1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
|
/*
* Copyright (C) 2015-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(B3_JIT)
#include "AirOpcode.h"
#include "AirTmp.h"
#include "B3Bank.h"
#include "B3Common.h"
#include "B3Type.h"
#include "B3Value.h"
#include "B3Width.h"
#include "Fits.h"
#include "OpcodeSize.h"
#if !ASSERT_ENABLED
IGNORE_RETURN_TYPE_WARNINGS_BEGIN
#endif
namespace JSC { namespace B3 {
class Value;
namespace Air {
class Special;
class StackSlot;
// This class name is also intentionally terse because we will say it a lot. You'll see code like
// Inst(..., Arg::imm(5), Arg::addr(thing, blah), ...)
class Arg {
public:
// These enum members are intentionally terse because we have to mention them a lot.
enum Kind : int8_t {
Invalid,
// This is either an unassigned temporary or a register. All unassigned temporaries
// eventually become registers.
Tmp,
// This is an immediate that the instruction will materialize. Imm is the immediate that can be
// inlined into most instructions, while BigImm indicates a constant materialization and is
// usually only usable with Move. Specials may also admit it, for example for stackmaps used for
// OSR exit and tail calls.
// BitImm is an immediate for Bitwise operation (And, Xor, etc).
Imm,
BigImm,
BitImm,
BitImm64,
FPImm32,
FPImm64,
// These are the addresses. Instructions may load from (Use), store to (Def), or evaluate
// (UseAddr) addresses.
SimpleAddr,
Addr,
ExtendedOffsetAddr,
Stack,
CallArg,
Index,
PreIndex,
PostIndex,
// Immediate operands that customize the behavior of an operation. You can think of them as
// secondary opcodes. They are always "Use"'d.
RelCond,
ResCond,
DoubleCond,
StatusCond,
Special,
WidthArg,
// ZeroReg is interpreted as a zero register in ARM64
ZeroReg,
SIMDInfo
};
enum Temperature : int8_t {
Cold,
Warm
};
enum Phase : int8_t {
Early,
Late
};
enum Timing : int8_t {
OnlyEarly,
OnlyLate,
EarlyAndLate
};
enum Role : int8_t {
// Use means that the Inst will read from this value before doing anything else.
//
// For Tmp: The Inst will read this Tmp.
// For Arg::addr and friends: The Inst will load from this address.
// For Arg::imm and friends: The Inst will materialize and use this immediate.
// For RelCond/ResCond/Special: This is the only valid role for these kinds.
//
// Note that Use of an address does not mean escape. It only means that the instruction will
// load from the address before doing anything else. This is a bit tricky; for example
// Specials could theoretically squirrel away the address and effectively escape it. However,
// this is not legal. On the other hand, any address other than Stack is presumed to be
// always escaping, and Stack is presumed to be always escaping if it's Locked.
Use,
// Exactly like Use, except that it also implies that the use is cold: that is, replacing the
// use with something on the stack is free.
ColdUse,
// LateUse means that the Inst will read from this value after doing its Def's. Note that LateUse
// on an Addr or Index still means Use on the internal temporaries. Note that specifying the
// same Tmp once as Def and once as LateUse has undefined behavior: the use may happen before
// the def, or it may happen after it.
LateUse,
// Combination of LateUse and ColdUse.
LateColdUse,
// Def means that the Inst will write to this value after doing everything else.
//
// For Tmp: The Inst will write to this Tmp.
// For Arg::addr and friends: The Inst will store to this address.
// This isn't valid for any other kinds.
//
// Like Use of address, Def of address does not mean escape.
Def,
// This is a special variant of Def that implies that the upper bits of the target register are
// zero-filled. Specifically, if the Width of a ZDef is less than the largest possible width of
// the argument (for example, we're on a 64-bit machine and we have a Width32 ZDef of a GPR) then
// this has different implications for the upper bits (i.e. the top 32 bits in our example)
// depending on the kind of the argument:
//
// For register: the upper bits are zero-filled.
// For anonymous stack slot: the upper bits are zero-filled.
// For address: the upper bits are not touched (i.e. we do a 32-bit store in our example).
// For tmp: either the upper bits are not touched or they are zero-filled, and we won't know
// which until we lower the tmp to either a StackSlot or a Reg.
//
// The behavior of ZDef is consistent with what happens when you perform 32-bit operations on a
// 64-bit GPR. It's not consistent with what happens with 8-bit or 16-bit Defs on x86 GPRs, or
// what happens with float Defs in ARM NEON or X86 SSE. Hence why we have both Def and ZDef.
ZDef,
// This is a combined Use and Def. It means that both things happen.
UseDef,
// This is a combined Use and ZDef. It means that both things happen.
UseZDef,
// This is like Def, but implies that the assignment occurs before the start of the Inst's
// execution rather than after. Note that specifying the same Tmp once as EarlyDef and once
// as Use has undefined behavior: the use may happen before the def, or it may happen after
// it.
