File: B3Value.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (1052 lines) | stat: -rw-r--r-- 37,702 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
/*
 * Copyright (C) 2015-2023 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#pragma once

#if ENABLE(B3_JIT)

#include "B3Bank.h"
#include "B3Effects.h"
#include "B3FrequentedBlock.h"
#include "B3Kind.h"
#include "B3Origin.h"
#include "B3SparseCollection.h"
#include "B3Type.h"
#include "B3ValueKey.h"
#include "B3Width.h"
#include <wtf/CommaPrinter.h>
#include <wtf/IteratorRange.h>
#include <wtf/StdLibExtras.h>
#include <wtf/TZoneMalloc.h>
#include <wtf/TriState.h>

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace JSC { namespace B3 {

class BasicBlock;
class CheckValue;
class InsertionSet;
class SIMDValue;
class PhiChildren;
class Procedure;

class JS_EXPORT_PRIVATE Value {
    WTF_MAKE_TZONE_ALLOCATED(Value);
public:
    static const char* const dumpPrefix;

    static bool accepts(Kind) { return true; }

    virtual ~Value();

    unsigned index() const { return m_index; }
    
    // Note that the kind is immutable, except for replacing values with:
    // Identity, Nop, Oops, Jump, and Phi. See below for replaceWithXXX() methods.
    Kind kind() const { return m_kind; }
    
    Opcode opcode() const { return kind().opcode(); }
    
    // Note that the kind is meant to be immutable. Do this when you know that this is safe. It's not
    // usually safe.
    void setKindUnsafely(Kind kind) { m_kind = kind; }
    void setOpcodeUnsafely(Opcode opcode) { m_kind.setOpcode(opcode); }
    
    // It's good practice to mirror Kind methods here, so you can say value->isBlah()
    // instead of value->kind().isBlah().
    bool isChill() const { return kind().isChill(); }
    bool traps() const { return kind().traps(); }

    Origin origin() const { return m_origin; }
    void setOrigin(Origin origin) { m_origin = origin; }
    
    Type type() const { return m_type; }
    void setType(Type type) { m_type = type; }

    // This is useful when lowering. Note that this is only valid for non-void values.
    Bank resultBank() const { return bankForType(type()); }
    Width resultWidth() const { return widthForType(type()); }

    unsigned numChildren() const
    {
        if (m_numChildren == VarArgs)
            return childrenVector().size();
        return m_numChildren;
    }
    
    Value*& child(unsigned index)
    {
        ASSERT(index < numChildren());
        return m_numChildren == VarArgs ? childrenVector()[index] : childrenArray()[index];
    }
    Value* child(unsigned index) const
    {
        ASSERT(index < numChildren());
        return m_numChildren == VarArgs ? childrenVector()[index] : childrenArray()[index];
    }
    
    Value*& lastChild()
    {
        if (m_numChildren == VarArgs)
            return childrenVector().last();
        ASSERT(m_numChildren >= 1);
        return childrenArray()[m_numChildren - 1];
    }
    Value* lastChild() const
    {
        if (m_numChildren == VarArgs)
            return childrenVector().last();
        ASSERT(m_numChildren >= 1);
        return childrenArray()[m_numChildren - 1];
    }

    WTF::IteratorRange<Value**> children()
    {
        if (m_numChildren == VarArgs) {
            Vector<Value*, 3>& vec = childrenVector();
            return WTF::makeIteratorRange(&*vec.begin(), &*vec.end());
        }
        Value** buffer = childrenArray();
        return {buffer, buffer + m_numChildren };
    }
    WTF::IteratorRange<Value* const*> children() const
    {
        if (m_numChildren == VarArgs) {
            const Vector<Value*, 3>& vec = childrenVector();
            return WTF::makeIteratorRange(&*vec.begin(), &*vec.end());
        }
        Value* const* buffer = childrenArray();
        return {buffer, buffer + m_numChildren };
    }

    // If you want to replace all uses of this value with a different value, then replace this
    // value with Identity. Then do a pass of performSubstitution() on all of the values that use
    // this one. Usually we do all of this in one pass in pre-order, which ensures that the
    // X->replaceWithIdentity() calls happen before the performSubstitution() calls on X's users.
    void replaceWithIdentity(Value*);
    
