File: AirLowerMacros.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (475 lines) | stat: -rw-r--r-- 23,351 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*
 * Copyright (C) 2016-2017 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "AirLowerMacros.h"

#if ENABLE(B3_JIT)

#include "AirCCallingConvention.h"
#include "AirCode.h"
#include "AirEmitShuffle.h"
#include "AirInsertionSet.h"
#include "AirPhaseScope.h"
#include "B3CCallValue.h"
#include "B3ProcedureInlines.h"
#include "B3ValueInlines.h"

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace JSC { namespace B3 { namespace Air {

void lowerMacros(Code& code)
{
    PhaseScope phaseScope(code, "Air::lowerMacros"_s);

    InsertionSet insertionSet(code);
    for (BasicBlock* block : code) {
        for (unsigned instIndex = 0; instIndex < block->size(); ++instIndex) {
            Inst& inst = block->at(instIndex);

            auto handleCall = [&] () {
                CCallValue* value = inst.origin->as<CCallValue>();
                Kind oldKind = inst.kind;

                Vector<Arg> destinations = computeCCallingConvention(code, value);

                unsigned resultCount = cCallResultCount(code, value);
                
                Vector<ShufflePair, 16> shufflePairs;
                bool hasRegisterSource = false;
                unsigned offset = 1;
                auto addNextPair = [&](Width width) {
                    // Skip the special Arg in CCall
                    ShufflePair pair(inst.args[offset + resultCount + 1], destinations[offset], width);
                    shufflePairs.append(pair);
                    hasRegisterSource |= pair.src().isReg();
                    ++offset;
                };
                for (unsigned i = 1; i < value->numChildren(); ++i) {
                    Value* child = value->child(i);
                    for (unsigned j = 0; j < cCallArgumentRegisterCount(child->type()); j++)
                        addNextPair(cCallArgumentRegisterWidth(child->type()));
                }
                ASSERT(offset = inst.args.size());
                
                if (UNLIKELY(hasRegisterSource))
                    insertionSet.insertInst(instIndex, createShuffle(inst.origin, Vector<ShufflePair>(shufflePairs)));
                else {
                    // If none of the inputs are registers, then we can efficiently lower this
                    // shuffle before register allocation. First we lower all of the moves to
                    // memory, in the hopes that this is the last use of the operands. This
                    // avoids creating interference between argument registers and arguments
                    // that don't go into argument registers.
                    for (ShufflePair& pair : shufflePairs) {
                        if (pair.dst().isMemory())
                            insertionSet.insertInsts(instIndex, pair.insts(code, inst.origin));
                    }

                    // Fill the argument registers by starting with the first one. This avoids
                    // creating interference between things passed to low-numbered argument
                    // registers and high-numbered argument registers. The assumption here is
                    // that lower-numbered argument registers are more likely to be
                    // incidentally clobbered.
                    for (ShufflePair& pair : shufflePairs) {
                        if (!pair.dst().isMemory())
                            insertionSet.insertInsts(instIndex, pair.insts(code, inst.origin));
                    }
                }

                // Indicate that we're using our original callee argument.
                destinations[0] = inst.args[1];

                // Save where the original instruction put its result.
                Arg resultDst0 = resultCount >= 1 ? inst.args[2] : Arg();
                Arg resultDst1 = resultCount >= 2 ? inst.args[3] : Arg();

                inst = buildCCall(code, inst.origin, destinations);
                if (oldKind.effects)
                    inst.kind.effects = true;

                switch (value->type().kind()) {
                case Void:
                    break;
                case Tuple:
                    insertionSet.insert(instIndex + 1, Move, value, cCallResult(code, value, 0), resultDst0);
                    insertionSet.insert(instIndex + 1, Move, value, cCallResult(code, value, 1), resultDst1);
                    break;
                case Float:
                    insertionSet.insert(instIndex + 1, MoveFloat, value, cCallResult(code, value, 0), resultDst0);
                    break;
                case Double:
                    insertionSet.insert(instIndex + 1, MoveDouble, value, cCallResult(code, value, 0), resultDst0);
                    break;
                case Int32:
                    insertionSet.insert(instIndex + 1, Move32, value, cCallResult(code, value, 0), resultDst0);
                    break;
                case Int64:
                    insertionSet.insert(instIndex + 1, Move, value, cCallResult(code, value, 0), resultDst0);
#if USE(JSVALUE32_64)
                    insertionSet.insert(instIndex + 1, Move, value, cCallResult(code, value, 1), resultDst1);
#endif
                    break;
                case V128:
                    ASSERT(is64Bit());
                    insertionSet.insert(instIndex + 1, MoveVector, value, cCallResult(code, value, 0), resultDst0);
                    break;
                }
            };

            auto handleVectorBitwiseSelect = [&] {
                if (!isX86())
                    return;