EarlyDef,
EarlyZDef,
// Some instructions need a scratch register. We model this by saying that the temporary is
// defined early and used late. This role implies that.
Scratch,
// This is a special kind of use that is only valid for addresses. It means that the
// instruction will evaluate the address expression and consume the effective address, but it
// will neither load nor store. This is an escaping use, because now the address may be
// passed along to who-knows-where. Note that this isn't really a Use of the Arg, but it does
// imply that we're Use'ing any registers that the Arg contains.
UseAddr
};
enum Signedness : int8_t {
Signed,
Unsigned
};
// Returns true if the Role implies that the Inst will Use the Arg. It's deliberately false for
// UseAddr, since isAnyUse() for an Arg::addr means that we are loading from the address.
static bool isAnyUse(Role role)
{
switch (role) {
case Use:
case ColdUse:
case UseDef:
case UseZDef:
case LateUse:
case LateColdUse:
case Scratch:
return true;
case Def:
case ZDef:
case UseAddr:
case EarlyDef:
case EarlyZDef:
return false;
}
ASSERT_NOT_REACHED();
}
static bool isColdUse(Role role)
{
switch (role) {
case ColdUse:
case LateColdUse:
return true;
case Use:
case UseDef:
case UseZDef:
case LateUse:
case Def:
case ZDef:
case UseAddr:
case Scratch:
case EarlyDef:
case EarlyZDef:
return false;
}
ASSERT_NOT_REACHED();
}
static bool isWarmUse(Role role)
{
return isAnyUse(role) && !isColdUse(role);
}
static Role cooled(Role role)
{
switch (role) {
case ColdUse:
case LateColdUse:
case UseDef:
case UseZDef:
case Def:
case ZDef:
case UseAddr:
case Scratch:
case EarlyDef:
case EarlyZDef:
return role;
case Use:
return ColdUse;
case LateUse:
return LateColdUse;
}
ASSERT_NOT_REACHED();
}
static Temperature temperature(Role role)
{
return isColdUse(role) ? Cold : Warm;
}
static bool activeAt(Role role, Phase phase)
{
switch (role) {
case Use:
case ColdUse:
case EarlyDef:
case EarlyZDef:
case UseAddr:
return phase == Early;
case LateUse:
case LateColdUse:
case Def:
case ZDef:
return phase == Late;
case UseDef:
case UseZDef:
case Scratch:
return true;
}
ASSERT_NOT_REACHED();
}
static bool activeAt(Timing timing, Phase phase)
{
switch (timing) {
case OnlyEarly:
return phase == Early;
case OnlyLate:
return phase == Late;
case EarlyAndLate:
return true;
}
ASSERT_NOT_REACHED();
}
static Timing timing(Role role)
{
switch (role) {
case Use:
case ColdUse:
case EarlyDef:
case EarlyZDef:
case UseAddr:
return OnlyEarly;
case LateUse:
case LateColdUse:
case Def:
case ZDef:
return OnlyLate;
case UseDef:
case UseZDef:
case Scratch:
return EarlyAndLate;
}
ASSERT_NOT_REACHED();
}
template<typename Func>
static void forEachPhase(Timing timing, const Func& func)
{
if (activeAt(timing, Early))
func(Early);
if (activeAt(timing, Late))
func(Late);
}
template<typename Func>
static void forEachPhase(Role role, const Func& func)
{
if (activeAt(role, Early))
func(Early);
if (activeAt(role, Late))
func(Late);
}
// Returns true if the Role implies that the Inst will Use the Arg before doing anything else.
static bool isEarlyUse(Role role)
{
switch (role) {
case Use:
case ColdUse:
case UseDef:
case UseZDef:
return true;
case Def:
case ZDef:
case UseAddr:
case LateUse:
case LateColdUse:
case Scratch:
case EarlyDef:
case EarlyZDef:
return false;
}
ASSERT_NOT_REACHED();
}
// Returns true if the Role implies that the Inst will Use the Arg after doing everything else.
static bool isLateUse(Role role)
{
switch (role) {
case LateUse:
case LateColdUse:
case Scratch:
return true;
case ColdUse:
case Use:
case UseDef:
case UseZDef:
case Def:
case ZDef:
case UseAddr:
case EarlyDef:
case EarlyZDef:
return false;
}
ASSERT_NOT_REACHED();
}
// Returns true if the Role implies that the Inst will Def the Arg.
static bool isAnyDef(Role role)
{
switch (role) {
case Use:
case ColdUse:
case UseAddr:
case LateUse:
case LateColdUse:
return false;
case Def:
case UseDef:
case ZDef:
case UseZDef:
case EarlyDef:
case EarlyZDef:
case Scratch:
return true;
}
ASSERT_NOT_REACHED();
}
// Returns true if the Role implies that the Inst will Def the Arg before start of execution.
static bool isEarlyDef(Role role)
{
switch (role) {
case Use:
case ColdUse:
case UseAddr:
case LateUse:
case Def:
case UseDef:
case ZDef:
case UseZDef:
case LateColdUse:
return false;
case EarlyDef:
case EarlyZDef:
case Scratch:
return true;
}
ASSERT_NOT_REACHED();
}
// Returns true if the Role implies that the Inst will Def the Arg after the end of execution.
