1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*
* Copyright (C) 2015-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(B3_JIT)
#include "B3ConstrainedValue.h"
#include "B3Value.h"
#include "B3ValueRep.h"
#include "RegisterSet.h"
#include <wtf/SharedTask.h>
namespace JSC {
class CCallHelpers;
namespace B3 {
class StackmapGenerationParams;
typedef void StackmapGeneratorFunction(CCallHelpers&, const StackmapGenerationParams&);
typedef SharedTask<StackmapGeneratorFunction> StackmapGenerator;
class JS_EXPORT_PRIVATE StackmapValue : public Value {
public:
static bool accepts(Kind kind)
{
// This needs to include opcodes of all subclasses.
switch (kind.opcode()) {
case CheckAdd:
case CheckSub:
case CheckMul:
case Check:
case Patchpoint:
return true;
default:
return false;
}
}
~StackmapValue() override;
// Use this to add children.
void append(const ConstrainedValue& value)
{
ASSERT(value.value()->type().isNumeric());
append(value.value(), value.rep());
}
void append(Value*, const ValueRep&);
template<typename VectorType>
void appendVector(const VectorType& vector)
{
for (const auto& value : vector)
append(value);
}
// Helper for appending a bunch of values with some ValueRep.
template<typename VectorType>
void appendVectorWithRep(const VectorType& vector, const ValueRep& rep)
{
for (Value* value : vector)
append(value, rep);
}
// Helper for appending cold any's. This often used by clients to implement OSR.
template<typename VectorType>
void appendColdAnys(const VectorType& vector)
{
appendVectorWithRep(vector, ValueRep::ColdAny);
}
template<typename VectorType>
void appendLateColdAnys(const VectorType& vector)
{
appendVectorWithRep(vector, ValueRep::LateColdAny);
}
// This is a helper for something you might do a lot of: append a value that should be constrained
// to SomeRegister.
void appendSomeRegister(Value*);
void appendSomeRegisterWithClobber(Value*);
const Vector<ValueRep>& reps() const { return m_reps; }
// Stackmaps allow you to specify that the operation may clobber some registers. Clobbering a register
// means that the operation appears to store a value into the register, but the compiler doesn't
// assume to know anything about what kind of value might have been stored. In B3's model of
// execution, registers are read or written at instruction boundaries rather than inside the
// instructions themselves. A register could be read or written immediately before the instruction
// executes, or immediately after. Note that at a boundary between instruction A and instruction B we
// simultaneously look at what A does after it executes and what B does before it executes. This is
// because when the compiler considers what happens to registers, it views the boundary between two
// instructions as a kind of atomic point where the late effects of A happen at the same time as the
// early effects of B.
//
// The compiler views a stackmap as a single instruction, even though of course the stackmap may be
// composed of any number of instructions (if it's a Patchpoint). You can claim that a stackmap value
// clobbers a set of registers before the stackmap's instruction or after. Clobbering before is called
// early clobber, while clobbering after is called late clobber.
//
// This is quite flexible but it has its limitations. Any register listed as an early clobber will
// interfere with all uses of the stackmap. Any register listed as a late clobber will interfere with
// all defs of the stackmap (i.e. the result). This means that it's currently not possible to claim
// to clobber a register while still allowing that register to be used for both an input and an output
// of the instruction. It just so happens that B3's sole client (the FTL) currently never wants to
// convey such a constraint, but it will want it eventually (FIXME:
// https://bugs.webkit.org/show_bug.cgi?id=151823).
//
// Note that a common use case of early clobber sets is to indicate that this is the set of registers
// that shall not be used for inputs to the value. But B3 supports two different ways of specifying
// this, the other being LateUse in combination with late clobber (not yet available to stackmaps
// directly, FIXME: https://bugs.webkit.org/show_bug.cgi?id=151335). A late use makes the use of that
// value appear to happen after the instruction. This means that a late use cannot use the same
// register as the result and it cannot use the same register as either early or late clobbered
// registers. Late uses are usually a better way of saying that a clobbered register cannot be used
// for an input. Early clobber means that some register(s) interfere with *all* inputs, while LateUse
// means that some value interferes with whatever is live after the instruction. Below is a list of
// examples of how the FTL can handle its various kinds of scenarios using a combination of early
// clobber, late clobber, and late use. These examples are for X86_64, w.l.o.g.
//
// Basic ById patchpoint: Early and late clobber of r11. Early clobber prevents any inputs from using
// r11 since that would mess with the MacroAssembler's assumptions when we
// AllowMacroScratchRegisterUsage. Late clobber tells B3 that the patchpoint may overwrite r11.
//
// ById patchpoint in a try block with some live state: This might throw an exception after already
// assigning to the result. So, this should LateUse all stackmap values to ensure that the stackmap
// values don't interfere with the result. Note that we do not LateUse the non-OSR inputs of the ById
// since LateUse implies that the use is cold: the register allocator will assume that the use is not
// important for the critical path. Also, early and late clobber of r11.