                Tmp lhs = inst.args[0].tmp();
                Tmp rhs = inst.args[1].tmp();
                Tmp dst = inst.args[2].tmp(); // Bitmask is passed via dst.
                auto* origin = inst.origin;

                Tmp scratch = code.newTmp(FP);

                insertionSet.insert(instIndex, VectorAnd, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), lhs, dst, scratch);
                insertionSet.insert(instIndex, VectorAndnot, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), rhs, dst, dst);
                insertionSet.insert(instIndex, VectorOr, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), scratch, dst, dst);

                inst = Inst();
            };

            auto handleVectorMul = [&] {
                if (inst.args[0].simdInfo().lane != SIMDLane::i64x2)
                    return;

                Tmp lhs = inst.args[1].tmp();
                Tmp rhs = inst.args[2].tmp();
                Tmp dst = inst.args[3].tmp();
                auto* origin = inst.origin;

                Tmp lhsLower = code.newTmp(GP);
                Tmp lhsUpper = code.newTmp(GP);
                Tmp rhsLower = code.newTmp(GP);
                Tmp rhsUpper = code.newTmp(GP);

                insertionSet.insert(instIndex, VectorExtractLaneInt64, origin, Arg::imm(0), lhs, lhsLower);
                insertionSet.insert(instIndex, VectorExtractLaneInt64, origin, Arg::imm(1), lhs, lhsUpper);
                insertionSet.insert(instIndex, VectorExtractLaneInt64, origin, Arg::imm(0), rhs, rhsLower);
                insertionSet.insert(instIndex, VectorExtractLaneInt64, origin, Arg::imm(1), rhs, rhsUpper);

                insertionSet.insert(instIndex, Mul64, origin, lhsLower, rhsLower);
                insertionSet.insert(instIndex, Mul64, origin, lhsUpper, rhsUpper);
                insertionSet.insert(instIndex, VectorSplatInt64, origin, rhsLower, dst);
                insertionSet.insert(instIndex, VectorReplaceLaneInt64, origin, Arg::imm(1), rhsUpper, dst);

                inst = Inst();
            };

            auto handleVectorAllTrue = [&] {
                if (!isARM64())
                    return;
                SIMDInfo simdInfo = inst.args[0].simdInfo();
                Tmp vec = inst.args[1].tmp();
                Tmp dst = inst.args[2].tmp();
                auto* origin = inst.origin;

                Tmp vtmp = code.newTmp(FP);

                ASSERT(scalarTypeIsIntegral(simdInfo.lane));
                switch (simdInfo.lane) {
                case SIMDLane::i64x2:
                    insertionSet.insert(instIndex, CompareIntegerVectorWithZero, origin, Arg::relCond(MacroAssembler::NotEqual), Arg::simdInfo(simdInfo), vec, vtmp);
                    insertionSet.insert(instIndex, VectorUnsignedMin, origin, Arg::simdInfo({ SIMDLane::i32x4, SIMDSignMode::None }), vtmp, vtmp);
                    break;
                case SIMDLane::i32x4:
                case SIMDLane::i16x8:
                case SIMDLane::i8x16:
                    insertionSet.insert(instIndex, VectorUnsignedMin, origin, Arg::simdInfo(simdInfo), vec, vtmp);
                    break;
                default:
                    RELEASE_ASSERT_NOT_REACHED();
                }

                Tmp tmp = code.newTmp(GP);

                insertionSet.insert(instIndex, MoveFloatTo32, origin, vtmp, tmp);
                insertionSet.insert(instIndex, Compare32, origin, Arg::relCond(MacroAssembler::NotEqual), tmp, Arg::imm(0), dst);

                inst = Inst();
            };

            auto handleVectorMin = [&] {
                if (!isX86() || !scalarTypeIsFloatingPoint(inst.args[0].simdInfo().lane))
                    return;

                // Intel's vectorized minimum instruction has slightly different semantics to the WebAssembly vectorized
                // minimum instruction, namely in terms of signed zero values and propagating NaNs. VectorPmin implements
                // a fast version of this instruction that compiles down to a single op, without conforming to the exact
                // semantics. In order to precisely implement VectorMin, we need to do extra work on Intel to check for
                // the necessary edge cases.