static bool isLateDef(Role role)
{
switch (role) {
case Use:
case ColdUse:
case UseAddr:
case LateUse:
case EarlyDef:
case EarlyZDef:
case Scratch:
case LateColdUse:
return false;
case Def:
case UseDef:
case ZDef:
case UseZDef:
return true;
}
ASSERT_NOT_REACHED();
}
// Returns true if the Role implies that the Inst will ZDef the Arg.
static bool isZDef(Role role)
{
switch (role) {
case Use:
case ColdUse:
case UseAddr:
case LateUse:
case Def:
case UseDef:
case EarlyDef:
case Scratch:
case LateColdUse:
return false;
case ZDef:
case UseZDef:
case EarlyZDef:
return true;
}
ASSERT_NOT_REACHED();
}
Arg()
: m_kind(Invalid)
{
}
Arg(Air::Tmp tmp)
: m_kind(Tmp)
, m_base(tmp)
{
}
Arg(Reg reg)
: Arg(Air::Tmp(reg))
{
}
static Arg simdInfo(SIMDLane simdLane, SIMDSignMode signMode = SIMDSignMode::None)
{
Arg result;
result.m_kind = SIMDInfo;
result.m_simdInfo = ::JSC::SIMDInfo { simdLane, signMode };
return result;
}
static Arg simdInfo(::JSC::SIMDInfo info)
{
Arg result;
result.m_kind = SIMDInfo;
result.m_simdInfo = info;
return result;
}
static Arg imm(int64_t value)
{
if constexpr (is32Bit())
RELEASE_ASSERT((Fits<int64_t, Wide32>::check(value) || Fits<uint64_t, Wide32>::check(value)));
Arg result;
result.m_kind = Imm;
result.m_offset = value;
return result;
}
static Arg bigImm(int64_t value)
{
if constexpr (is32Bit())
RELEASE_ASSERT((Fits<int64_t, Wide32>::check(value) || Fits<uint64_t, Wide32>::check(value)));
Arg result;
result.m_kind = BigImm;
result.m_offset = value;
return result;
}
static Arg bigImmLo32(int64_t value)
{
return bigImm(value & 0xffffffff);
}
static Arg bigImmHi32(int64_t value)
{
return bigImm(value >> 32);
}
static Arg bitImm(int64_t value)
{
if constexpr (is32Bit())
RELEASE_ASSERT((Fits<int64_t, Wide32>::check(value)));
Arg result;
result.m_kind = BitImm;
result.m_offset = value;
return result;
}
static Arg bitImm64(int64_t value)
{
if constexpr (is32Bit())
UNREACHABLE_FOR_PLATFORM();
Arg result;
result.m_kind = BitImm64;
result.m_offset = value;
return result;
}
static Arg fpImm32(int64_t value)
{
if constexpr (is32Bit())
RELEASE_ASSERT((Fits<int64_t, Wide32>::check(value)));
Arg result;
result.m_kind = FPImm32;
result.m_offset = value;
return result;
}
static Arg fpImm64(int64_t value)
{
if constexpr (is32Bit())
UNREACHABLE_FOR_PLATFORM();
Arg result;
result.m_kind = FPImm64;
result.m_offset = value;
return result;
}
static Arg immPtr(const void* address)
{
return bigImm(std::bit_cast<intptr_t>(address));
}
static Arg simpleAddr(Air::Tmp ptr)
{
ASSERT(ptr.isGP());
Arg result;
result.m_kind = SimpleAddr;
result.m_base = ptr;
return result;
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static Arg addr(Air::Tmp base, Int offset)
{
ASSERT(base.isGP());
Arg result;
result.m_kind = Addr;
result.m_base = base;
result.m_offset = offset;
return result;
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static Arg extendedOffsetAddr(Int offsetFromFP)
{
Arg result;
result.m_kind = ExtendedOffsetAddr;
result.m_base = Air::Tmp(MacroAssembler::framePointerRegister);
result.m_offset = offsetFromFP;
return result;
}
static Arg addr(Air::Tmp base)
{
return addr(base, 0);
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static Arg stack(StackSlot* value, Int offset)
{
Arg result;
result.m_kind = Stack;
result.m_offset = std::bit_cast<intptr_t>(value);
result.m_scale = offset; // I know, yuck.
return result;
}
static Arg stack(StackSlot* value)
{
return stack(value, 0);
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static Arg callArg(Int offset)
{
Arg result;
result.m_kind = CallArg;
result.m_offset = offset;
return result;
}
// If you don't pass a Width, this optimistically assumes that you're using the right width.
