File: DFGArgumentsEliminationPhase.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (1422 lines) | stat: -rw-r--r-- 71,148 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
/*
 * Copyright (C) 2015-2019 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "DFGArgumentsEliminationPhase.h"

#if ENABLE(DFG_JIT)

#include "ArrayPrototype.h"
#include "ClonedArguments.h"
#include "DFGArgumentsUtilities.h"
#include "DFGBlockMapInlines.h"
#include "DFGClobberize.h"
#include "DFGForAllKills.h"
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGLivenessAnalysisPhase.h"
#include "DFGOSRAvailabilityAnalysisPhase.h"
#include "DFGPhase.h"
#include "JSCInlines.h"
#include <wtf/HashSet.h>
#include <wtf/ListDump.h>
#include <wtf/RecursableLambda.h>

namespace JSC { namespace DFG {

namespace {

namespace DFGArgumentsEliminationPhaseInternal {
static constexpr bool verbose = false;
}

class ArgumentsEliminationPhase : public Phase {
public:
    ArgumentsEliminationPhase(Graph& graph)
        : Phase(graph, "arguments elimination"_s)
    {
    }
    
    bool run()
    {
        // For now this phase only works on SSA. This could be changed; we could have a block-local
        // version over LoadStore.
        DFG_ASSERT(m_graph, nullptr, m_graph.m_form == SSA);
        
        dataLogIf(DFGArgumentsEliminationPhaseInternal::verbose, "Graph before arguments elimination:\n", m_graph);
        
        identifyCandidates();
        if (m_candidates.isEmpty())
            return false;

        removeInvalidCandidates();
        if (m_candidates.isEmpty())
            return false;

        collectAvailability();

        eliminateCandidatesThatEscape();
        if (m_candidates.isEmpty())
            return false;
        
        eliminateCandidatesThatInterfere();
        if (m_candidates.isEmpty())
            return false;
        
        transform();
        
        return true;
    }

private:
    // Just finds nodes that we know how to work with.
    void identifyCandidates()
    {
        for (BasicBlock* block : m_graph.blocksInPreOrder()) {
            for (Node* node : *block) {
                switch (node->op()) {
                case CreateDirectArguments:
                case CreateClonedArguments:
                    m_candidates.add(node, AvailabilityMap { });
                    break;

                case CreateRest:
                    if (m_graph.isWatchingHavingABadTimeWatchpoint(node)) {
                        // If we're watching the HavingABadTime watchpoint it means that we will be invalidated
                        // when it fires (it may or may not have actually fired yet). We don't try to eliminate
                        // this allocation when we're not watching the watchpoint because it could entail calling
                        // indexed accessors (and probably more crazy things) on out of bound accesses to the
                        // rest parameter. It's also much easier to reason about this way.
                        m_candidates.add(node, AvailabilityMap { });
                    }
                    break;

                case Spread:
                    if (m_graph.isWatchingHavingABadTimeWatchpoint(node)) {
                        // We check ArrayUse here because ArrayUse indicates that the iterator
                        // protocol for Arrays is non-observable by user code (e.g, it hasn't
                        // been changed).
                        if (node->child1().useKind() == ArrayUse) {
                            if ((node->child1()->op() == CreateRest || node->child1()->op() == NewArrayBuffer) && m_candidates.contains(node->child1().node()))
                                m_candidates.add(node, AvailabilityMap { });
                        }
                    }
                    break;

                case NewArrayWithSpread: {
                    if (m_graph.isWatchingHavingABadTimeWatchpoint(node)) {
                        BitVector* bitVector = node->bitVector();
                        // We only allow for Spreads to be of CreateRest or NewArrayBuffer nodes for now.
                        bool isOK = true;
                        for (unsigned i = 0; i < node->numChildren(); i++) {
                            if (bitVector->get(i)) {
                                Node* child = m_graph.varArgChild(node, i).node();
                                isOK = child->op() == Spread && (child->child1()->op() == CreateRest || child->child1()->op() == NewArrayBuffer) && m_candidates.contains(child);
                                if (!isOK)
                                    break;
                            }
                        }

                        if (!isOK)
                            break;

                        m_candidates.add(node, AvailabilityMap { });
                    }
                    break;
                }

                case NewArrayBuffer: {
                    if (m_graph.isWatchingHavingABadTimeWatchpoint(node) && !hasAnyArrayStorage(node->indexingMode()))
                        m_candidates.add(node, AvailabilityMap { });
                    break;
                }
                    
                case CreateScopedArguments:
                    // FIXME: We could handle this if it wasn't for the fact that scoped arguments are
                    // always stored into the activation.
                    // https://bugs.webkit.org/show_bug.cgi?id=143072 and
                    // https://bugs.webkit.org/show_bug.cgi?id=143073
                    break;
                    
                default:
                    break;
                }
                if (node->isPseudoTerminal())
                    break;
            }
        }
        
        dataLogLnIf(DFGArgumentsEliminationPhaseInternal::verbose, "Candidates: ", listDump(m_candidates.keys()));
    }

    // Do this analysis after we found we have some candidates to avoid doing fixed-point analysis on FTL graph which does not have candidates.
    void collectAvailability()
    {
        performOSRAvailabilityAnalysis(m_graph);

        for (BasicBlock* block : m_graph.blocksInPreOrder()) {
            LocalOSRAvailabilityCalculator calculator(m_graph);
            calculator.beginBlock(block);
            for (Node* node : *block) {
                switch (node->op()) {
                case CreateDirectArguments:
                case CreateClonedArguments:
                case CreateRest: {
                    auto iterator = m_candidates.find(node);
                    if (iterator != m_candidates.end())
                        iterator->value = calculator.m_availability;
                    break;
                }
                default:
                    break;
                }
                if (node->isPseudoTerminal())
                    break;
                calculator.executeNode(node);
            }
        }
    }

    bool isStillValidCandidate(Node* candidate)
    {
        switch (candidate->op()) {
        case Spread:
            return m_candidates.contains(candidate->child1().node());

        case NewArrayWithSpread: {
            BitVector* bitVector = candidate->bitVector();
            for (unsigned i = 0; i < candidate->numChildren(); i++) {
                if (bitVector->get(i)) {
                    if (!m_candidates.contains(m_graph.varArgChild(candidate, i).node()))
                        return false;
                }
            }
            return true;
        }

        default:
            return true;
        }

        RELEASE_ASSERT_NOT_REACHED();
        return false;
    }

    void removeInvalidCandidates()
    {
        bool changed;
        do {
            changed = false;
            Vector<Node*, 1> toRemove;

            for (auto& [candidate, availability] : m_candidates) {
                if (!isStillValidCandidate(candidate))
                    toRemove.append(candidate);
            }

            if (toRemove.size()) {
                changed = true;
                for (Node* node : toRemove)
                    m_candidates.remove(node);
            }

