1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
/*
* Copyright (C) 2013-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGBackwardsPropagationPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGBlockMapInlines.h"
#include "DFGGraph.h"
#include "DFGPhase.h"
#include "JSCJSValueInlines.h"
#include <wtf/MathExtras.h>
namespace JSC { namespace DFG {
// This phase is run at the end of BytecodeParsing, so the graph isn't in a fully formed state.
// For example, we can't access the predecessor list of any basic blocks yet.
//
// Note that, so far, this phase should only be used in the byte code parsing phase
// or after the fix up phases. We don't want to validate graph since
// unreachable blocks won't be removed until the end of the parsing phase.
class BackwardsPropagationPhase : public Phase {
public:
BackwardsPropagationPhase(Graph& graph)
: Phase(graph, "backwards propagation"_s, !graph.afterFixup())
, m_flagsAtHead(graph)
{
}
bool run()
{
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
m_flagsAtHead[block] = Operands<NodeFlags>(OperandsLike, m_graph.block(0)->variablesAtHead);
m_flagsAtHead[block].fill(0);
}
bool changed;
do {
changed = false;
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
{
unsigned numSuccessors = block->numSuccessors();
if (!numSuccessors) {
m_currentFlags = Operands<NodeFlags>(OperandsLike, m_graph.block(0)->variablesAtHead);
m_currentFlags.fill(0);
} else {
m_currentFlags = m_flagsAtHead[block->successor(0)];
for (unsigned i = 1; i < numSuccessors; ++i) {
BasicBlock* successor = block->successor(i);
for (size_t i = 0; i < m_currentFlags.size(); ++i)
m_currentFlags[i] |= m_flagsAtHead[successor][i];
}
}
}
// Prevent a tower of overflowing additions from creating a value that is out of the
// safe 2^48 range.
m_allowNestedOverflowingAdditions = block->size() < (1 << 16);
for (unsigned indexInBlock = block->size(); indexInBlock--;)
propagate(block->at(indexInBlock));
if (m_flagsAtHead[block] != m_currentFlags) {
m_flagsAtHead[block] = m_currentFlags;
changed = true;
}
}
} while (changed);
return true;
}
private:
bool isNotNegZero(Node* node, unsigned timeToLive = 3)
{
if (!timeToLive)
return false;
switch (node->op()) {
case DoubleConstant:
case JSConstant:
case Int52Constant: {
if (!node->isNumberConstant())
return false;
double value = node->asNumber();
return (value || 1.0 / value > 0.0);
}
case ValueBitAnd:
case ValueBitOr:
case ValueBitXor:
case ValueBitLShift:
case ValueBitRShift:
case ArithBitAnd:
case ArithBitOr:
case ArithBitXor:
case ArithBitLShift:
case ArithBitRShift:
case BitURShift: {
return true;
}
case ValueAdd:
case ArithAdd: {
if (isNotNegZero(node->child1().node(), timeToLive - 1) || isNotNegZero(node->child2().node(), timeToLive - 1))
return true;
return false;
}
default:
return false;
}
}
bool isNotPosZero(Node* node)
{
if (!node->isNumberConstant())
return false;
double value = node->asNumber();
return (value || 1.0 / value < 0.0);
}
// Tests if the absolute value is strictly less than the power of two.
template<int power>
bool isWithinPowerOfTwoForConstant(Node* node)
{
JSValue immediateValue = node->asJSValue();
if (!immediateValue.isNumber())
return false;
double immediate = immediateValue.asNumber();
return immediate > -(static_cast<int64_t>(1) << power) && immediate < (static_cast<int64_t>(1) << power);
}
template<int power>
bool isWithinPowerOfTwoNonRecursive(Node* node)
{
if (!node->isNumberConstant())
return false;
return isWithinPowerOfTwoForConstant<power>(node);
}
template<int power>
bool isWithinPowerOfTwo(Node* node)
{
switch (node->op()) {
case DoubleConstant:
case JSConstant:
case Int52Constant: {
return isWithinPowerOfTwoForConstant<power>(node);
}
case ValueBitAnd:
case ArithBitAnd: {
if (power > 31)
return true;
return isWithinPowerOfTwoNonRecursive<power>(node->child1().node())
|| isWithinPowerOfTwoNonRecursive<power>(node->child2().node());
}
case ArithBitOr:
case ArithBitXor:
case ValueBitOr:
case ValueBitXor:
case ValueBitLShift:
case ArithBitLShift: {
return power > 31;
}
case ArithBitRShift:
case ValueBitRShift:
case BitURShift: {
if (power > 31)
return true;
Node* shiftAmount = node->child2().node();
if (!node->isNumberConstant())
return false;
JSValue immediateValue = shiftAmount->asJSValue();
if (!immediateValue.isInt32())
return false;
return immediateValue.asInt32() > 32 - power;
}
default:
return false;
}
}
