1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
/*
* Copyright (C) 2013-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "DFGAbstractInterpreterClobberState.h"
#include "DFGAbstractValue.h"
#include "DFGBasicBlock.h"
#include "DFGBlockMap.h"
#include "DFGGraph.h"
#include "DFGNodeFlowProjection.h"
namespace JSC { namespace DFG {
class AtTailAbstractState {
public:
AtTailAbstractState(Graph&);
~AtTailAbstractState();
explicit operator bool() const { return true; }
void initializeTo(BasicBlock* block)
{
m_block = block;
}
void createValueForNode(NodeFlowProjection);
AbstractValue& fastForward(AbstractValue& value) { return value; }
AbstractValue& forNode(NodeFlowProjection);
AbstractValue& forNode(Edge edge)
{
ASSERT(!edge.node()->isTuple());
return forNode(edge.node());
}
ALWAYS_INLINE AbstractValue& forNodeWithoutFastForward(NodeFlowProjection node)
{
ASSERT(!node->isTuple());
return forNode(node);
}
ALWAYS_INLINE AbstractValue& forNodeWithoutFastForward(Edge edge)
{
return forNode(edge);
}
ALWAYS_INLINE void fastForwardAndFilterUnproven(AbstractValue& value, SpeculatedType type)
{
value.filter(type);
}
ALWAYS_INLINE void clearForNode(NodeFlowProjection node)
{
ASSERT(!node->isTuple());
forNode(node).clear();
}
ALWAYS_INLINE void clearForNode(Edge edge)
{
clearForNode(edge.node());
}
template<typename... Arguments>
ALWAYS_INLINE void setForNode(NodeFlowProjection node, Arguments&&... arguments)
{
ASSERT(!node->isTuple());
forNode(node).set(m_graph, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setForNode(Edge edge, Arguments&&... arguments)
{
setForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
{
forNode(node).setType(m_graph, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForNode(Edge edge, Arguments&&... arguments)
{
setTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
{
forNode(node).setNonCellType(std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForNode(Edge edge, Arguments&&... arguments)
{
setNonCellTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
ALWAYS_INLINE void makeBytecodeTopForNode(NodeFlowProjection node)
{
forNode(node).makeBytecodeTop();
}
ALWAYS_INLINE void makeBytecodeTopForNode(Edge edge)
{
makeBytecodeTopForNode(edge.node());
}
ALWAYS_INLINE void makeHeapTopForNode(NodeFlowProjection node)
{
forNode(node).makeHeapTop();
}
ALWAYS_INLINE void makeHeapTopForNode(Edge edge)
{
makeHeapTopForNode(edge.node());
}
ALWAYS_INLINE AbstractValue& forTupleNodeWithoutFastForward(NodeFlowProjection node, unsigned index)
{
return forTupleNode(node, index);
}
ALWAYS_INLINE AbstractValue& forTupleNode(NodeFlowProjection node, unsigned index)
{
ASSERT(index < node->tupleSize());
return m_tupleAbstractValues.at(m_block).at(node->tupleOffset() + index);
}
ALWAYS_INLINE AbstractValue& forTupleNode(Edge edge, unsigned index)
{
return forTupleNode(edge.node(), index);
}
ALWAYS_INLINE void clearForTupleNode(NodeFlowProjection node, unsigned index)
{
forTupleNode(node, index).clear();
}
ALWAYS_INLINE void clearForTupleNode(Edge edge, unsigned index)
{
clearForTupleNode(edge.node(), index);
}
template<typename... Arguments>
ALWAYS_INLINE void setForTupleNode(NodeFlowProjection node, unsigned index, Arguments&&... arguments)
{
forTupleNode(node, index).set(m_graph, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setForTupleNode(Edge edge, unsigned index, Arguments&&... arguments)
{
setForTupleNode(edge.node(), index, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForTupleNode(NodeFlowProjection node, unsigned index, Arguments&&... arguments)
{
forTupleNode(node, index).setType(m_graph, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForTupleNode(Edge edge, unsigned index, Arguments&&... arguments)
{
setTypeForTupleNode(edge.node(), index, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForTupleNode(NodeFlowProjection node, unsigned index, Arguments&&... arguments)
{
forTupleNode(node, index).setNonCellType(std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForTupleNode(Edge edge, unsigned index, Arguments&&... arguments)
{
setNonCellTypeForTupleNode(edge.node(), index, std::forward<Arguments>(arguments)...);
}
ALWAYS_INLINE void makeBytecodeTopForTupleNode(NodeFlowProjection node, unsigned index)
{
forTupleNode(node, index).makeBytecodeTop();
}
ALWAYS_INLINE void makeBytecodeTopForTupleNode(Edge edge, unsigned index)
{
makeBytecodeTopForTupleNode(edge.node(), index);
}
ALWAYS_INLINE void makeHeapTopForTupleNode(NodeFlowProjection node, unsigned index)
{
forTupleNode(node, index).makeHeapTop();
}
ALWAYS_INLINE void makeHeapTopForTupleNode(Edge edge, unsigned index)
{
makeHeapTopForTupleNode(edge.node(), index);
}
unsigned size() const { return m_block->valuesAtTail.size(); }
unsigned numberOfArguments() const { return m_block->valuesAtTail.numberOfArguments(); }
unsigned numberOfLocals() const { return m_block->valuesAtTail.numberOfLocals(); }
unsigned numberOfTmps() const { return m_block->valuesAtTail.numberOfTmps(); }
AbstractValue& atIndex(size_t index) { return m_block->valuesAtTail.at(index); }
AbstractValue& operand(Operand operand) { return m_block->valuesAtTail.operand(operand); }
AbstractValue& local(size_t index) { return m_block->valuesAtTail.local(index); }
AbstractValue& argument(size_t index) { return m_block->valuesAtTail.argument(index); }
AbstractValue& tmp(size_t index) { return m_block->valuesAtTail.tmp(index); }
void clobberStructures()
{
UNREACHABLE_FOR_PLATFORM();
}
void observeInvalidationPoint()
{
UNREACHABLE_FOR_PLATFORM();
}
BasicBlock* block() const { return m_block; }
bool isValid() { return m_block->cfaDidFinish; }
StructureClobberState structureClobberState() const { return m_block->cfaStructureClobberStateAtTail; }
void setClobberState(AbstractInterpreterClobberState) { }
void mergeClobberState(AbstractInterpreterClobberState) { }
void setStructureClobberState(StructureClobberState state) { RELEASE_ASSERT(state == m_block->cfaStructureClobberStateAtTail); }
void setIsValid(bool isValid) { m_block->cfaDidFinish = isValid; }
void setBranchDirection(BranchDirection) { }
void setShouldTryConstantFolding(bool) { }
void trustEdgeProofs() { m_trustEdgeProofs = true; }
void dontTrustEdgeProofs() { m_trustEdgeProofs = false; }
void setProofStatus(Edge& edge, ProofStatus status)
{
if (m_trustEdgeProofs)
edge.setProofStatus(status);
}
private:
Graph& m_graph;
BlockMap<UncheckedKeyHashMap<NodeFlowProjection, AbstractValue>> m_valuesAtTailMap;
BlockMap<Vector<AbstractValue>> m_tupleAbstractValues;
BasicBlock* m_block { nullptr };
bool m_trustEdgeProofs { false };
};
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|