        } while (changed);
    }

    void transitivelyRemoveCandidate(Node* node, Node* source = nullptr)
    {
        bool removed = m_candidates.remove(node);
        if (removed && source)
            dataLogLnIf(DFGArgumentsEliminationPhaseInternal::verbose, "eliminating candidate: ", node, " because it escapes from: ", source);

        if (removed)
            removeInvalidCandidates();
    }
    
    // Look for escaping sites, and remove from the candidates set if we see an escape.
    void eliminateCandidatesThatEscape()
    {
        auto escape = [&] (Edge edge, Node* source) {
            if (!edge)
                return;
            transitivelyRemoveCandidate(edge.node(), source);
        };
        
        auto escapeBasedOnArrayMode = [&] (ArrayMode mode, Edge edge, Node* source) {
            switch (mode.type()) {
            case Array::DirectArguments: {
                if (edge->op() != CreateDirectArguments) {
                    escape(edge, source);
                    break;
                }

                // Everything is fine if we're doing an in-bounds access.
                if (mode.isInBounds())
                    break;

                // If we're out-of-bounds then we proceed only if the prototype chain
                // for the allocation is sane (i.e. doesn't have indexed properties).
                if (m_graph.isWatchingObjectPrototypeChainIsSaneWatchpoint(edge.node()))
                    break;
                escape(edge, source);
                break;
            }
            
            case Array::Contiguous: {
                if (edge->op() != CreateClonedArguments && edge->op() != CreateRest) {
                    escape(edge, source);
                    break;
                }
            
                // Everything is fine if we're doing an in-bounds access.
                if (mode.isInBounds())
                    break;
                
                // If we're out-of-bounds then we proceed only if the prototype chain
                // for the allocation is sane (i.e. doesn't have indexed properties).
                if (edge->op() == CreateRest) {
                    if (m_graph.isWatchingArrayPrototypeChainIsSaneWatchpoint(edge.node()))
                        break;
                } else {
                    if (m_graph.isWatchingObjectPrototypeChainIsSaneWatchpoint(edge.node()))
                        break;
                }
                escape(edge, source);
                break;
            }
            
            case Array::ForceExit:
                break;
            
            default:
                escape(edge, source);
                break;
            }
        };

        for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
            for (Node* node : *block) {
                switch (node->op()) {
                case GetFromArguments:
                    break;
                    
                case GetByVal:
                    if (m_graph.hasExitSite(node, NegativeIndex))
                        escape(m_graph.varArgChild(node, 0), node);
                    else
                        escapeBasedOnArrayMode(node->arrayMode(), m_graph.varArgChild(node, 0), node);
                    escape(m_graph.varArgChild(node, 1), node);
                    escape(m_graph.varArgChild(node, 2), node);
                    break;

                case GetArrayLength:
                    escape(node->child2(), node);
                    // Computing the length of a NewArrayWithSpread can require some additions.
                    // These additions can overflow if the array is sufficiently enormous, and in that case we will need to exit.
                    if ((node->child1()->op() == NewArrayWithSpread) && !node->origin.exitOK)
                        escape(node->child1(), node);
                    break;

                case GetUndetachedTypeArrayLength:
                case GetTypedArrayLengthAsInt52:
                    // This node is only used for TypedArrays, so should not be relevant for arguments elimination
                    escape(node->child2(), node);
                    break;

                case NewArrayWithSpread: {
                    BitVector* bitVector = node->bitVector();
                    bool isWatchingHavingABadTimeWatchpoint = m_graph.isWatchingHavingABadTimeWatchpoint(node); 
                    for (unsigned i = 0; i < node->numChildren(); i++) {
                        Edge child = m_graph.varArgChild(node, i);
                        bool dontEscape;
                        if (bitVector->get(i)) {
                            dontEscape = child->op() == Spread
                                && child->child1().useKind() == ArrayUse
                                && (child->child1()->op() == CreateRest || child->child1()->op() == NewArrayBuffer)
                                && isWatchingHavingABadTimeWatchpoint;
                        } else
                            dontEscape = false;

                        if (!dontEscape)
                            escape(child, node);
                    }

                    break;
                }

                case Spread: {
                    bool isOK = node->child1().useKind() == ArrayUse && (node->child1()->op() == CreateRest || node->child1()->op() == NewArrayBuffer);
                    if (!isOK)
                        escape(node->child1(), node);
                    break;
                }

                case NewArrayBuffer:
                    break;
                    
                case VarargsLength:
                    break;

                case LoadVarargs:
                    if (node->loadVarargsData()->offset && (node->argumentsChild()->op() == NewArrayWithSpread || node->argumentsChild()->op() == Spread || node->argumentsChild()->op() == NewArrayBuffer))
                        escape(node->argumentsChild(), node);
                    break;
                    
                case CallVarargs:
                case ConstructVarargs:
                case TailCallVarargs:
                case TailCallVarargsInlinedCaller:
                    escape(node->child1(), node);
                    escape(node->child2(), node);
                    if (node->callVarargsData()->firstVarArgOffset && (node->child3()->op() == NewArrayWithSpread || node->child3()->op() == Spread || node->child3()->op() == NewArrayBuffer))
                        escape(node->child3(), node);
                    break;

                case Check:
                case CheckVarargs:
                    m_graph.doToChildren(
                        node,
                        [&] (Edge edge) {
                            if (edge.willNotHaveCheck())
                                return;
                            
                            if (alreadyChecked(edge.useKind(), SpecObject))
                                return;
                            
                            escape(edge, node);
                        });
                    break;
                    
                case MovHint:
                case PutHint:
                    break;
                    
                case GetButterfly:
                    // This barely works. The danger is that the GetButterfly is used by something that
                    // does something escaping to a candidate. Fortunately, the only butterfly-using ops
                    // that we exempt here also use the candidate directly. If there ever was a
                    // butterfly-using op that we wanted to exempt, then we'd have to look at the
                    // butterfly's child and check if it's a candidate.
                    break;
                    
                case FilterGetByStatus:
                case FilterPutByStatus:
                case FilterCallLinkStatus:
                case FilterInByStatus:
                case FilterDeleteByStatus:
                case FilterCheckPrivateBrandStatus:
                case FilterSetPrivateBrandStatus:
                    break;

                case CheckArrayOrEmpty:
                case CheckArray:
                    escapeBasedOnArrayMode(node->arrayMode(), node->child1(), node);
                    break;

                case CheckStructureOrEmpty:
                case CheckStructure: {
                    Node* target = node->child1().node();
                    if (!m_candidates.contains(target))
                        break;