                SIMDInfo simdInfo = inst.args[0].simdInfo();
                Tmp lhs = inst.args[1].tmp();
                Tmp rhs = inst.args[2].tmp();
                Tmp dst = inst.args[3].tmp();
                auto* origin = inst.origin;

                Tmp tmp = code.newTmp(FP);

                // Compute result in both directions.
                insertionSet.insert(instIndex, VectorPmin, origin, Arg::simdInfo(simdInfo), rhs, lhs, tmp);
                insertionSet.insert(instIndex, VectorPmin, origin, Arg::simdInfo(simdInfo), lhs, rhs, dst);

                // OR results, propagating the sign bit for negative zeroes, and NaNs.
                insertionSet.insert(instIndex, VectorOr, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), tmp, dst, tmp);

                // Canonicalize NaNs by checking for unordered values and clearing payload if necessary.
                insertionSet.insert(instIndex, CompareFloatingPointVectorUnordered, origin, Arg::simdInfo(simdInfo), dst, tmp, dst);
                insertionSet.insert(instIndex, VectorOr, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), tmp, dst, tmp);
                SIMDLane equivalentIntegerLane = simdInfo.lane == SIMDLane::f32x4 ? SIMDLane::i32x4 : SIMDLane::i64x2;
                insertionSet.insert(instIndex, VectorUshr8, origin, Arg::simdInfo({ equivalentIntegerLane, SIMDSignMode::None }), dst, Arg::imm(simdInfo.lane == SIMDLane::f32x4 ? 10 : 13), dst);
                insertionSet.insert(instIndex, VectorAndnot, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), tmp, dst, dst);

                inst = Inst();
            };

            auto handleVectorMax = [&] {
                if (!isX86() || !scalarTypeIsFloatingPoint(inst.args[0].simdInfo().lane))
                    return;

                // Intel's vectorized maximum instruction has slightly different semantics to the WebAssembly vectorized
                // minimum instruction, namely in terms of signed zero values and propagating NaNs. VectorPmax implements
                // a fast version of this instruction that compiles down to a single op, without conforming to the exact
                // semantics. In order to precisely implement VectorMax, we need to do extra work on Intel to check for
                // the necessary edge cases.

                SIMDInfo simdInfo = inst.args[0].simdInfo();
                Tmp lhs = inst.args[1].tmp();
                Tmp rhs = inst.args[2].tmp();
                Tmp dst = inst.args[3].tmp();
                auto* origin = inst.origin;

                Tmp tmp = code.newTmp(FP);

                // Compute result in both directions.
                insertionSet.insert(instIndex, VectorPmax, origin, Arg::simdInfo(simdInfo), rhs, lhs, tmp);
                insertionSet.insert(instIndex, VectorPmax, origin, Arg::simdInfo(simdInfo), lhs, rhs, dst);

                // Check for discrepancies by XORing the two results together.
                insertionSet.insert(instIndex, VectorXor, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), tmp, dst, dst);

                // OR results, propagating the sign bit for negative zeroes, and NaNs.
                insertionSet.insert(instIndex, VectorOr, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), tmp, dst, tmp);

                // Propagate discrepancies in the sign bit.
                insertionSet.insert(instIndex, VectorSub, origin, Arg::simdInfo(simdInfo), tmp, dst, tmp);