static bool isValidScale(unsigned scale, std::optional<Width> width = std::nullopt)
{
switch (scale) {
case 1:
if (isX86() || isARM64() || isARM_THUMB2())
return true;
return false;
case 2:
case 4:
case 8:
if (isX86() || isARM_THUMB2())
return true;
if (isARM64()) {
if (!width)
return true;
return scale == 1 || scale == bytesForWidth(*width);
}
return false;
default:
return false;
}
}
static unsigned logScale(unsigned scale)
{
switch (scale) {
case 1:
return 0;
case 2:
return 1;
case 4:
return 2;
case 8:
return 3;
case 16:
return 4;
default:
ASSERT_NOT_REACHED();
return 0;
}
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static Arg index(Air::Tmp base, Air::Tmp index, unsigned scale, Int offset, MacroAssembler::Extend extend = MacroAssembler::Extend::None)
{
ASSERT(base.isGP());
ASSERT(index.isGP());
ASSERT(isValidScale(scale));
Arg result;
result.m_kind = Index;
result.m_base = base;
result.m_index = index;
result.m_scale = static_cast<int32_t>(scale);
result.m_offset = offset;
result.m_extend = extend;
return result;
}
static Arg index(Air::Tmp base, Air::Tmp index, unsigned scale = 1)
{
return Arg::index(base, index, scale, 0);
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static Arg preIndex(Air::Tmp base, Int index)
{
ASSERT(base.isGP());
ASSERT(isInt9(index));
Arg result;
result.m_kind = PreIndex;
result.m_base = base;
result.m_offset = index;
return result;
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static Arg postIndex(Air::Tmp base, Int index)
{
ASSERT(base.isGP());
ASSERT(isInt9(index));
Arg result;
result.m_kind = PostIndex;
result.m_base = base;
result.m_offset = index;
return result;
}
static Arg relCond(MacroAssembler::RelationalCondition condition)
{
Arg result;
result.m_kind = RelCond;
result.m_offset = condition;
return result;
}
static Arg resCond(MacroAssembler::ResultCondition condition)
{
Arg result;
result.m_kind = ResCond;
result.m_offset = condition;
return result;
}
static Arg doubleCond(MacroAssembler::DoubleCondition condition)
{
Arg result;
result.m_kind = DoubleCond;
result.m_offset = condition;
return result;
}
static Arg statusCond(MacroAssembler::StatusCondition condition)
{
Arg result;
result.m_kind = StatusCond;
result.m_offset = condition;
return result;
}
static Arg special(Air::Special* special)
{
Arg result;
result.m_kind = Special;
result.m_offset = std::bit_cast<intptr_t>(special);
return result;
}
static Arg widthArg(Width width)
{
Arg result;
result.m_kind = WidthArg;
result.m_offset = bytesForWidth(width);
return result;
}
static Arg zeroReg()
{
Arg result;
result.m_kind = ZeroReg;
result.m_offset = 0;
return result;
}
bool operator==(const Arg& other) const
{
return m_offset == other.m_offset
&& m_kind == other.m_kind
&& m_base == other.m_base
&& m_index == other.m_index
&& m_scale == other.m_scale;
}
explicit operator bool() const { return *this != Arg(); }
Kind kind() const
{
return m_kind;
}
bool isTmp() const
{
return kind() == Tmp;
}
bool isImm() const
{
return kind() == Imm;
}
bool isBigImm() const
{
return kind() == BigImm;
}
bool isBitImm() const
{
return kind() == BitImm;
}
bool isBitImm64() const
{
return kind() == BitImm64;
}
bool isFPImm32() const
{
return kind() == FPImm32;
}
bool isFPImm64() const
{
return kind() == FPImm64;
}
bool isZeroReg() const
{
return kind() == ZeroReg;
}
bool isSomeImm() const
{
switch (kind()) {
case Imm:
case BigImm:
case BitImm:
case BitImm64:
case FPImm32:
case FPImm64:
return true;
default:
return false;
}
}
bool isSimpleAddr() const
{
return kind() == SimpleAddr;
}
bool isAddr() const
{
return kind() == Addr;
}
bool isExtendedOffsetAddr() const
{
return kind() == ExtendedOffsetAddr;
}
bool isStack() const
{
return kind() == Stack;
}
bool isCallArg() const
{
return kind() == CallArg;
}
bool isIndex() const
{
return kind() == Index;
}
bool isPreIndex() const
{
return kind() == PreIndex;
}
bool isPostIndex() const
{
return kind() == PostIndex;
}
bool isMemory() const
{
switch (kind()) {
case SimpleAddr:
case Addr:
case ExtendedOffsetAddr:
case Stack:
case CallArg:
case Index:
case PreIndex:
case PostIndex:
return true;
default:
return false;
}
}
// Returns true if this is an idiomatic stack reference. It may return false for some kinds of
// stack references. The following idioms are recognized:
// - the Stack kind
// - the CallArg kind
// - the ExtendedOffsetAddr kind
// - the Addr kind with the base being either SP or FP
// Callers of this function are allowed to expect that if it returns true, then it must be one of
// these easy-to-recognize kinds. So, making this function recognize more kinds could break things.