                    Structure* structure = nullptr;
                    JSGlobalObject* globalObject = m_graph.globalObjectFor(target->origin.semantic);
                    switch (target->op()) {
                    case CreateDirectArguments:
                        structure = globalObject->directArgumentsStructure();
                        break;
                    case CreateClonedArguments:
                        structure = globalObject->clonedArgumentsStructure();
                        break;
                    case CreateRest:
                        ASSERT(m_graph.isWatchingHavingABadTimeWatchpoint(target));
                        structure = globalObject->restParameterStructure();
                        break;
                    case NewArrayWithSpread:
                        ASSERT(m_graph.isWatchingHavingABadTimeWatchpoint(target));
                        structure = globalObject->originalArrayStructureForIndexingType(ArrayWithContiguous);
                        break;
                    case NewArrayBuffer: {
                        ASSERT(m_graph.isWatchingHavingABadTimeWatchpoint(target));
                        IndexingType indexingMode = target->indexingMode();
                        ASSERT(!hasAnyArrayStorage(indexingMode));
                        structure = globalObject->originalArrayStructureForIndexingType(indexingMode);
                        break;
                    }
                    default:
                        RELEASE_ASSERT_NOT_REACHED();
                    }
                    ASSERT(structure);

                    if (!node->structureSet().contains(m_graph.registerStructure(structure)))
                        escape(node->child1(), node);
                    break;
                }
                    
                // FIXME: We should be able to handle GetById/GetByOffset on callee.
                // https://bugs.webkit.org/show_bug.cgi?id=143075

                case GetByOffset:
                    if (node->child2()->op() == CreateClonedArguments && node->storageAccessData().offset == clonedArgumentsLengthPropertyOffset)
                        break;
                    FALLTHROUGH;
                default:
                    m_graph.doToChildren(node, [&] (Edge edge) { return escape(edge, node); });
                    break;
                }
                if (node->isPseudoTerminal())
                    break;
            }
        }

        dataLogLnIf(DFGArgumentsEliminationPhaseInternal::verbose, "After escape analysis: ", listDump(m_candidates.keys()));
    }

    // Anywhere that a candidate is live (in bytecode or in DFG), check if there is a chance of
    // interference between the stack area that the arguments object copies from and the arguments
    // object's payload. Conservatively this means that the stack region doesn't get stored to.
    void eliminateCandidatesThatInterfere()
    {
        performGraphPackingAndLivenessAnalysis(m_graph);
        m_graph.initializeNodeOwners();
        CombinedLiveness combinedLiveness(m_graph);

        BlockMap<Operands<bool>> clobberedByBlock(m_graph);
        for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
            Operands<bool>& clobberedByThisBlock = clobberedByBlock[block];
            clobberedByThisBlock = Operands<bool>(OperandsLike, m_graph.block(0)->variablesAtHead);
            for (Node* node : *block) {
                clobberize(
                    m_graph, node, NoOpClobberize(),
                    [&] (AbstractHeap heap) {
                        if (heap.kind() != Stack) {
                            ASSERT(!heap.overlaps(Stack));
                            return;
                        }
                        ASSERT(!heap.payload().isTop());
                        Operand operand = heap.operand();
                        // The register may not point to an argument or local, for example if we are looking at SetArgumentCountIncludingThis.
                        if (!operand.isHeader())
                            clobberedByThisBlock.operand(operand) = true;
                    },
                    NoOpClobberize());
            }
        }

        auto forEachDependentNode = recursableLambda([&](auto self, Node* node, const auto& functor) -> IterationStatus {
            if (functor(node) == IterationStatus::Done)
                return IterationStatus::Done;

            if (node->op() == Spread)
                return self(node->child1().node(), functor);

            if (node->op() == NewArrayWithSpread) {
                BitVector* bitVector = node->bitVector();
                for (unsigned i = node->numChildren(); i--; ) {
                    if (bitVector->get(i)) {
                        if (self(m_graph.varArgChild(node, i).node(), functor) == IterationStatus::Done)
                            return IterationStatus::Done;
                    }
                }
            }

            return IterationStatus::Continue;
        });

        using InlineCallFrames = UncheckedKeyHashSet<InlineCallFrame*, WTF::DefaultHash<InlineCallFrame*>, WTF::NullableHashTraits<InlineCallFrame*>>;
        using InlineCallFramesForCanditates = UncheckedKeyHashMap<Node*, InlineCallFrames>;
        InlineCallFramesForCanditates inlineCallFramesForCandidate;
        for (auto& [candidate, availability] : m_candidates) {
            auto& set = inlineCallFramesForCandidate.add(candidate, InlineCallFrames()).iterator->value;
            forEachDependentNode(candidate, [&](Node* dependent) {
                if (dependent->op() != CreateRest && dependent->op() != CreateDirectArguments && dependent->op() != CreateClonedArguments)
                    return IterationStatus::Continue;
                set.add(dependent->origin.semantic.inlineCallFrame());
                return IterationStatus::Continue;
            });
        }

        auto computeInterference = [&](Node* candidate, const AvailabilityMap& availability) {
            bool interfere = false;
            forEachDependentNode(candidate, [&](Node* dependent) -> IterationStatus {
                if (dependent->op() != CreateRest && dependent->op() != CreateDirectArguments && dependent->op() != CreateClonedArguments)
                    return IterationStatus::Continue;
                auto iterator = m_candidates.find(dependent);
                if (iterator == m_candidates.end())
                    return IterationStatus::Continue;
                InlineCallFrame* inlineCallFrame = dependent->origin.semantic.inlineCallFrame();
                if (inlineCallFrame) {
                    if (inlineCallFrame->isVarargs()) {
                        VirtualRegister reg(inlineCallFrame->stackOffset + CallFrameSlot::argumentCountIncludingThis);
                        if (availability.m_locals.operand(reg) != iterator->value.m_locals.operand(reg)) {
                            interfere = true;
                            return IterationStatus::Done;
                        }
                    }
                    if (inlineCallFrame->isClosureCall) {
                        VirtualRegister reg(inlineCallFrame->stackOffset + CallFrameSlot::callee);
                        if (availability.m_locals.operand(reg) != iterator->value.m_locals.operand(reg)) {
                            interfere = true;
                            return IterationStatus::Done;
                        }
                    }
                    for (unsigned i = 0; i < static_cast<unsigned>(inlineCallFrame->argumentCountIncludingThis - 1); ++i) {
                        VirtualRegister reg = VirtualRegister(inlineCallFrame->stackOffset) + CallFrame::argumentOffset(i);
                        if (availability.m_locals.operand(reg) != iterator->value.m_locals.operand(reg)) {
                            interfere = true;
                            return IterationStatus::Done;
                        }
                    }
                } else {
                    // We don't include the ArgumentCount or Callee in this case because we can be
                    // damn sure that this won't be clobbered.
                    for (unsigned i = 1; i < static_cast<unsigned>(codeBlock()->numParameters()); ++i) {
                        if (availability.m_locals.argument(i) != iterator->value.m_locals.argument(i)) {
                            interfere = true;
                            return IterationStatus::Done;
                        }
                    }
                }
                return IterationStatus::Continue;
            });
            return interfere;
        };