                // Canonicalize NaNs by checking for unordered values and clearing payload if necessary.
                insertionSet.insert(instIndex, CompareFloatingPointVectorUnordered, origin, Arg::simdInfo(simdInfo), dst, tmp, dst);
                SIMDLane equivalentIntegerLane = simdInfo.lane == SIMDLane::f32x4 ? SIMDLane::i32x4 : SIMDLane::i64x2;
                insertionSet.insert(instIndex, VectorUshr8, origin, Arg::simdInfo({ equivalentIntegerLane, SIMDSignMode::None }), dst, Arg::imm(simdInfo.lane == SIMDLane::f32x4 ? 10 : 13), dst);
                insertionSet.insert(instIndex, VectorAndnot, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), tmp, dst, dst);

                inst = Inst();
            };

            auto handleVectorAnyTrue = [&] {
                if (!isARM64())
                    return;

                Tmp vec = inst.args[0].tmp();
                Tmp dst = inst.args[1].tmp();
                auto* origin = inst.origin;

                Tmp tmp = code.newTmp(GP);
                Tmp vtmp = code.newTmp(FP);

                insertionSet.insert(instIndex, VectorUnsignedMax, origin, Arg::simdInfo({ SIMDLane::i32x4, SIMDSignMode::None }), vec, vtmp);
                insertionSet.insert(instIndex, MoveFloatTo32, origin, vtmp, tmp);
                insertionSet.insert(instIndex, Compare32, origin, Arg::relCond(MacroAssembler::NotEqual), tmp, Arg::imm(0), dst);

                inst = Inst();
            };

            auto handleVectorAbs = [&] {
                SIMDInfo simdInfo = inst.args[0].simdInfo();

                if (!isX86() || !scalarTypeIsFloatingPoint(simdInfo.lane))
                    return;

                // Intel doesn't have a vector absolute-value instruction for floats, so we have to manually
                // set the sign bit.

                Tmp vec = inst.args[1].tmp();
                Tmp dst = inst.args[2].tmp();
                auto* origin = inst.origin;

                Tmp fptmp = code.newTmp(FP);
                Tmp gptmp = code.newTmp(GP);

                if (simdInfo.lane == SIMDLane::f32x4) {
                    insertionSet.insert(instIndex, Move, origin, Arg::imm(0x7fffffff), gptmp);
                    insertionSet.insert(instIndex, Move32ToFloat, origin, gptmp, fptmp);
                    insertionSet.insert(instIndex, VectorSplatFloat32, origin, fptmp, fptmp);
                } else {
                    insertionSet.insert(instIndex, Move, origin, Arg::bigImm(0x7fffffffffffffff), gptmp);
                    insertionSet.insert(instIndex, Move64ToDouble, origin, gptmp, fptmp);
                    insertionSet.insert(instIndex, VectorSplatFloat64, origin, fptmp, fptmp);
                }
                insertionSet.insert(instIndex, VectorAnd, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), vec, fptmp, dst);

                inst = Inst();
            };

            auto handleVectorExtaddPairwise = [&] {
                SIMDInfo simdInfo = inst.args[0].simdInfo();

                if (!isX86() || simdInfo.lane != SIMDLane::i16x8 || simdInfo.signMode != SIMDSignMode::Unsigned)
                    return;

                Tmp vec = inst.args[1].tmp();
                Tmp dst = inst.args[2].tmp();
                auto* origin = inst.origin;

                insertionSet.insert(instIndex, VectorExtaddPairwiseUnsignedInt16, origin, vec, dst, code.newTmp(FP));
                inst = Inst();
            };

            auto handleVectorBitmask = [&] {
                if (!isARM64())
                    return;

                SIMDInfo simdInfo = inst.args[0].simdInfo();
                Tmp vector = inst.args[1].tmp();
                Tmp dst = inst.args[2].tmp();
                auto* origin = inst.origin;

                if (simdInfo.lane == SIMDLane::i64x2) {
                    Tmp vectorTmp = code.newTmp(FP);
                    Tmp gpTmp = code.newTmp(GP);
                    // This might look bad, but remember: every bit of information we destroy contributes to the heat death of the universe.
                    insertionSet.insert(instIndex, VectorSshr8, origin, Arg::simdInfo({ SIMDLane::i64x2, SIMDSignMode::None }), vector, Arg::imm(63), vectorTmp);
                    insertionSet.insert(instIndex, VectorUnzipEven, origin, Arg::simdInfo({ SIMDLane::i8x16, SIMDSignMode::None }), vectorTmp, vectorTmp, vectorTmp);
                    insertionSet.insert(instIndex, MoveDoubleTo64, origin, vectorTmp, gpTmp);
                    insertionSet.insert(instIndex, Rshift64, origin, gpTmp, Arg::imm(31), gpTmp);
                    insertionSet.insert(instIndex, And32, origin, Arg::bitImm(0b11), gpTmp, dst);
                    inst = Inst();
                    return;
                }