bool isStackMemory() const;
bool isRelCond() const
{
return kind() == RelCond;
}
bool isResCond() const
{
return kind() == ResCond;
}
bool isDoubleCond() const
{
return kind() == DoubleCond;
}
bool isStatusCond() const
{
return kind() == StatusCond;
}
bool isCondition() const
{
switch (kind()) {
case RelCond:
case ResCond:
case DoubleCond:
case StatusCond:
return true;
default:
return false;
}
}
bool isSpecial() const
{
return kind() == Special;
}
bool isWidthArg() const
{
return kind() == WidthArg;
}
bool isAlive() const
{
return isTmp() || isStack();
}
bool isSIMDInfo() const
{
return kind() == SIMDInfo;
}
Air::Tmp tmp() const
{
ASSERT(kind() == Tmp);
return m_base;
}
int64_t value() const
{
ASSERT(isSomeImm());
return m_offset;
}
template<typename T>
bool isRepresentableAs() const
{
return WTF::isRepresentableAs<T>(value());
}
static bool isRepresentableAs(Width width, Signedness signedness, int64_t value)
{
switch (signedness) {
case Signed:
switch (width) {
case Width8:
return WTF::isRepresentableAs<int8_t>(value);
case Width16:
return WTF::isRepresentableAs<int16_t>(value);
case Width32:
return WTF::isRepresentableAs<int32_t>(value);
case Width64:
return WTF::isRepresentableAs<int64_t>(value);
case Width128:
break;
}
RELEASE_ASSERT_NOT_REACHED();
case Unsigned:
switch (width) {
case Width8:
return WTF::isRepresentableAs<uint8_t>(value);
case Width16:
return WTF::isRepresentableAs<uint16_t>(value);
case Width32:
return WTF::isRepresentableAs<uint32_t>(value);
case Width64:
return WTF::isRepresentableAs<uint64_t>(value);
case Width128:
break;
}
}
RELEASE_ASSERT_NOT_REACHED();
}
bool isRepresentableAs(Width, Signedness) const;
static int64_t castToType(Width width, Signedness signedness, int64_t value)
{
switch (signedness) {
case Signed:
switch (width) {
case Width8:
return static_cast<int8_t>(value);
case Width16:
return static_cast<int16_t>(value);
case Width32:
return static_cast<int32_t>(value);
case Width64:
return static_cast<int64_t>(value);
case Width128:
break;
}
RELEASE_ASSERT_NOT_REACHED();
case Unsigned:
switch (width) {
case Width8:
return static_cast<uint8_t>(value);
case Width16:
return static_cast<uint16_t>(value);
case Width32:
return static_cast<uint32_t>(value);
case Width64:
return static_cast<uint64_t>(value);
case Width128:
break;
}
}
RELEASE_ASSERT_NOT_REACHED();
}
template<typename T>
T asNumber() const
{
return static_cast<T>(value());
}
void* pointerValue() const
{
ASSERT(kind() == BigImm);
return std::bit_cast<void*>(static_cast<intptr_t>(m_offset));
}
Air::Tmp ptr() const
{
ASSERT(kind() == SimpleAddr);
return m_base;
}
Air::Tmp base() const
{
ASSERT(kind() == SimpleAddr || kind() == Addr || kind() == ExtendedOffsetAddr || kind() == Index || kind() == PreIndex || kind() == PostIndex);
return m_base;
}
bool hasOffset() const { return isMemory(); }
Value::OffsetType offset() const
{
if (kind() == Stack)
return static_cast<Value::OffsetType>(m_scale);
ASSERT(kind() == Addr || kind() == ExtendedOffsetAddr || kind() == CallArg || kind() == Index || kind() == PreIndex || kind() == PostIndex);
return static_cast<Value::OffsetType>(m_offset);
}
StackSlot* stackSlot() const
{
ASSERT(kind() == Stack);
return std::bit_cast<StackSlot*>(static_cast<uintptr_t>(m_offset));
}
Air::Tmp index() const
{
ASSERT(kind() == Index);
return m_index;
}
unsigned scale() const
{
ASSERT(kind() == Index);
return m_scale;
}
unsigned logScale() const
{
return logScale(scale());
}
Air::Special* special() const
{
ASSERT(kind() == Special);
return std::bit_cast<Air::Special*>(static_cast<uintptr_t>(m_offset));
}
Width width() const
{
ASSERT(kind() == WidthArg);
return widthForBytes(m_offset);
}
bool isGPTmp() const
{
return isTmp() && tmp().isGP();
}
bool isFPTmp() const
{
return isTmp() && tmp().isFP();
}
// Tells us if this Arg can be used in a position that requires a GP value.
bool isGP() const
{
switch (kind()) {
case Imm:
case BigImm:
case BitImm:
case BitImm64:
case FPImm32:
case FPImm64:
case ZeroReg:
case SimpleAddr:
case Addr:
case ExtendedOffsetAddr:
case Index:
case PreIndex:
case PostIndex:
case Stack:
case CallArg:
case RelCond:
case ResCond:
case DoubleCond:
case StatusCond:
case Special:
case WidthArg:
return true;
case Tmp:
return isGPTmp();
case SIMDInfo:
case Invalid:
return false;
}
ASSERT_NOT_REACHED();
}
// Tells us if this Arg can be used in a position that requires a FP value.