        auto removeViaKill = [&](BasicBlock* block, unsigned nodeIndex, Node* candidate) {
            if (!m_candidates.contains(candidate))
                return;

            for (InlineCallFrame* inlineCallFrame : inlineCallFramesForCandidate.get(candidate)) {
                // Check if this block has any clobbers that affect this candidate. This is a fairly
                // fast check.
                bool isClobberedByBlock = false;
                Operands<bool>& clobberedByThisBlock = clobberedByBlock[block];

                if (inlineCallFrame) {
                    if (inlineCallFrame->isVarargs()) {
                        isClobberedByBlock |= clobberedByThisBlock.operand(
                            VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::argumentCountIncludingThis));
                    }

                    if (!isClobberedByBlock || inlineCallFrame->isClosureCall) {
                        isClobberedByBlock |= clobberedByThisBlock.operand(
                            VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::callee));
                    }

                    if (!isClobberedByBlock) {
                        for (unsigned i = 0; i < static_cast<unsigned>(inlineCallFrame->argumentCountIncludingThis - 1); ++i) {
                            VirtualRegister reg =
                                VirtualRegister(inlineCallFrame->stackOffset) +
                                CallFrame::argumentOffset(i);
                            if (clobberedByThisBlock.operand(reg)) {
                                isClobberedByBlock = true;
                                break;
                            }
                        }
                    }
                } else {
                    // We don't include the ArgumentCount or Callee in this case because we can be
                    // damn sure that this won't be clobbered.
                    for (unsigned i = 1; i < static_cast<unsigned>(codeBlock()->numParameters()); ++i) {
                        if (clobberedByThisBlock.argument(i)) {
                            isClobberedByBlock = true;
                            break;
                        }
                    }
                }

                if (!isClobberedByBlock)
                    continue;

                // Check if we can immediately eliminate this candidate. If the block has a clobber
                // for this arguments allocation, and we'd have to examine every node in the block,
                // then we can just eliminate the candidate.
                if (nodeIndex == block->size() && candidate->owner != block) {
                    dataLogLnIf(DFGArgumentsEliminationPhaseInternal::verbose, "eliminating candidate: ", candidate, " because it is clobbered by block", block);
                    transitivelyRemoveCandidate(candidate);
                    return;
                }

                // This loop considers all nodes up to the nodeIndex, excluding the nodeIndex.
                //
                // Note: nodeIndex here has a double meaning. Before entering this
                // while loop, it refers to the remaining number of nodes that have
                // yet to be processed. Inside the loop, it refers to the index
                // of the current node to process (after we decrement it).
                //
                // If the remaining number of nodes is 0, we should not decrement nodeIndex.
                // Hence, we must only decrement nodeIndex inside the while loop instead of
                // in its condition statement. Note that this while loop is embedded in an
                // outer for loop. If we decrement nodeIndex in the condition statement, a
                // nodeIndex of 0 will become UINT_MAX, and the outer loop will wrongly
                // treat this as there being UINT_MAX remaining nodes to process.
                while (nodeIndex) {
                    --nodeIndex;
                    Node* node = block->at(nodeIndex);
                    if (node == candidate)
                        break;

                    bool found = false;
                    clobberize(
                        m_graph, node, NoOpClobberize(),
                        [&] (AbstractHeap heap) {
                            if (heap.kind() == Stack && !heap.payload().isTop()) {
                                if (argumentsInvolveStackSlot(inlineCallFrame, heap.operand()))
                                    found = true;
                                return;
                            }
                            if (heap.overlaps(Stack))
                                found = true;
                        },
                        NoOpClobberize());

                    if (found) {
                        dataLogLnIf(DFGArgumentsEliminationPhaseInternal::verbose, "eliminating candidate: ", candidate, " because it is clobbered by ", block->at(nodeIndex));
                        transitivelyRemoveCandidate(candidate);
                        return;
                    }
                }
            }
        };

        for (BasicBlock* block : m_graph.blocksInPreOrder()) {
            // Stop if we've already removed all candidates.
            if (m_candidates.isEmpty())
                return;

            LocalOSRAvailabilityCalculator calculator(m_graph);
            calculator.beginBlock(block);

            bool clobberStack = false;
            for (unsigned i = clobberedByBlock[block].size(); i--;) {
                if (clobberedByBlock[block][i])
                    clobberStack = true;
            }

            for (Node* candidate : combinedLiveness.liveAtHead[block]) {
                if (!m_candidates.contains(candidate))
                    continue;
                if (computeInterference(candidate, calculator.m_availability)) {
                    dataLogLnIf(DFGArgumentsEliminationPhaseInternal::verbose, "eliminating candidate: ", candidate, " because it is clobbered at block ", block);
                    transitivelyRemoveCandidate(candidate);
                    continue;
                }
            }

            if (clobberStack) {
                for (Node* node : combinedLiveness.liveAtTail[block])
                    removeViaKill(block, block->size(), node);

                for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
                    Node* node = block->at(nodeIndex);
                    if (nodeIndex) {
                        forAllKilledNodesAtNodeIndex(
                            m_graph, calculator.m_availability, block, nodeIndex,
                            [&] (Node* node) {
                                removeViaKill(block, nodeIndex, node);
                            });
                    }

                    calculator.executeNode(node);
                }
            }
        }

        // Q: How do we handle OSR exit with a live PhantomArguments at a point where the inline call
        // frame is dead?  A: Naively we could say that PhantomArguments must escape the stack slots. But
        // that would break PutStack sinking, which in turn would break object allocation sinking, in
        // cases where we have a varargs call to an otherwise pure method. So, we need something smarter.
        // For the outermost arguments, we just have a PhantomArguments that magically knows that it
        // should load the arguments from the call frame. For the inline arguments, we have the heap map
        // in the availabiltiy map track each possible inline argument as a promoted heap location. If the
        // PutStacks for those arguments aren't sunk, those heap locations will map to very trivial
        // availabilities (they will be flush availabilities). But if sinking happens then those
        // availabilities may become whatever. OSR exit should be able to handle this quite naturally,
        // since those availabilities speak of the stack before the optimizing compiler stack frame is
        // torn down.

        dataLogLnIf(DFGArgumentsEliminationPhaseInternal::verbose, "After interference analysis: ", listDump(m_candidates.keys()));
    }

    void transform()
    {
        bool modifiedCFG = false;
        