    // It's often necessary to kill a value. It's tempting to replace the value with Nop or to
    // just remove it. But unless you are sure that the value is Void, you will probably still
    // have other values that use this one. Sure, you may kill those later, or you might not. This
    // method lets you kill a value safely. It will replace Void values with Nop and non-Void
    // values with Identities on bottom constants. For this reason, this takes a callback that is
    // responsible for creating bottoms. There's a utility for this, see B3BottomProvider.h. You
    // can also access that utility using replaceWithBottom(InsertionSet&, size_t).
    //
    // You're guaranteed that bottom is zero.
    template<typename BottomProvider>
    void replaceWithBottom(const BottomProvider&);
    
    void replaceWithBottom(InsertionSet&, size_t index);

    // Use this if you want to kill a value and you are sure that the value is Void.
    void replaceWithNop();
    
    // Use this if you want to kill a value and you are sure that nobody is using it anymore.
    void replaceWithNopIgnoringType();
    
    void replaceWithPhi();
    
    // These transformations are only valid for terminals.
    void replaceWithJump(BasicBlock* owner, FrequentedBlock);
    void replaceWithOops(BasicBlock* owner);
    
    // You can use this form if owners are valid. They're usually not valid.
    void replaceWithJump(FrequentedBlock);
    void replaceWithOops();

    void dump(PrintStream&) const;
    void deepDump(const Procedure*, PrintStream&) const;
    
    virtual void dumpSuccessors(const BasicBlock*, PrintStream&) const;

    // This is how you cast Values. For example, if you want to do something provided that we have a
    // ArgumentRegValue, you can do:
    //
    // if (ArgumentRegValue* argumentReg = value->as<ArgumentRegValue>()) {
    //     things
    // }
    //
    // This will return null if this kind() != ArgumentReg. This works because this returns nullptr
    // if T::accepts(kind()) returns false.
    template<typename T>
    T* as();
    template<typename T>
    const T* as() const;

    // What follows are a bunch of helpers for inspecting and modifying values. Note that we have a
    // bunch of different idioms for implementing such helpers. You can use virtual methods, and
    // override from the various Value subclasses. You can put the method inside Value and make it
    // non-virtual, and the implementation can switch on kind. The method could be inline or not.
    // If a method is specific to some Value subclass, you could put it in the subclass, or you could
    // put it on Value anyway. It's fine to pick whatever feels right, and we shouldn't restrict
    // ourselves to any particular idiom.

    bool isConstant() const;
    bool isInteger() const;
    
    virtual Value* negConstant(Procedure&) const;
    virtual Value* addConstant(Procedure&, int32_t other) const;
    virtual Value* addConstant(Procedure&, const Value* other) const;
    virtual Value* subConstant(Procedure&, const Value* other) const;
    virtual Value* mulConstant(Procedure&, const Value* other) const;
    virtual Value* checkAddConstant(Procedure&, const Value* other) const;
    virtual Value* checkSubConstant(Procedure&, const Value* other) const;
    virtual Value* checkMulConstant(Procedure&, const Value* other) const;
    virtual Value* checkNegConstant(Procedure&) const;
    virtual Value* divConstant(Procedure&, const Value* other) const; // This chooses Div<Chill> semantics for integers.
    virtual Value* uDivConstant(Procedure&, const Value* other) const;
    virtual Value* modConstant(Procedure&, const Value* other) const; // This chooses Mod<Chill> semantics.
    virtual Value* uModConstant(Procedure&, const Value* other) const;
    virtual Value* fMinConstant(Procedure&, const Value* other) const;
    virtual Value* fMaxConstant(Procedure&, const Value* other) const;
    virtual Value* bitAndConstant(Procedure&, const Value* other) const;
    virtual Value* bitOrConstant(Procedure&, const Value* other) const;
    virtual Value* bitXorConstant(Procedure&, const Value* other) const;
    virtual Value* shlConstant(Procedure&, const Value* other) const;
    virtual Value* sShrConstant(Procedure&, const Value* other) const;
    virtual Value* zShrConstant(Procedure&, const Value* other) const;
    virtual Value* rotRConstant(Procedure&, const Value* other) const;
    virtual Value* rotLConstant(Procedure&, const Value* other) const;
    virtual Value* bitwiseCastConstant(Procedure&) const;
    virtual Value* iToDConstant(Procedure&) const;
    virtual Value* iToFConstant(Procedure&) const;
    virtual Value* doubleToFloatConstant(Procedure&) const;
    virtual Value* floatToDoubleConstant(Procedure&) const;
    virtual Value* absConstant(Procedure&) const;
    virtual Value* ceilConstant(Procedure&) const;
    virtual Value* floorConstant(Procedure&) const;
    virtual Value* fTruncConstant(Procedure&) const;
    virtual Value* sqrtConstant(Procedure&) const;
    virtual Value* purifyNaNConstant(Procedure&) const;

