vector<std::unique_ptr<BasicBlock>> m_blocks;
SparseCollection<Value> m_values;
std::unique_ptr<CFG> m_cfg;
std::unique_ptr<Dominators> m_dominators;
std::unique_ptr<NaturalLoops> m_naturalLoops;
std::unique_ptr<BackwardsCFG> m_backwardsCFG;
std::unique_ptr<BackwardsDominators> m_backwardsDominators;
UncheckedKeyHashSet<ValueKey> m_fastConstants;
const char* m_lastPhaseName;
std::unique_ptr<OpaqueByproducts> m_byproducts;
std::unique_ptr<Air::Code> m_code;
RefPtr<SharedTask<void(PrintStream&, Origin)>> m_originPrinter;
const void* m_frontendData;
PCToOriginMap m_pcToOriginMap;
unsigned m_numEntrypoints { 1 };
unsigned m_optLevel { defaultOptLevel() };
bool m_needsUsedRegisters { true };
bool m_hasQuirks { false };
bool m_needsPCToOriginMap { false };
bool m_shouldDumpIR { false };
bool m_usesSIMD { false };
};
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)
|