        InsertionSet insertionSet(m_graph);

        for (BasicBlock* block : m_graph.blocksInPreOrder()) {
            Node* pseudoTerminal = nullptr;
            for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
                Node* node = block->at(nodeIndex);
                
                auto getArrayLength = [&] (Node* candidate) -> Node* {
                    return emitCodeToGetArgumentsArrayLength(
                        insertionSet, candidate, nodeIndex, node->origin);
                };

                auto isEliminatedAllocation = [&] (Node* candidate) -> bool {
                    if (!m_candidates.contains(candidate))
                        return false;
                    // We traverse in such a way that we are guaranteed to see a def before a use.
                    // Therefore, we should have already transformed the allocation before the use
                    // of an allocation.
                    ASSERT(candidate->op() == PhantomCreateRest || candidate->op() == PhantomDirectArguments || candidate->op() == PhantomClonedArguments
                        || candidate->op() == PhantomSpread || candidate->op() == PhantomNewArrayWithSpread || candidate->op() == PhantomNewArrayBuffer);
                    return true;
                };

                switch (node->op()) {
                case CreateDirectArguments:
                    if (!m_candidates.contains(node))
                        break;
                    
                    node->setOpAndDefaultFlags(PhantomDirectArguments);
                    break;

                case CreateRest:
                    if (!m_candidates.contains(node))
                        break;

                    ASSERT(node->origin.exitOK);
                    ASSERT(node->child1().useKind() == Int32Use);
                    insertionSet.insertNode(
                        nodeIndex, SpecNone, Check, node->origin,
                        node->child1()); 

                    node->setOpAndDefaultFlags(PhantomCreateRest);
                    // We don't need this parameter for OSR exit, we can find out all the information
                    // we need via the static parameter count and the dynamic argument count.
                    node->child1() = Edge(); 
                    break;
                    
                case CreateClonedArguments:
                    if (!m_candidates.contains(node))
                        break;
                    
                    node->setOpAndDefaultFlags(PhantomClonedArguments);
                    break;

                case Spread:
                    if (!m_candidates.contains(node))
                        break;
                    
                    node->setOpAndDefaultFlags(PhantomSpread);
                    break;

                case NewArrayWithSpread:
                    if (!m_candidates.contains(node))
                        break;
                    
                    node->setOpAndDefaultFlags(PhantomNewArrayWithSpread);
                    break;

                case NewArrayBuffer:
                    if (!m_candidates.contains(node))
                        break;

                    node->setOpAndDefaultFlags(PhantomNewArrayBuffer);
                    node->child1() = Edge(insertionSet.insertConstant(nodeIndex, node->origin, node->cellOperand()));
                    break;
                    
                case GetFromArguments: {
                    Node* candidate = node->child1().node();
                    if (!isEliminatedAllocation(candidate))
                        break;
                    
                    DFG_ASSERT(
                        m_graph, node, node->child1()->op() == PhantomDirectArguments, node->child1()->op());
                    VirtualRegister reg =
                        virtualRegisterForArgumentIncludingThis(node->capturedArgumentsOffset().offset() + 1) +
                        node->origin.semantic.stackOffset();
                    StackAccessData* data = m_graph.m_stackAccessData.add(reg, FlushedJSValue);
                    node->convertToGetStack(data);
                    break;
                }

                case GetByOffset: {
                    Node* candidate = node->child2().node();
                    if (!isEliminatedAllocation(candidate))
                        break;

                    ASSERT(candidate->op() == PhantomClonedArguments);
                    ASSERT(node->storageAccessData().offset == clonedArgumentsLengthPropertyOffset);

                    // Meh, this is kind of hackish - we use an Identity so that we can reuse the
                    // getArrayLength() helper.
                    node->convertToIdentityOn(getArrayLength(candidate));
                    break;
                }
                    
                case GetArrayLength: {
                    Node* candidate = node->child1().node();
                    if (!isEliminatedAllocation(candidate))
                        break;
                    
                    node->convertToIdentityOn(getArrayLength(candidate));
                    break;
                }

                case GetByVal: {
                    // FIXME: For ClonedArguments, we would have already done a separate bounds check.
                    // This code will cause us to have two bounds checks - the original one that we
                    // already factored out in SSALoweringPhase, and the new one we insert here, which is
                    // often implicitly part of GetMyArgumentByVal. B3 will probably eliminate the
                    // second bounds check, but still - that's just silly.
                    // https://bugs.webkit.org/show_bug.cgi?id=143076
                    
                    Node* candidate = m_graph.varArgChild(node, 0).node();
                    if (!isEliminatedAllocation(candidate))
                        break;

                    unsigned numberOfArgumentsToSkip = 0;
                    if (candidate->op() == PhantomCreateRest)
                        numberOfArgumentsToSkip = candidate->numberOfArgumentsToSkip();
                    
                    Node* result = nullptr;
                    if (m_graph.varArgChild(node, 1)->isInt32Constant()) {
                        unsigned index = m_graph.varArgChild(node, 1)->asUInt32();
                        InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();
                        index += numberOfArgumentsToSkip;
                        
                        bool safeToGetStack = index >= numberOfArgumentsToSkip;
                        if (inlineCallFrame)
                            safeToGetStack &= index < static_cast<unsigned>(inlineCallFrame->argumentCountIncludingThis - 1);
                        else {
                            safeToGetStack &=
                                index < static_cast<unsigned>(codeBlock()->numParameters()) - 1;
                        }
                        if (safeToGetStack) {
                            StackAccessData* data;
                            VirtualRegister arg = virtualRegisterForArgumentIncludingThis(index + 1);
                            if (inlineCallFrame)
                                arg += inlineCallFrame->stackOffset;
                            data = m_graph.m_stackAccessData.add(arg, FlushedJSValue);
                            
                            Node* check = nullptr;
                            if (!inlineCallFrame || inlineCallFrame->isVarargs()) {
                                check = insertionSet.insertNode(
                                    nodeIndex, SpecNone, CheckInBounds, node->origin,
                                    m_graph.varArgChild(node, 1), Edge(getArrayLength(candidate), Int32Use));
                            }
                            
                            result = insertionSet.insertNode(
                                nodeIndex, node->prediction(), GetStack, node->origin, OpInfo(data), Edge(check, UntypedUse));
                        }
                    }
                    
                    if (!result) {
                        NodeType op;
                        if (node->arrayMode().isInBounds())
                            op = GetMyArgumentByVal;
                        else
                            op = GetMyArgumentByValOutOfBounds;
                        result = insertionSet.insertNode(
                            nodeIndex, node->prediction(), op, node->origin, OpInfo(numberOfArgumentsToSkip),
                            m_graph.varArgChild(node, 0), m_graph.varArgChild(node, 1));
                    }