    virtual Value* vectorAndConstant(Procedure&, const Value* other) const;
    virtual Value* vectorOrConstant(Procedure&, const Value* other) const;
    virtual Value* vectorXorConstant(Procedure&, const Value* other) const;

    virtual TriState equalConstant(const Value* other) const;
    virtual TriState notEqualConstant(const Value* other) const;
    virtual TriState lessThanConstant(const Value* other) const;
    virtual TriState greaterThanConstant(const Value* other) const;
    virtual TriState lessEqualConstant(const Value* other) const;
    virtual TriState greaterEqualConstant(const Value* other) const;
    virtual TriState aboveConstant(const Value* other) const;
    virtual TriState belowConstant(const Value* other) const;
    virtual TriState aboveEqualConstant(const Value* other) const;
    virtual TriState belowEqualConstant(const Value* other) const;
    virtual TriState equalOrUnorderedConstant(const Value* other) const;

    // If the value is a comparison then this returns the inverted form of that comparison, if
    // possible. It can be impossible for double comparisons, where for example LessThan and
    // GreaterEqual behave differently. If this returns a value, it is a new value, which must be
    // either inserted into some block or deleted.
    Value* invertedCompare(Procedure&) const;

    bool hasInt32() const;
    int32_t asInt32() const;
    bool isInt32(int32_t) const;
    
    bool hasInt64() const;
    int64_t asInt64() const;
    bool isInt64(int64_t) const;

    bool hasInt() const;
    int64_t asInt() const;
    bool isInt(int64_t value) const;

    bool hasIntPtr() const;
    intptr_t asIntPtr() const;
    bool isIntPtr(intptr_t) const;

    bool hasDouble() const;
    double asDouble() const;
    bool isEqualToDouble(double) const; // We say "isEqualToDouble" because "isDouble" would be a bit equality.

    bool hasFloat() const;
    float asFloat() const;

    bool hasV128() const;
    v128_t asV128() const;
    bool isV128(v128_t) const;

    bool hasNumber() const;
    template<typename T> bool isRepresentableAs() const;
    template<typename T> T asNumber() const;

    // Booleans in B3 are Const32(0) or Const32(1). So this is true if the type is Int32 and the only
    // possible return values are 0 or 1. It's OK for this method to conservatively return false.
    bool returnsBool() const;

    bool isNegativeZero() const;

    bool isRounded() const;

    TriState asTriState() const;
    bool isLikeZero() const { return asTriState() == TriState::False; }
    bool isLikeNonZero() const { return asTriState() == TriState::True; }

    bool isSIMDValue() const;
    SIMDValue* asSIMDValue();

    Effects effects() const;

    // This returns a ValueKey that describes that this Value returns when it executes. Returns an
    // empty ValueKey if this Value is impure. Note that an operation that returns Void could still
    // have a non-empty ValueKey. This happens for example with Check operations.
    ValueKey key() const;
    
    Value* foldIdentity() const;

    // Makes sure that none of the children are Identity's. If a child points to Identity, this will
    // repoint it at the Identity's child. For simplicity, this will follow arbitrarily long chains
    // of Identity's.
    bool performSubstitution();
    
    // Free values are those whose presence is guaranteed not to hurt code. We consider constants,
    // Identities, and Nops to be free. Constants are free because we hoist them to an optimal place.
    // Identities and Nops are free because we remove them.
    bool isFree() const;

    // Walk the ancestors of this value (i.e. the graph of things it transitively uses). This
    // either walks phis or not, depending on whether PhiChildren is null. Your callback gets
    // called with the signature:
    //
    //     (Value*) -> WalkStatus
    enum WalkStatus {
        Continue,
        IgnoreChildren,
        Stop
    };
    template<typename Functor>
    void walk(const Functor& functor, PhiChildren* = nullptr);

    // B3 purposefully only represents signed 32-bit offsets because that's what x86 can encode, and
    // ARM64 cannot encode anything bigger. The IsLegalOffset type trait is then used on B3 Value
    // methods to prevent implicit conversions by C++ from invalid offset types: these cause compilation
    // to fail, instead of causing implementation-defined behavior (which often turns to exploit).
    // OffsetType isn't sufficient to determine offset validity! Each Value opcode further has an
    // isLegalOffset runtime method used to determine value legality at runtime. This is exposed to users
    // of B3 to force them to reason about the target's offset.
    typedef int32_t OffsetType;
    template<typename Int>
    struct IsLegalOffset {
        static constexpr bool value = std::is_integral<Int>::value
            && std::is_signed<Int>::value
            && sizeof(Int) <= sizeof(OffsetType);
    };

protected:
    Value* cloneImpl() const;

    void replaceWith(Kind, Type, BasicBlock*);
    void replaceWith(Kind, Type, BasicBlock*, Value*);

    virtual void dumpChildren(CommaPrinter&, PrintStream&) const;
    virtual void dumpMeta(CommaPrinter&, PrintStream&) const;