                Tmp maskTmp = code.newTmp(FP);

                {
                    v128_t towerOfPower { };
                    switch (simdInfo.lane) {
                    case SIMDLane::i32x4:
                        for (unsigned i = 0; i < 4; ++i)
                            towerOfPower.u32x4[i] = 1 << i;
                        break;
                    case SIMDLane::i16x8:
                        for (unsigned i = 0; i < 8; ++i)
                            towerOfPower.u16x8[i] = 1 << i;
                        break;
                    case SIMDLane::i8x16:
                        for (unsigned i = 0; i < 8; ++i)
                            towerOfPower.u8x16[i] = 1 << i;
                        for (unsigned i = 0; i < 8; ++i)
                            towerOfPower.u8x16[i + 8] = 1 << i;
                        break;
                    default:
                        RELEASE_ASSERT_NOT_REACHED();
                    }

                    // FIXME: this is bad, we should load
                    auto gpTmp = code.newTmp(GP);
                    insertionSet.insert(instIndex, Move, origin, Arg::bigImm(towerOfPower.u64x2[0]), gpTmp);
                    insertionSet.insert(instIndex, VectorSplatInt64, origin, gpTmp, maskTmp);
                    insertionSet.insert(instIndex, Move, origin, Arg::bigImm(towerOfPower.u64x2[1]), gpTmp);
                    insertionSet.insert(instIndex, VectorReplaceLaneInt64, origin, Arg::imm(1), gpTmp, maskTmp);
                }

                Tmp vectorTmp = code.newTmp(FP);

                insertionSet.insert(instIndex, VectorSshr8, origin, Arg::simdInfo(simdInfo), vector, Arg::imm(elementByteSize(simdInfo.lane) * 8 - 1), vectorTmp);
                insertionSet.insert(instIndex, VectorAnd, origin, Arg::simdInfo({ SIMDLane::v128, SIMDSignMode::None }), vectorTmp, maskTmp, vectorTmp);

                if (simdInfo.lane == SIMDLane::i8x16) {
                    Tmp maskedHi = code.newTmp(FP);
                    insertionSet.insert(instIndex, VectorExtractPair, origin, Arg::simdInfo({ SIMDLane::i8x16, SIMDSignMode::None }), Arg::imm(8), vectorTmp, vectorTmp, maskedHi);
                    insertionSet.insert(instIndex, VectorZipUpper, origin, Arg::simdInfo({ SIMDLane::i8x16, SIMDSignMode::None }), vectorTmp, maskedHi, vectorTmp);
                    simdInfo.lane = SIMDLane::i16x8;
                }
                insertionSet.insert(instIndex, VectorHorizontalAdd, origin, Arg::simdInfo(simdInfo), vectorTmp, vectorTmp);
                insertionSet.insert(instIndex, MoveFloatTo32, origin, vectorTmp, dst);

                inst = Inst();
            };

            switch (inst.kind.opcode) {
            case ColdCCall:
                // FIXME: ARM can't currently handle ColdCCalls.
                if (code.optLevel() < 2 || isARM_THUMB2())
                    handleCall();
                break;
            case CCall:
                handleCall();
                break;
            case VectorAllTrue:
                handleVectorAllTrue();
                break;
            case VectorAnyTrue:
                handleVectorAnyTrue();
                break;
            case VectorAbs:
                handleVectorAbs();
                break;
            case VectorMul:
                handleVectorMul();
                break;
            case VectorBitmask:
                handleVectorBitmask();
                break;
            case VectorBitwiseSelect:
                handleVectorBitwiseSelect();
                break;
            case VectorMin:
                handleVectorMin();
                break;
            case VectorMax:
                handleVectorMax();
                break;
            case VectorExtaddPairwise:
                handleVectorExtaddPairwise();
                break;
            default:
                break;
            }
        }
        insertionSet.execute(block);
    }
}

} } } // namespace JSC::B3::Air

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#endif // ENABLE(B3_JIT)