                    // Need to do this because we may have a data format conversion here.
                    node->convertToIdentityOn(result);
                    break;
                }
                
                case VarargsLength: {
                    Node* candidate = node->argumentsChild().node();
                    if (!isEliminatedAllocation(candidate))
                        break;

                    // VarargsLength can exit, so it better be exitOK.
                    DFG_ASSERT(m_graph, node, node->origin.exitOK);
                    NodeOrigin origin = node->origin.withExitOK(true);


                    node->convertToIdentityOn(emitCodeToGetArgumentsArrayLength(insertionSet, candidate, nodeIndex, origin, /* addThis = */ true));
                    break;
                }

                case LoadVarargs: {
                    Node* candidate = node->argumentsChild().node();
                    if (!isEliminatedAllocation(candidate))
                        break;
                    
                    // LoadVarargs can exit, so it better be exitOK.
                    DFG_ASSERT(m_graph, node, node->origin.exitOK);
                    bool canExit = true;
                    LoadVarargsData* varargsData = node->loadVarargsData();

                    auto storeArgumentCountIncludingThis = [&] (unsigned argumentCountIncludingThis) {
                        Node* argumentCountIncludingThisNode = insertionSet.insertConstant(
                            nodeIndex, node->origin.withExitOK(canExit),
                            jsNumber(argumentCountIncludingThis));
                        insertionSet.insertNode(
                            nodeIndex, SpecNone, KillStack, node->origin.takeValidExit(canExit),
                            OpInfo(varargsData->count));
                        insertionSet.insertNode(
                            nodeIndex, SpecNone, MovHint, node->origin.takeValidExit(canExit),
                            OpInfo(varargsData->count), Edge(argumentCountIncludingThisNode));
                        insertionSet.insertNode(
                            nodeIndex, SpecNone, PutStack, node->origin.withExitOK(canExit),
                            OpInfo(m_graph.m_stackAccessData.add(varargsData->count, FlushedInt32)),
                            Edge(argumentCountIncludingThisNode, KnownInt32Use));
                    };

                    auto storeValue = [&] (Node* value, unsigned storeIndex) {
                        VirtualRegister reg = varargsData->start + storeIndex;
                        ASSERT(reg.isLocal());
                        StackAccessData* data =
                            m_graph.m_stackAccessData.add(reg, FlushedJSValue);
                        
                        insertionSet.insertNode(
                            nodeIndex, SpecNone, KillStack, node->origin.takeValidExit(canExit), OpInfo(reg));
                        insertionSet.insertNode(
                            nodeIndex, SpecNone, MovHint, node->origin.takeValidExit(canExit),
                            OpInfo(reg), Edge(value));
                        insertionSet.insertNode(
                            nodeIndex, SpecNone, PutStack, node->origin.withExitOK(canExit),
                            OpInfo(data), Edge(value));
                    };

                    if (candidate->op() == PhantomNewArrayWithSpread || candidate->op() == PhantomNewArrayBuffer || candidate->op() == PhantomSpread) {
                        auto canConvertToStaticLoadStores = recursableLambda([&] (auto self, Node* candidate) -> bool {
                            if (candidate->op() == PhantomSpread)
                                return self(candidate->child1().node());

                            if (candidate->op() == PhantomNewArrayWithSpread) {
                                BitVector* bitVector = candidate->bitVector();
                                for (unsigned i = 0; i < candidate->numChildren(); i++) {
                                    if (bitVector->get(i)) {
                                        if (!self(m_graph.varArgChild(candidate, i).node()))
                                            return false;
                                    }
                                }
                                return true;
                            }

                            // PhantomNewArrayBuffer only contains constants. It can always convert LoadVarargs to static load stores.
                            if (candidate->op() == PhantomNewArrayBuffer)
                                return true;

                            ASSERT(candidate->op() == PhantomCreateRest);
                            InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();
                            return inlineCallFrame && !inlineCallFrame->isVarargs();
                        });

                        if (canConvertToStaticLoadStores(candidate)) {
                            auto countNumberOfArguments = recursableLambda([&](auto self, Node* candidate) -> unsigned {
                                if (candidate->op() == PhantomSpread)
                                    return self(candidate->child1().node());

                                if (candidate->op() == PhantomNewArrayWithSpread) {
                                    BitVector* bitVector = candidate->bitVector();
                                    unsigned result = 0;
                                    for (unsigned i = 0; i < candidate->numChildren(); i++) {
                                        if (bitVector->get(i))
                                            result += self(m_graph.varArgChild(candidate, i).node());
                                        else
                                            ++result;
                                    }
                                    return result;
                                }

                                if (candidate->op() == PhantomNewArrayBuffer)
                                    return candidate->castOperand<JSImmutableButterfly*>()->length();

                                ASSERT(candidate->op() == PhantomCreateRest);
                                unsigned numberOfArgumentsToSkip = candidate->numberOfArgumentsToSkip();
                                InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();
                                unsigned frameArgumentCount = static_cast<unsigned>(inlineCallFrame->argumentCountIncludingThis - 1);
                                if (frameArgumentCount >= numberOfArgumentsToSkip)
                                    return frameArgumentCount - numberOfArgumentsToSkip;
                                return 0;
                            });

                            unsigned argumentCountIncludingThis = 1 + countNumberOfArguments(candidate); // |this|
                            if (argumentCountIncludingThis <= varargsData->limit) {
                                DFG_ASSERT(m_graph, node, varargsData->limit - 1 >= varargsData->mandatoryMinimum, varargsData->limit, varargsData->mandatoryMinimum);
                                // Define our limit to exclude "this", since that's a bit easier to reason about.
                                unsigned limit = varargsData->limit - 1;

                                auto forwardNode = recursableLambda([&](auto self, Node* candidate, unsigned storeIndex) -> unsigned {
                                    if (candidate->op() == PhantomSpread)
                                        return self(candidate->child1().node(), storeIndex);

                                    if (candidate->op() == PhantomNewArrayWithSpread) {
                                        BitVector* bitVector = candidate->bitVector();
                                        for (unsigned i = 0; i < candidate->numChildren(); i++) {
                                            if (bitVector->get(i))
                                                storeIndex = self(m_graph.varArgChild(candidate, i).node(), storeIndex);
                                            else {
                                                Node* value = m_graph.varArgChild(candidate, i).node();
                                                storeValue(value, storeIndex++);
                                            }
                                        }
                                        return storeIndex;
                                    }