    // The specific value of VarArgs does not matter, but the value of the others is assumed to match their meaning.
    enum NumChildren : uint8_t { Zero = 0, One = 1, Two = 2, Three = 3, VarArgs = 4};

    char* childrenAlloc() { return std::bit_cast<char*>(this) + m_adjacencyListOffset; }
    const char* childrenAlloc() const { return std::bit_cast<const char*>(this) + m_adjacencyListOffset; }
    Vector<Value*, 3>& childrenVector()
    {
        ASSERT(m_numChildren == VarArgs);
        return *std::bit_cast<Vector<Value*, 3>*>(childrenAlloc());
    }
    const Vector<Value*, 3>& childrenVector() const
    {
        ASSERT(m_numChildren == VarArgs);
        return *std::bit_cast<Vector<Value*, 3> const*>(childrenAlloc());
    }
    Value** childrenArray()
    {
        ASSERT(m_numChildren != VarArgs);
        return std::bit_cast<Value**>(childrenAlloc());
    }
    Value* const* childrenArray() const
    {
        ASSERT(m_numChildren != VarArgs);
        return std::bit_cast<Value* const*>(childrenAlloc());
    }

    template<typename... Arguments>
    static Opcode opcodeFromConstructor(Kind kind, Arguments...) { return kind.opcode(); }
    ALWAYS_INLINE static size_t adjacencyListSpace(Kind kind)
    {
        switch (kind.opcode()) {
        case FramePointer:
        case Nop:
        case Phi:
        case Jump:
        case Oops:
        case EntrySwitch:
        case ArgumentReg:
        case Const32:
        case Const64:
        case ConstFloat:
        case ConstDouble:
        case Const128:
        case BottomTuple:
        case Fence:
        case SlotBase:
        case Get:
            return 0;
        case Return:
        case Identity:
        case Opaque:
        case Neg:
        case PurifyNaN:
        case Clz:
        case Abs:
        case Ceil:
        case Floor:
        case FTrunc:
        case Sqrt:
        case SExt8:
        case SExt16:
        case Trunc:
        case TruncHigh:
        case SExt8To64:
        case SExt16To64:
        case SExt32:
        case ZExt32:
        case FloatToDouble:
        case IToD:
        case DoubleToFloat:
        case IToF:
        case BitwiseCast:
        case Branch:
        case Depend:
        case Load8Z:
        case Load8S:
        case Load16Z:
        case Load16S:
        case Load:
        case Switch:
        case Upsilon:
        case Extract:
        case Set:
        case WasmAddress:
        case WasmBoundsCheck:
        case VectorExtractLane:
        case VectorSplat:
        case VectorNot:
        case VectorAbs:
        case VectorNeg:
        case VectorPopcnt:
        case VectorCeil:
        case VectorFloor:
        case VectorTrunc:
        case VectorTruncSat:
        case VectorRelaxedTruncSat:
        case VectorConvert:
        case VectorConvertLow:
        case VectorNearest:
        case VectorSqrt:
        case VectorExtendLow:
        case VectorExtendHigh:
        case VectorPromote:
        case VectorDemote:
        case VectorBitmask:
        case VectorAnyTrue: 
        case VectorAllTrue:
        case VectorExtaddPairwise:
        case VectorDupElement:
            return sizeof(Value*);
        case Add:
        case Sub:
        case Mul:
        case Div:
        case UDiv:
        case Mod:
        case UMod:
        case FMin:
        case FMax:
        case BitAnd:
        case BitOr:
        case BitXor:
        case Shl:
        case SShr:
        case ZShr:
        case RotR:
        case RotL:
        case Equal:
        case NotEqual:
        case LessThan:
        case GreaterThan:
        case LessEqual:
        case GreaterEqual:
        case Above:
        case Below:
        case AboveEqual:
        case BelowEqual:
        case EqualOrUnordered:
        case AtomicXchgAdd:
        case AtomicXchgAnd:
        case AtomicXchgOr:
        case AtomicXchgSub:
        case AtomicXchgXor:
        case AtomicXchg:
        case Store8:
        case Store16:
        case Store:
        case VectorReplaceLane:
        case VectorEqual:
        case VectorNotEqual:
        case VectorLessThan:
        case VectorLessThanOrEqual:
        case VectorBelow:
        case VectorBelowOrEqual:
        case VectorGreaterThan:
        case VectorGreaterThanOrEqual:
        case VectorAbove:
        case VectorAboveOrEqual:
        case VectorAdd:
        case VectorSub:
        case VectorAddSat:
        case VectorSubSat:
        case VectorMul:
        case VectorDotProduct:
        case VectorDiv:
        case VectorMin:
        case VectorMax:
        case VectorPmin:
        case VectorPmax:
        case VectorNarrow:
        case VectorAnd:
        case VectorAndnot:
        case VectorOr:
        case VectorXor:
        case VectorShl:
        case VectorShr:
        case VectorMulSat:
        case VectorAvgRound:
        case VectorMulByElement:
        case VectorShiftByVector:
        case VectorRelaxedSwizzle:
        case Stitch:
            return 2 * sizeof(Value*);
        case Select:
        case AtomicWeakCAS:
        case AtomicStrongCAS:
        case VectorBitwiseSelect:
        case VectorRelaxedMAdd:
        case VectorRelaxedNMAdd:
        case VectorRelaxedLaneSelect:
            return 3 * sizeof(Value*);
        case CCall:
        case Check:
        case CheckAdd:
        case CheckSub:
        case CheckMul:
        case Patchpoint:
        case VectorSwizzle:
            return sizeof(Vector<Value*, 3>);
#ifdef NDEBUG
        default:
            break;
#endif
        }
        RELEASE_ASSERT_NOT_REACHED();
        return 0;
    }