//
// Basic ByIdFlush patchpoint: We could do Flush the same way we did it with LLVM: ignore it and let
// PolymorphicAccess figure it out. Or, we could add internal clobber support (FIXME:
// https://bugs.webkit.org/show_bug.cgi?id=151823). Or, we could do it by early clobbering r11, late
// clobbering all volatile registers, and constraining the result to some register. Or, we could do
// that but leave the result constrained to SomeRegister, which will cause it to use a callee-save
// register. Internal clobber support would allow us to use SomeRegister while getting the result into
// a volatile register.
//
// ByIdFlush patchpoint in a try block with some live state: LateUse all for-OSR stackmap values,
// early clobber of r11 to prevent the other inputs from using r11, and late clobber of all volatile
// registers to make way for the call. To handle the result, we could do any of what is listed in the
// previous paragraph.
//
// Basic JS call: Force all non-OSR inputs into specific locations (register, stack, whatever).
// All volatile registers are late-clobbered. The output is constrained to a register as well.
//
// JS call in a try block with some live state: LateUse all for-OSR stackmap values, fully constrain
// all non-OSR inputs and the result, and late clobber all volatile registers.
//
// JS tail call: Pass all inputs as a warm variant of Any (FIXME:
// https://bugs.webkit.org/show_bug.cgi?id=151811).
//
// Note that we cannot yet do all of these things because although Air already supports all of these
// various forms of uses (LateUse and warm unconstrained use), B3 doesn't yet expose all of it. The
// bugs are:
// https://bugs.webkit.org/show_bug.cgi?id=151335 (LateUse)
// https://bugs.webkit.org/show_bug.cgi?id=151811 (warm Any)
void clobberEarly(const RegisterSetBuilder& set)
{
m_earlyClobbered.merge(set);
}
void clobberLate(const RegisterSetBuilder& set)
{
m_lateClobbered.merge(set);
}
void clobber(const RegisterSetBuilder& set)
{
clobberEarly(set);
clobberLate(set);
}
RegisterSetBuilder& earlyClobbered() { return m_earlyClobbered; }
RegisterSetBuilder& lateClobbered() { return m_lateClobbered; }
const RegisterSetBuilder& earlyClobbered() const { return m_earlyClobbered; }
const RegisterSetBuilder& lateClobbered() const { return m_lateClobbered; }
void setGenerator(RefPtr<StackmapGenerator> generator)
{
m_generator = generator;
}
template<typename Functor>
void setGenerator(const Functor& functor)
{
m_generator = createSharedTask<StackmapGeneratorFunction>(functor);
}
RefPtr<StackmapGenerator> generator() const { return m_generator; }
ConstrainedValue constrainedChild(unsigned index) const
{
return ConstrainedValue(child(index), index < m_reps.size() ? m_reps[index] : ValueRep::ColdAny);
}
void setConstrainedChild(unsigned index, const ConstrainedValue&);
void setConstraint(unsigned index, const ValueRep&);
class ConstrainedValueCollection {
public:
ConstrainedValueCollection(const StackmapValue& value)
: m_value(value)
{
}
unsigned size() const { return m_value.numChildren(); }
ConstrainedValue at(unsigned index) const { return m_value.constrainedChild(index); }
ConstrainedValue operator[](unsigned index) const { return at(index); }
class iterator {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = ConstrainedValue;
using difference_type = int;
using pointer = void;
using reference = ConstrainedValue;
iterator()
: m_collection(nullptr)
, m_index(0)
{
}
iterator(const ConstrainedValueCollection& collection, unsigned index)
: m_collection(&collection)
, m_index(index)
{
}
ConstrainedValue operator*() const
{
return m_collection->at(m_index);
}
iterator& operator++()
{
m_index++;
return *this;
}
bool operator==(const iterator& other) const
{
ASSERT(m_collection == other.m_collection);
return m_index == other.m_index;
}
private:
const ConstrainedValueCollection* m_collection;
unsigned m_index;
};
iterator begin() const { return iterator(*this, 0); }
iterator end() const { return iterator(*this, size()); }
private:
const StackmapValue& m_value;
};
ConstrainedValueCollection constrainedChildren() const
{
return ConstrainedValueCollection(*this);
}
B3_SPECIALIZE_VALUE_FOR_VARARGS_CHILDREN
protected:
void dumpChildren(CommaPrinter&, PrintStream&) const override;
void dumpMeta(CommaPrinter&, PrintStream&) const override;
StackmapValue(CheckedOpcodeTag, Kind, Type, Origin);
private:
friend class CheckSpecial;
friend class PatchpointSpecial;
friend class StackmapGenerationParams;
friend class StackmapSpecial;
Vector<ValueRep> m_reps;
RefPtr<StackmapGenerator> m_generator;
RegisterSetBuilder m_earlyClobbered;
RegisterSetBuilder m_lateClobbered;
RegisterSetBuilder m_usedRegisters; // Stackmaps could be further duplicated by Air, but that's unlikely, so we just merge the used registers sets if that were to happen.
};
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)
|