bool isFP() const
{
switch (kind()) {
case Imm:
case BitImm:
case BitImm64:
case FPImm32:
case FPImm64:
case RelCond:
case ResCond:
case DoubleCond:
case StatusCond:
case Special:
case WidthArg:
case Invalid:
case ZeroReg:
case SIMDInfo:
return false;
case SimpleAddr:
case Addr:
case ExtendedOffsetAddr:
case Index:
case PreIndex:
case PostIndex:
case Stack:
case CallArg:
case BigImm: // Yes, we allow BigImm as a double immediate. We use this for implementing stackmaps.
return true;
case Tmp:
return isFPTmp();
}
ASSERT_NOT_REACHED();
}
bool hasBank() const
{
switch (kind()) {
case Imm:
case BitImm:
case BitImm64:
case Special:
case Tmp:
return true;
default:
return false;
}
}
// The type is ambiguous for some arg kinds. Call with care.
Bank bank() const
{
return isGP() ? GP : FP;
}
bool isBank(Bank bank) const
{
switch (bank) {
case GP:
return isGP();
case FP:
return isFP();
}
ASSERT_NOT_REACHED();
}
bool canRepresent(Type) const;
bool canRepresent(Value* value) const;
bool isCompatibleBank(const Arg& other) const;
bool isGPR() const
{
return isTmp() && tmp().isGPR();
}
GPRReg gpr() const
{
return tmp().gpr();
}
bool isFPR() const
{
return isTmp() && tmp().isFPR();
}
FPRReg fpr() const
{
return tmp().fpr();
}
bool isReg() const
{
return isTmp() && tmp().isReg();
}
Reg reg() const
{
return tmp().reg();
}
unsigned gpTmpIndex() const
{
return tmp().gpTmpIndex();
}
unsigned fpTmpIndex() const
{
return tmp().fpTmpIndex();
}
unsigned tmpIndex() const
{
return tmp().tmpIndex();
}
static bool isValidImmForm(int64_t value)
{
if (isX86())
return WTF::isRepresentableAs<int32_t>(value);
if (isARM64()) {
if (isUInt12(value) || isUInt12(toTwosComplement(value)))
return true;
int64_t shifted = value >> 12;
if ((shifted << 12) == value)
return isUInt12(shifted) || isUInt12(toTwosComplement(shifted));
return false;
}
if (isARM_THUMB2())
return isValidARMThumb2Immediate(value);
return false;
}
static bool isValidBitImmForm(int64_t value)
{
if (isX86())
return WTF::isRepresentableAs<int32_t>(value);
if (isARM64())
return ARM64LogicalImmediate::create32(value).isValid();
if (isARM_THUMB2())
return isValidARMThumb2Immediate(value);
return false;
}
static bool isValidBitImm64Form(int64_t value)
{
if (isX86())
return WTF::isRepresentableAs<int32_t>(value);
if (isARM64())
return ARM64LogicalImmediate::create64(value).isValid();
return false;
}
static bool isValidFPImm32Form(int64_t value)
{
if (!value)
return true;
if (!isARM64())
return false;
#if CPU(ARM64)
if (ARM64Assembler::canEncodeFPImm<32>(value))
return true;
#endif
return false;
}
static bool isValidFPImm64Form(int64_t value)
{
if (!value)
return true;
if (!isARM64())
return false;
#if CPU(ARM64)
if (ARM64Assembler::canEncodeFPImm<64>(value))
return true;
#endif
return ARM64FPImmediate::create64(value).isValid();
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static bool isValidAddrForm(Air::Opcode opcode, Int offset, std::optional<Width> width = std::nullopt)
{
#if !CPU(ARM_THUMB2)
UNUSED_PARAM(opcode);
#endif
if (isX86())
return true;
if (!width)
return true;
if (isARM64()) {
if (isValidSignedImm9(offset))
return true;
switch (*width) {
case Width8:
return isValidScaledUImm12<8>(offset);
case Width16:
return isValidScaledUImm12<16>(offset);
case Width32:
return isValidScaledUImm12<32>(offset);
case Width64:
return isValidScaledUImm12<64>(offset);
case Width128:
return isValidScaledUImm12<128>(offset);
}
}
#if CPU(ARM_THUMB2)
switch (opcode) {
case Move:
case Move32:
return MacroAssemblerARMv7::BoundsNonDoubleWordOffset::within(offset);
case MoveDouble:
case MoveFloat:
if (!std::is_signed<Int>::value)
return !((offset & 3) || (offset > (255 * 4)));
return !((offset & 3) || (offset > (255 * 4)) || (static_cast<typename std::make_signed<Int>::type>(offset) < -(255 * 4)));
default:
return false;
}
#endif
return false;
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static bool isValidIndexForm(Air::Opcode opcode, unsigned scale, Int offset, std::optional<Width> width = std::nullopt)
{
if (!isValidScale(scale, width))
return false;
if (isX86())
return true;
if (isARM64())
return !offset;
if (isARM_THUMB2()) {
switch (opcode) {
case MoveFloat:
case MoveDouble:
return false;
default:
return !offset;
}
}
return false;
}
template<typename Int, typename = Value::IsLegalOffset<Int>>
static bool isValidIncrementIndexForm(Int offset)
{
if (isARM64())
return isValidSignedImm9(offset);
return false;
}
// If you don't pass a width then this optimistically assumes that you're using the right width. But
// the width is relevant to validity, so passing a null width is only useful for assertions. Don't
// pass null widths when cascading through Args in the instruction selector!