private:
    static char* allocateSpace(Opcode opcode, size_t size)
    {
        size_t adjacencyListSpace = Value::adjacencyListSpace(opcode);
        // We must allocate enough space that replaceWithIdentity can work without buffer overflow.
        size_t allocIdentitySize = sizeof(Value) + sizeof(Value*);
        size_t allocSize = std::max(size + adjacencyListSpace, allocIdentitySize);
        return static_cast<char*>(WTF::fastMalloc(allocSize));
    }

protected:
    template<typename ValueType, typename... Arguments>
    static ValueType* allocate(Arguments... arguments)
    {
        char* alloc = allocateSpace(ValueType::opcodeFromConstructor(arguments...), sizeof(ValueType));
        return new (alloc) ValueType(arguments...);
    }
    template<typename ValueType>
    static ValueType* allocate(const ValueType& valueToClone)
    {
        char* alloc = allocateSpace(valueToClone.opcode(), sizeof(ValueType));
        ValueType* result = new (alloc) ValueType(valueToClone);
        result->buildAdjacencyList(sizeof(ValueType), valueToClone);
        return result;
    }

    // Protected so it will only be called from allocate above, possibly through the subclasses'copy constructors
    Value(const Value&) = default;

    Value(Value&&) = delete;
    Value& operator=(const Value&) = delete;
    Value& operator=(Value&&) = delete;
    
    size_t computeAdjacencyListOffset() const;

    friend class Procedure;
    friend class SparseCollection<Value>;

private:
    template<typename... Arguments>
    void buildAdjacencyList(NumChildren numChildren, Arguments... arguments)
    {
        size_t offset = computeAdjacencyListOffset();
        RELEASE_ASSERT(offset == static_cast<uint16_t>(offset));
        m_adjacencyListOffset = offset;

        if (numChildren == VarArgs) {
            new (childrenAlloc()) Vector<Value*, 3> { arguments... };
            return;
        }
        ASSERT(numChildren == sizeof...(arguments));
        new (childrenAlloc()) Value*[sizeof...(arguments)] { arguments... };
    }
    void buildAdjacencyList(size_t offset, const Value& valueToClone)
    {
        RELEASE_ASSERT(offset == static_cast<uint16_t>(offset));
        m_adjacencyListOffset = offset;

        switch (valueToClone.m_numChildren) {
        case VarArgs:
            new (std::bit_cast<char*>(this) + offset) Vector<Value*, 3> (valueToClone.childrenVector());
            break;
        case Three:
            std::bit_cast<Value**>(std::bit_cast<char*>(this) + offset)[2] = valueToClone.childrenArray()[2];
            FALLTHROUGH;
        case Two:
            std::bit_cast<Value**>(std::bit_cast<char*>(this) + offset)[1] = valueToClone.childrenArray()[1];
            FALLTHROUGH;
        case One:
            std::bit_cast<Value**>(std::bit_cast<char*>(this) + offset)[0] = valueToClone.childrenArray()[0];
            break;
        case Zero:
            break;
        }
    }
    