                                    if (candidate->op() == PhantomNewArrayBuffer) {
                                        auto* array = candidate->castOperand<JSImmutableButterfly*>();
                                        for (unsigned index = 0; index < array->length(); ++index) {
                                            JSValue constant;
                                            if (candidate->indexingType() == ArrayWithDouble)
                                                constant = jsDoubleNumber(array->get(index).asNumber());
                                            else
                                                constant = array->get(index);
                                            Node* value = insertionSet.insertConstant(nodeIndex, node->origin.withExitOK(canExit), constant);
                                            storeValue(value, storeIndex++);
                                        }
                                        return storeIndex;
                                    }

                                    ASSERT(candidate->op() == PhantomCreateRest);
                                    unsigned numberOfArgumentsToSkip = candidate->numberOfArgumentsToSkip();
                                    InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();
                                    unsigned frameArgumentCount = static_cast<unsigned>(inlineCallFrame->argumentCountIncludingThis - 1);
                                    for (unsigned loadIndex = numberOfArgumentsToSkip; loadIndex < frameArgumentCount; ++loadIndex) {
                                        VirtualRegister reg = virtualRegisterForArgumentIncludingThis(loadIndex + 1) + inlineCallFrame->stackOffset;
                                        StackAccessData* data = m_graph.m_stackAccessData.add(reg, FlushedJSValue);
                                        Node* value = insertionSet.insertNode(
                                            nodeIndex, SpecNone, GetStack, node->origin.withExitOK(canExit),
                                            OpInfo(data));
                                        storeValue(value, storeIndex++);
                                    }
                                    return storeIndex;
                                });

                                unsigned storeIndex = forwardNode(candidate, 0);
                                RELEASE_ASSERT(storeIndex <= limit);
                                Node* undefined = nullptr;
                                for (; storeIndex < limit; ++storeIndex) {
                                    if (!undefined) {
                                        undefined = insertionSet.insertConstant(
                                            nodeIndex, node->origin.withExitOK(canExit), jsUndefined());
                                    }
                                    storeValue(undefined, storeIndex);
                                }
                                storeArgumentCountIncludingThis(argumentCountIncludingThis);
                                
                                node->remove(m_graph);
                                node->origin.exitOK = canExit;
                                break;
                            }
                        }
                    } else {
                        unsigned numberOfArgumentsToSkip = 0;
                        if (candidate->op() == PhantomCreateRest)
                            numberOfArgumentsToSkip = candidate->numberOfArgumentsToSkip();
                        varargsData->offset += numberOfArgumentsToSkip;

                        InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();

                        if (inlineCallFrame && !inlineCallFrame->isVarargs()) {
                            unsigned argumentCountIncludingThis = inlineCallFrame->argumentCountIncludingThis;
                            if (argumentCountIncludingThis > varargsData->offset)
                                argumentCountIncludingThis -= varargsData->offset;
                            else
                                argumentCountIncludingThis = 1;
                            RELEASE_ASSERT(argumentCountIncludingThis >= 1);

                            if (argumentCountIncludingThis <= varargsData->limit) {
                                DFG_ASSERT(m_graph, node, varargsData->limit - 1 >= varargsData->mandatoryMinimum, varargsData->limit, varargsData->mandatoryMinimum);
                                // Define our limit to exclude "this", since that's a bit easier to reason about.
                                unsigned limit = varargsData->limit - 1;
                                Node* undefined = nullptr;
                                for (unsigned storeIndex = 0; storeIndex < limit; ++storeIndex) {
                                    // First determine if we have an element we can load, and load it if
                                    // possible.
                                    
                                    Node* value = nullptr;
                                    unsigned loadIndex = storeIndex + varargsData->offset;

                                    if (loadIndex + 1 < inlineCallFrame->argumentCountIncludingThis) {
                                        VirtualRegister reg = virtualRegisterForArgumentIncludingThis(loadIndex + 1) + inlineCallFrame->stackOffset;
                                        StackAccessData* data = m_graph.m_stackAccessData.add(
                                            reg, FlushedJSValue);
                                        
                                        value = insertionSet.insertNode(
                                            nodeIndex, SpecNone, GetStack, node->origin.withExitOK(canExit),
                                            OpInfo(data));
                                    } else {
                                        // FIXME: We shouldn't have to store anything if
                                        // storeIndex >= varargsData->mandatoryMinimum, but we will still
                                        // have GetStacks in that range. So if we don't do the stores, we'll
                                        // have degenerate IR: we'll have GetStacks of something that didn't
                                        // have PutStacks.
                                        // https://bugs.webkit.org/show_bug.cgi?id=147434
                                        
                                        if (!undefined) {
                                            undefined = insertionSet.insertConstant(
                                                nodeIndex, node->origin.withExitOK(canExit), jsUndefined());
                                        }
                                        value = undefined;
                                    }
                                    
                                    // Now that we have a value, store it.
                                    storeValue(value, storeIndex);
                                }
                                storeArgumentCountIncludingThis(argumentCountIncludingThis);
                                
                                node->remove(m_graph);
                                node->origin.exitOK = canExit;
                                break;
                            }
                        }
                    }

                    node->setOpAndDefaultFlags(ForwardVarargs);
                    break;
                }
                    
                case CallVarargs:
                case ConstructVarargs:
                case TailCallVarargs:
                case TailCallVarargsInlinedCaller: {
                    Node* candidate = node->child3().node();
                    if (!isEliminatedAllocation(candidate))
                        break;

                    auto convertToStaticArgumentCountCall = [&] (const Vector<Node*>& arguments) {
                        unsigned firstChild = m_graph.m_varArgChildren.size();
                        m_graph.m_varArgChildren.append(node->child1());
                        m_graph.m_varArgChildren.append(node->child2());
                        for (Node* argument : arguments)
                            m_graph.m_varArgChildren.append(Edge(argument));
                        switch (node->op()) {
                        case CallVarargs:
                            node->setOpAndDefaultFlags(Call);
                            break;
                        case ConstructVarargs:
                            node->setOpAndDefaultFlags(Construct);
                            break;
                        case TailCallVarargs:
                            node->setOpAndDefaultFlags(TailCall);
                            break;
                        case TailCallVarargsInlinedCaller:
                            node->setOpAndDefaultFlags(TailCallInlinedCaller);
                            break;
                        default:
                            RELEASE_ASSERT_NOT_REACHED();
                        }
                        node->children = AdjacencyList(
                            AdjacencyList::Variable,
                            firstChild, m_graph.m_varArgChildren.size() - firstChild);
                    };

                    auto convertToForwardsCall = [&] () {
                        switch (node->op()) {
                        case CallVarargs:
                            node->setOpAndDefaultFlags(CallForwardVarargs);
                            break;
                        case ConstructVarargs:
                            node->setOpAndDefaultFlags(ConstructForwardVarargs);
                            break;
                        case TailCallVarargs:
                            node->setOpAndDefaultFlags(TailCallForwardVarargs);
                            break;
                        case TailCallVarargsInlinedCaller:
                            node->setOpAndDefaultFlags(TailCallForwardVarargsInlinedCaller);
                            break;
                        default:
                            RELEASE_ASSERT_NOT_REACHED();
                        }
                    };
                    
                    if (candidate->op() == PhantomNewArrayWithSpread || candidate->op() == PhantomNewArrayBuffer || candidate->op() == PhantomSpread) {
                        auto canTransformToStaticArgumentCountCall = recursableLambda([&](auto self, Node* candidate) -> bool {
                            if (candidate->op() == PhantomSpread)
                                return self(candidate->child1().node());