bool isValidForm(Air::Opcode opcode, std::optional<Width> width = std::nullopt) const
{
switch (kind()) {
case Invalid:
return false;
case Tmp:
return true;
case Imm:
return isValidImmForm(value());
case BigImm:
return true;
case BitImm:
return isValidBitImmForm(value());
case BitImm64:
return isValidBitImm64Form(value());
case FPImm32:
return isValidFPImm32Form(value());
case FPImm64:
return isValidFPImm64Form(value());
case ZeroReg:
case SimpleAddr:
case ExtendedOffsetAddr:
case SIMDInfo:
return true;
case Addr:
case Stack:
case CallArg:
return isValidAddrForm(opcode, offset(), width);
case Index:
return isValidIndexForm(opcode, scale(), offset(), width);
case PreIndex:
case PostIndex:
return isValidIncrementIndexForm(offset());
case RelCond:
case ResCond:
case DoubleCond:
case StatusCond:
case Special:
case WidthArg:
return true;
}
ASSERT_NOT_REACHED();
}
template<typename Functor>
void forEachTmpFast(const Functor& functor)
{
switch (m_kind) {
case Tmp:
case SimpleAddr:
case Addr:
case ExtendedOffsetAddr:
case PreIndex:
case PostIndex:
functor(m_base);
break;
case Index:
functor(m_base);
functor(m_index);
break;
default:
break;
}
}
bool usesTmp(Air::Tmp tmp) const;
template<typename Thing>
bool is() const;
template<typename Thing>
Thing as() const;
template<typename Thing, typename Functor>
void forEachFast(const Functor&);
template<typename Thing, typename Functor>
void forEach(Role, Bank, Width, const Functor&);
// This is smart enough to know that an address arg in a Def or UseDef rule will use its
// tmps and never def them. For example, this:
//
// mov %rax, (%rcx)
//
// This defs (%rcx) but uses %rcx.
template<typename Functor>
void forEachTmp(Role argRole, Bank argBank, Width argWidth, const Functor& functor)
{
switch (m_kind) {
case Tmp:
ASSERT(isAnyUse(argRole) || isAnyDef(argRole));
functor(m_base, argRole, argBank, argWidth);
break;
case SimpleAddr:
case Addr:
case ExtendedOffsetAddr:
functor(m_base, Use, GP, argRole == UseAddr ? argWidth : pointerWidth());
break;
case PreIndex:
case PostIndex:
functor(m_base, UseDef, GP, argRole == UseAddr ? argWidth : pointerWidth());
break;
case Index:
functor(m_base, Use, GP, argRole == UseAddr ? argWidth : pointerWidth());
functor(m_index, Use, GP, argRole == UseAddr ? argWidth : pointerWidth());
break;
default:
break;
}
}
MacroAssembler::TrustedImm32 asTrustedImm32() const
{
ASSERT(isImm() || isBitImm() || isFPImm32());
return MacroAssembler::TrustedImm32(static_cast<Value::OffsetType>(m_offset));
}
MacroAssembler::TrustedImm64 asTrustedImm64() const
{
if constexpr (is32Bit())
UNREACHABLE_FOR_PLATFORM();
ASSERT(isBigImm() || isBitImm64() || isFPImm64());
return MacroAssembler::TrustedImm64(value());
}
decltype(auto) asTrustedBigImm() const
{
ASSERT(isBigImm());
if constexpr (is32Bit())
return MacroAssembler::TrustedImm32(value());
else
return MacroAssembler::TrustedImm64(value());
}
#if CPU(ARM64)
MacroAssembler::RegisterID asZeroReg() const
{
return ARM64Registers::zr;
}
#endif
MacroAssembler::TrustedImmPtr asTrustedImmPtr() const
{
if (is64Bit())
ASSERT(isBigImm());
else
ASSERT(isImm());
return MacroAssembler::TrustedImmPtr(pointerValue());
}
MacroAssembler::Address asAddress() const
{
if (isSimpleAddr())
return MacroAssembler::Address(m_base.gpr());
ASSERT(isAddr() || isExtendedOffsetAddr());
return MacroAssembler::Address(m_base.gpr(), static_cast<Value::OffsetType>(m_offset));
}
MacroAssembler::BaseIndex asBaseIndex() const
{
ASSERT(isIndex());
return MacroAssembler::BaseIndex(
m_base.gpr(), m_index.gpr(), static_cast<MacroAssembler::Scale>(logScale()),
static_cast<Value::OffsetType>(m_offset), m_extend);
}
MacroAssembler::PreIndexAddress asPreIndexAddress() const
{
ASSERT(isPreIndex());
return MacroAssembler::PreIndexAddress(m_base.gpr(), offset());
}
MacroAssembler::PostIndexAddress asPostIndexAddress() const
{
ASSERT(isPostIndex());