    // Checks that this kind is valid for use with B3::Value.
    ALWAYS_INLINE static NumChildren numChildrenForKind(Kind kind, unsigned numArgs)
    {
        switch (kind.opcode()) {
        case FramePointer:
        case Nop:
        case Phi:
        case Jump:
        case Oops:
        case EntrySwitch:
            if (UNLIKELY(numArgs))
                badKind(kind, numArgs);
            return Zero;
        case Return:
            if (UNLIKELY(numArgs > 1))
                badKind(kind, numArgs);
            return numArgs ? One : Zero;
        case Identity:
        case Opaque:
        case Neg:
        case PurifyNaN:
        case Clz:
        case Abs:
        case Ceil:
        case Floor:
        case FTrunc:
        case Sqrt:
        case SExt8:
        case SExt16:
        case Trunc:
        case TruncHigh:
        case SExt8To64:
        case SExt16To64:
        case SExt32:
        case ZExt32:
        case FloatToDouble:
        case IToD:
        case DoubleToFloat:
        case IToF:
        case BitwiseCast:
        case Branch:
        case Depend:
        case VectorExtractLane:
        case VectorNot:
        case VectorSplat:
        case VectorAbs:
        case VectorNeg:
        case VectorPopcnt:
        case VectorCeil:
        case VectorFloor:
        case VectorTrunc:
        case VectorTruncSat:
        case VectorConvert:
        case VectorConvertLow:
        case VectorNearest:
        case VectorSqrt:
        case VectorExtendLow:
        case VectorExtendHigh:
        case VectorPromote:
        case VectorDemote:
        case VectorBitmask:
        case VectorAnyTrue:
        case VectorAllTrue:
        case VectorExtaddPairwise:
        case VectorDupElement:
        case VectorRelaxedTruncSat:
            if (UNLIKELY(numArgs != 1))
                badKind(kind, numArgs);
            return One;
        case Add:
        case Sub:
        case Mul:
        case Div:
        case UDiv:
        case Mod:
        case UMod:
        case FMin:
        case FMax:
        case BitAnd:
        case BitOr:
        case BitXor:
        case Shl:
        case SShr:
        case ZShr:
        case RotR:
        case RotL:
        case Equal:
        case NotEqual:
        case LessThan:
        case GreaterThan:
        case LessEqual:
        case GreaterEqual:
        case Above:
        case Below:
        case AboveEqual:
        case BelowEqual:
        case EqualOrUnordered:
        case VectorReplaceLane:
        case VectorEqual:
        case VectorNotEqual:
        case VectorLessThan:
        case VectorLessThanOrEqual:
        case VectorBelow:
        case VectorBelowOrEqual:
        case VectorGreaterThan:
        case VectorGreaterThanOrEqual:
        case VectorAbove:
        case VectorAboveOrEqual:
        case VectorAdd:
        case VectorSub:
        case VectorAddSat:
        case VectorSubSat:
        case VectorMul:
        case VectorDotProduct:
        case VectorDiv:
        case VectorMin:
        case VectorMax:
        case VectorPmin:
        case VectorPmax:
        case VectorNarrow:
        case VectorAnd:
        case VectorAndnot:
        case VectorOr:
        case VectorXor:
        case VectorShl:
        case VectorShr:
        case VectorMulSat:
        case VectorAvgRound:
        case VectorMulByElement:
        case VectorShiftByVector:
        case VectorRelaxedSwizzle:
        case Stitch:
            if (UNLIKELY(numArgs != 2))
                badKind(kind, numArgs);
            return Two;
        case Select:
        case VectorBitwiseSelect:
        case VectorRelaxedMAdd:
        case VectorRelaxedNMAdd:
        case VectorRelaxedLaneSelect:
            if (UNLIKELY(numArgs != 3))
                badKind(kind, numArgs);
            return Three;
        default:
            badKind(kind, numArgs);
            break;
        }
        return VarArgs;
    }

protected:
    enum CheckedOpcodeTag { CheckedOpcode };
    