                            if (candidate->op() == PhantomNewArrayWithSpread) {
                                BitVector* bitVector = candidate->bitVector();
                                for (unsigned i = 0; i < candidate->numChildren(); i++) {
                                    if (bitVector->get(i)) {
                                        Node* spread = m_graph.varArgChild(candidate, i).node();
                                        if (!self(spread))
                                            return false;
                                    }
                                }
                                return true;
                            }

                            // PhantomNewArrayBuffer only contains constants. It can always convert LoadVarargs to static load stores.
                            if (candidate->op() == PhantomNewArrayBuffer)
                                return true;

                            ASSERT(candidate->op() == PhantomCreateRest);
                            InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();
                            return inlineCallFrame && !inlineCallFrame->isVarargs();
                        });

                        if (canTransformToStaticArgumentCountCall(candidate)) {
                            Vector<Node*> arguments;
                            auto appendNode = recursableLambda([&](auto self, Node* candidate) -> void {
                                if (candidate->op() == PhantomSpread) {
                                    self(candidate->child1().node());
                                    return;
                                }

                                if (candidate->op() == PhantomNewArrayWithSpread) {
                                    BitVector* bitVector = candidate->bitVector();
                                    for (unsigned i = 0; i < candidate->numChildren(); i++) {
                                        Node* child = m_graph.varArgChild(candidate, i).node();
                                        if (bitVector->get(i))
                                            self(child);
                                        else
                                            arguments.append(child);
                                    }
                                    return;
                                }

                                if (candidate->op() == PhantomNewArrayBuffer) {
                                    bool canExit = true;
                                    auto* array = candidate->castOperand<JSImmutableButterfly*>();
                                    for (unsigned index = 0; index < array->length(); ++index) {
                                        JSValue constant;
                                        if (candidate->indexingType() == ArrayWithDouble)
                                            constant = jsDoubleNumber(array->get(index).asNumber());
                                        else
                                            constant = array->get(index);
                                        arguments.append(insertionSet.insertConstant(nodeIndex, node->origin.withExitOK(canExit), constant));
                                    }
                                    return;
                                }

                                ASSERT(candidate->op() == PhantomCreateRest);
                                InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();
                                unsigned numberOfArgumentsToSkip = candidate->numberOfArgumentsToSkip();
                                for (unsigned i = 1 + numberOfArgumentsToSkip; i < inlineCallFrame->argumentCountIncludingThis; ++i) {
                                    StackAccessData* data = m_graph.m_stackAccessData.add(
                                        virtualRegisterForArgumentIncludingThis(i) + inlineCallFrame->stackOffset,
                                        FlushedJSValue);

                                    Node* value = insertionSet.insertNode(
                                        nodeIndex, SpecNone, GetStack, node->origin, OpInfo(data));

                                    arguments.append(value);
                                }
                            });

                            appendNode(candidate);
                            convertToStaticArgumentCountCall(arguments);
                        } else
                            convertToForwardsCall();
                    } else {
                        unsigned numberOfArgumentsToSkip = 0;
                        if (candidate->op() == PhantomCreateRest)
                            numberOfArgumentsToSkip = candidate->numberOfArgumentsToSkip();
                        CallVarargsData* varargsData = node->callVarargsData();
                        varargsData->firstVarArgOffset += numberOfArgumentsToSkip;

                        InlineCallFrame* inlineCallFrame = candidate->origin.semantic.inlineCallFrame();
                        if (inlineCallFrame && !inlineCallFrame->isVarargs()) {
                            Vector<Node*> arguments;
                            for (unsigned i = 1 + varargsData->firstVarArgOffset; i < inlineCallFrame->argumentCountIncludingThis; ++i) {
                                StackAccessData* data = m_graph.m_stackAccessData.add(
                                    virtualRegisterForArgumentIncludingThis(i) + inlineCallFrame->stackOffset,
                                    FlushedJSValue);
                                
                                Node* value = insertionSet.insertNode(
                                    nodeIndex, SpecNone, GetStack, node->origin, OpInfo(data));
                                
                                arguments.append(value);
                            }
                            
                            convertToStaticArgumentCountCall(arguments);
                        } else
                            convertToForwardsCall();
                    }

                    break;
                }
                    
                case CheckArrayOrEmpty:
                case CheckArray:
                case GetButterfly:
                case FilterGetByStatus:
                case FilterPutByStatus:
                case FilterCallLinkStatus:
                case FilterInByStatus:
                case FilterDeleteByStatus:
                case FilterCheckPrivateBrandStatus:
                case FilterSetPrivateBrandStatus: {
                    if (!isEliminatedAllocation(node->child1().node()))
                        break;
                    node->remove(m_graph);
                    break;
                }

                case CheckStructureOrEmpty:
                case CheckStructure:
                    if (!isEliminatedAllocation(node->child1().node()))
                        break;
                    node->child1() = Edge(); // Remove the cell check since we've proven it's not needed and FTL lowering might botch this.
                    node->remove(m_graph);
                    break;
                    
                default:
                    break;
                }

                if (node->isPseudoTerminal()) {
                    pseudoTerminal = node;
                    break;
                }
            }

            insertionSet.execute(block);

            if (pseudoTerminal) {
                for (unsigned i = 0; i < block->size(); ++i) {
                    Node* node = block->at(i);
                    if (node != pseudoTerminal)
                        continue;
                    block->resize(i + 1);
                    block->append(m_graph.addNode(SpecNone, Unreachable, node->origin));
                    modifiedCFG = true;
                    break;
                }
            }
        }

        if (modifiedCFG) {
            m_graph.invalidateCFG();
            m_graph.resetReachability();
            m_graph.killUnreachableBlocks();
        }
    }
    
    UncheckedKeyHashMap<Node*, AvailabilityMap> m_candidates;
};

} // anonymous namespace

bool performArgumentsElimination(Graph& graph)
{
    return runPhase<ArgumentsEliminationPhase>(graph);
}

} } // namespace JSC::DFG

#endif // ENABLE(DFG_JIT)