return MacroAssembler::PostIndexAddress(m_base.gpr(), offset());
}
MacroAssembler::RelationalCondition asRelationalCondition() const
{
ASSERT(isRelCond());
return static_cast<MacroAssembler::RelationalCondition>(m_offset);
}
MacroAssembler::ResultCondition asResultCondition() const
{
ASSERT(isResCond());
return static_cast<MacroAssembler::ResultCondition>(m_offset);
}
MacroAssembler::DoubleCondition asDoubleCondition() const
{
ASSERT(isDoubleCond());
return static_cast<MacroAssembler::DoubleCondition>(m_offset);
}
MacroAssembler::StatusCondition asStatusCondition() const
{
ASSERT(isStatusCond());
return static_cast<MacroAssembler::StatusCondition>(m_offset);
}
::JSC::SIMDInfo simdInfo() const
{
ASSERT(isSIMDInfo());
return m_simdInfo;
}
SIMDSignMode simdSignMode() const
{
ASSERT(isSIMDInfo());
return m_simdInfo.signMode;
}
// Tells you if the Arg is invertible. Only condition arguments are invertible, and even for those, there
// are a few exceptions - notably Overflow and Signed.
bool isInvertible() const
{
switch (kind()) {
case RelCond:
case DoubleCond:
case StatusCond:
return true;
case ResCond:
return MacroAssembler::isInvertible(asResultCondition());
default:
return false;
}
}
// This is valid for condition arguments. It will invert them.
Arg inverted(bool inverted = true) const
{
if (!inverted)
return *this;
switch (kind()) {
case RelCond:
return relCond(MacroAssembler::invert(asRelationalCondition()));
case ResCond:
return resCond(MacroAssembler::invert(asResultCondition()));
case DoubleCond:
return doubleCond(MacroAssembler::invert(asDoubleCondition()));
case StatusCond:
return statusCond(MacroAssembler::invert(asStatusCondition()));
default:
RELEASE_ASSERT_NOT_REACHED();
return Arg();
}
}
Arg flipped(bool flipped = true) const
{
if (!flipped)
return Arg();
return relCond(MacroAssembler::flip(asRelationalCondition()));
}
bool isSignedCond() const
{
return isRelCond() && MacroAssembler::isSigned(asRelationalCondition());
}
bool isUnsignedCond() const
{
return isRelCond() && MacroAssembler::isUnsigned(asRelationalCondition());
}
// This computes a hash for comparing this to JSAir's Arg.
unsigned jsHash() const;
void dump(PrintStream&) const;
Arg(WTF::HashTableDeletedValueType)
: m_base(WTF::HashTableDeletedValue)
{
}
bool isHashTableDeletedValue() const
{
return *this == Arg(WTF::HashTableDeletedValue);
}
unsigned hash() const
{
// This really doesn't have to be that great.
return WTF::IntHash<int64_t>::hash(m_offset) + m_kind + m_scale + m_base.hash() +
m_index.hash();
}
private:
int64_t m_offset { 0 };
Kind m_kind { Invalid };
MacroAssembler::Extend m_extend { MacroAssembler::Extend::None };
int32_t m_scale { 1 };
Air::Tmp m_base;
Air::Tmp m_index;
#if USE(JSVALUE32_64)
// XXX: stick in union with m_base?
Air::Tmp m_baseHi;
Air::Tmp m_baseLo;
#endif
JSC::SIMDInfo m_simdInfo;
};
struct ArgHash {
static unsigned hash(const Arg& key) { return key.hash(); }
static bool equal(const Arg& a, const Arg& b) { return a == b; }
static constexpr bool safeToCompareToEmptyOrDeleted = true;
};
} } } // namespace JSC::B3::Air
namespace WTF {
JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Kind);
JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Temperature);
JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Phase);
JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Timing);
JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Role);
JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Signedness);
template<typename T> struct DefaultHash;
template<> struct DefaultHash<JSC::B3::Air::Arg> : JSC::B3::Air::ArgHash { };
template<typename T> struct HashTraits;
template<> struct HashTraits<JSC::B3::Air::Arg> : SimpleClassHashTraits<JSC::B3::Air::Arg> {
// Because m_scale is 1 in the empty value.
static constexpr bool emptyValueIsZero = false;
};
} // namespace WTF
#if !ASSERT_ENABLED
IGNORE_RETURN_TYPE_WARNINGS_END
#endif
#endif // ENABLE(B3_JIT)
|