    // Instantiate values via Procedure.
    // This form requires specifying the type explicitly:
    template<typename... Arguments>
    explicit Value(CheckedOpcodeTag, Kind kind, Type type, NumChildren numChildren, Origin origin, Value* firstChild, Arguments... arguments)
        : m_kind(kind)
        , m_type(type)
        , m_numChildren(numChildren)
        , m_origin(origin)
    {
        buildAdjacencyList(numChildren, firstChild, arguments...);
    }
    // This form is for specifying the type explicitly when the opcode has no children:
    explicit Value(CheckedOpcodeTag, Kind kind, Type type, NumChildren numChildren, Origin origin)
        : m_kind(kind)
        , m_type(type)
        , m_numChildren(numChildren)
        , m_origin(origin)
    {
        buildAdjacencyList(numChildren);
    }
    // This form is for those opcodes that can infer their type from the opcode alone, and that don't
    // take any arguments:
    explicit Value(CheckedOpcodeTag, Kind kind, NumChildren numChildren, Origin origin)
        : m_kind(kind)
        , m_type(typeFor(kind, nullptr))
        , m_numChildren(numChildren)
        , m_origin(origin)
    {
        buildAdjacencyList(numChildren);
    }
    // This form is for those opcodes that can infer their type from the opcode and first child:
    explicit Value(CheckedOpcodeTag, Kind kind, NumChildren numChildren, Origin origin, Value* firstChild)
        : m_kind(kind)
        , m_type(typeFor(kind, firstChild))
        , m_numChildren(numChildren)
        , m_origin(origin)
    {
        buildAdjacencyList(numChildren, firstChild);
    }
    // This form is for those opcodes that can infer their type from the opcode and first and second child:
    template<typename... Arguments>
    explicit Value(CheckedOpcodeTag, Kind kind, NumChildren numChildren, Origin origin, Value* firstChild, Value* secondChild, Arguments... arguments)
        : m_kind(kind)
        , m_type(typeFor(kind, firstChild, secondChild))
        , m_numChildren(numChildren)
        , m_origin(origin)
    {
        buildAdjacencyList(numChildren, firstChild, secondChild, arguments...);
    }

    // This is the constructor you end up actually calling, if you're instantiating Value
    // directly.
    explicit Value(Kind kind, Type type, Origin origin)
        : Value(CheckedOpcode, kind, type, Zero, origin)
    {
        RELEASE_ASSERT(numChildrenForKind(kind, 0) == Zero);
    }
    // We explicitly convert the extra arguments to Value* (they may be pointers to some subclasses of Value) to limit template explosion
    template<typename... Arguments>
    explicit Value(Kind kind, Origin origin, Arguments... arguments)
        : Value(CheckedOpcode, kind, numChildrenForKind(kind, sizeof...(arguments)), origin, static_cast<Value*>(arguments)...)
    {
    }
    template<typename... Arguments>
    explicit Value(Kind kind, Type type, Origin origin, Value* firstChild, Arguments... arguments)
        : Value(CheckedOpcode, kind, type, numChildrenForKind(kind, 1 + sizeof...(arguments)), origin, firstChild, static_cast<Value*>(arguments)...)
    {
    }

private:
    friend class CheckValue; // CheckValue::convertToAdd() modifies m_kind.

    static Type typeFor(Kind, Value* firstChild, Value* secondChild = nullptr);

    // m_index to m_numChildren are arranged to fit in 64 bits.
protected:
    unsigned m_index { UINT_MAX };
private:
    Kind m_kind;
    uint16_t m_adjacencyListOffset;
    Type m_type;
protected:
    NumChildren m_numChildren;
private:
    Origin m_origin;

    NO_RETURN_DUE_TO_CRASH static void badKind(Kind, unsigned);

#if ASSERT_ENABLED
    String m_compilerConstructionSite { emptyString() };

public:
    static String generateCompilerConstructionSite();
#endif

public:
    String compilerConstructionSite() const
    {
#if ASSERT_ENABLED
        return m_compilerConstructionSite;
#endif
        return nullString();
    }

    BasicBlock* owner { nullptr }; // computed by Procedure::resetValueOwners().
};

class DeepValueDump {
public:
    DeepValueDump(const Procedure* proc, const Value* value)
        : m_proc(proc)
        , m_value(value)
    {
    }

    void dump(PrintStream& out) const;

private:
    const Procedure* m_proc;
    const Value* m_value;
};

inline DeepValueDump deepDump(const Procedure& proc, const Value* value)
{
    return DeepValueDump(&proc, value);
}
inline DeepValueDump deepDump(const Value* value)
{
    return DeepValueDump(nullptr, value);
}

// The following macros are designed for subclasses of B3::Value to use.
// They are never required for correctness, but can improve the performance of child/lastChild/numChildren/children methods,
// for users that already know the specific subclass of Value they are manipulating.
// The first set is to be used when you know something about the number of children of all values of a class, including its subclasses:
// - B3_SPECIALIZE_VALUE_FOR_NO_CHILDREN: always 0 children (e.g. Const32Value)
// - B3_SPECIALIZE_VALUE_FOR_FIXED_CHILDREN(n): always n children, with n in {1, 2, 3} (e.g. UpsilonValue, with n = 1)
// - B3_SPECIALIZE_VALUE_FOR_NON_VARARGS_CHILDREN: different numbers of children, but never a variable number at runtime (e.g. MemoryValue, that can have between 1 and 3 children)
// - B3_SPECIALIZE_VALUE_FOR_VARARGS_CHILDREN: always a varargs (e.g. CCallValue)
// The second set is only to be used by classes that we know are not further subclassed by anyone adding fields,
// as they hardcode the offset of the children array/vector (which is equal to the size of the object).
// - B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_FIXED_CHILDREN
// - B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_VARARGS_CHILDREN
#define B3_SPECIALIZE_VALUE_FOR_NO_CHILDREN \
    unsigned numChildren() const { return 0; } \
    WTF::IteratorRange<Value**> children() { return {nullptr, nullptr}; } \
    WTF::IteratorRange<Value* const*> children() const { return { nullptr, nullptr}; }

#define B3_SPECIALIZE_VALUE_FOR_FIXED_CHILDREN(n) \
public: \
    unsigned numChildren() const { return n; } \
    Value*& child(unsigned index) \
    { \
        ASSERT(index <= n); \
        return childrenArray()[index]; \
    } \
    Value* child(unsigned index) const \
    { \
        ASSERT(index <= n); \
        return childrenArray()[index]; \
    } \
    Value*& lastChild() \
    { \
        return childrenArray()[n - 1]; \
    } \
    Value* lastChild() const \
    { \
        return childrenArray()[n - 1]; \
    } \
    WTF::IteratorRange<Value**> children() \
    { \
        Value** buffer = childrenArray(); \
        return {buffer, buffer + n }; \
    } \
    WTF::IteratorRange<Value* const*> children() const \
    { \
        Value* const* buffer = childrenArray(); \
        return {buffer, buffer + n }; \
    } \

#define B3_SPECIALIZE_VALUE_FOR_NON_VARARGS_CHILDREN \
public: \
    unsigned numChildren() const { return m_numChildren; } \
    Value*& child(unsigned index) { return childrenArray()[index]; } \
    Value* child(unsigned index) const { return childrenArray()[index]; } \
    Value*& lastChild() { return childrenArray()[numChildren() - 1]; } \
    Value* lastChild() const { return childrenArray()[numChildren() - 1]; } \
    WTF::IteratorRange<Value**> children() \
    { \
        Value** buffer = childrenArray(); \
        return {buffer, buffer + numChildren() }; \
    } \
    WTF::IteratorRange<Value* const*> children() const \
    { \
        Value* const* buffer = childrenArray(); \
        return {buffer, buffer + numChildren() }; \
    } \

#define B3_SPECIALIZE_VALUE_FOR_VARARGS_CHILDREN \
public: \
    unsigned numChildren() const { return childrenVector().size(); } \
    Value*& child(unsigned index) { return childrenVector()[index]; } \
    Value* child(unsigned index) const { return childrenVector()[index]; } \
    Value*& lastChild() { return childrenVector().last(); } \
    Value* lastChild() const { return childrenVector().last(); } \
    WTF::IteratorRange<Value**> children() \
    { \
        Vector<Value*, 3>& vec = childrenVector(); \
        return WTF::makeIteratorRange(&*vec.begin(), &*vec.end()); \
    } \
    WTF::IteratorRange<Value* const*> children() const \
    { \
        const Vector<Value*, 3>& vec = childrenVector(); \
        return WTF::makeIteratorRange(&*vec.begin(), &*vec.end()); \
    } \

// Only use this for classes with no subclass that add new fields (as it uses sizeof(*this))
// Also there is no point in applying this to classes with no children, as they don't have a children array to access.
#define B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_FIXED_CHILDREN \
private: \
    Value** childrenArray() \
    { \
        return std::bit_cast<Value**>(std::bit_cast<char*>(this) + sizeof(*this)); \
    } \
    Value* const* childrenArray() const \
    { \
        return std::bit_cast<Value* const*>(std::bit_cast<char const*>(this) + sizeof(*this)); \
    }

// Only use this for classes with no subclass that add new fields (as it uses sizeof(*this))
#define B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_VARARGS_CHILDREN \
private: \
    Vector<Value*, 3>& childrenVector() \
    { \
        return *std::bit_cast<Vector<Value*, 3>*>(std::bit_cast<char*>(this) + sizeof(*this)); \
    } \
    const Vector<Value*, 3>& childrenVector() const \
    { \
        return *std::bit_cast<Vector<Value*, 3> const*>(std::bit_cast<char const*>(this) + sizeof(*this)); \
    } \

} } // namespace JSC::B3

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#endif // ENABLE(B3_JIT)