template<int power>
bool isWithinPowerOfTwo(Edge edge)
{
return isWithinPowerOfTwo<power>(edge.node());
}
static bool mergeFlags(NodeFlags& flagsRef, NodeFlags newFlags)
{
return checkAndSet(flagsRef, flagsRef | newFlags);
}
bool mergeDefaultFlags(Node* node)
{
bool changed = false;
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild();
childIdx < node->firstChild() + node->numChildren();
childIdx++) {
if (!!m_graph.m_varArgChildren[childIdx])
changed |= m_graph.m_varArgChildren[childIdx]->mergeFlags(NodeBytecodeUsesAsValue);
}
} else {
if (!node->child1())
return changed;
changed |= node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
if (!node->child2())
return changed;
changed |= node->child2()->mergeFlags(NodeBytecodeUsesAsValue);
if (!node->child3())
return changed;
changed |= node->child3()->mergeFlags(NodeBytecodeUsesAsValue);
}
return changed;
}
static constexpr NodeFlags VariableIsUsed = 1 << (1 + WTF::getMSBSetConstexpr(NodeBytecodeBackPropMask));
static_assert(!(VariableIsUsed & NodeBytecodeBackPropMask));
static_assert(VariableIsUsed > NodeBytecodeBackPropMask, "Verify the above doesn't overflow");
void propagate(Node* node)
{
NodeFlags flags = node->flags() & NodeBytecodeBackPropMask;
switch (node->op()) {
case GetLocal: {
VariableAccessData* variableAccessData = node->variableAccessData();
flags |= m_currentFlags.operand(variableAccessData->operand());
flags |= VariableIsUsed;
m_currentFlags.operand(variableAccessData->operand()) = flags;
break;
}
case SetLocal: {
VariableAccessData* variableAccessData = node->variableAccessData();
Operand operand = variableAccessData->operand();
NodeFlags flags = m_currentFlags.operand(operand);
if (!(flags & VariableIsUsed))
break;
flags &= NodeBytecodeBackPropMask;
flags &= ~NodeBytecodeUsesAsInt; // We don't care about cross-block uses-as-int.
variableAccessData->mergeFlags(flags);
// We union with NodeBytecodeUsesAsNumber to account for the fact that control flow may cause overflows that our modeling can't handle.
// For example, a loop where we always add a constant value.
node->child1()->mergeFlags(flags | NodeBytecodeUsesAsNumber);
m_currentFlags.operand(operand) = 0;
break;
}
case Flush: {
VariableAccessData* variableAccessData = node->variableAccessData();
mergeFlags(m_currentFlags.operand(variableAccessData->operand()), NodeBytecodeUsesAsValue | VariableIsUsed);
break;
}
case PhantomLocal: {
VariableAccessData* variableAccessData = node->variableAccessData();
mergeFlags(m_currentFlags.operand(variableAccessData->operand()), VariableIsUsed);
break;
}
case MovHint:
case Check:
case CheckVarargs:
break;
case ValueBitNot:
case ArithBitNot: {
flags |= NodeBytecodeUsesAsInt;
flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity | NodeBytecodeUsesAsOther);
flags &= ~NodeBytecodePrefersArrayIndex;
node->child1()->mergeFlags(flags);
break;
}
case ArithBitAnd:
case ArithBitOr:
case ArithBitXor:
case ValueBitAnd:
case ValueBitOr:
case ValueBitXor:
case ValueBitLShift:
case ArithBitLShift:
case ArithBitRShift:
case ValueBitRShift:
case BitURShift:
case ArithIMul: {
flags |= NodeBytecodeUsesAsInt;
flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity | NodeBytecodeUsesAsOther);
flags &= ~NodeBytecodePrefersArrayIndex;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case StringAt:
case StringCharAt:
case StringCharCodeAt:
case StringCodePointAt: {
node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodePrefersArrayIndex);
break;
}
case StringIndexOf: {
node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
node->child2()->mergeFlags(NodeBytecodeUsesAsValue);
if (node->child3())
node->child3()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodePrefersArrayIndex);
break;
}
case StringSlice:
case StringSubstring: {
node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
node->child2()->mergeFlags(NodeBytecodeUsesAsArrayIndex);
if (node->child3())
node->child3()->mergeFlags(NodeBytecodeUsesAsArrayIndex);
break;
}
case ArraySlice: {
m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue);
if (node->numChildren() == 2)
m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsValue);
else if (node->numChildren() == 3) {
m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue);
} else if (node->numChildren() == 4) {
m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
m_graph.varArgChild(node, 3)->mergeFlags(NodeBytecodeUsesAsValue);
}
break;
}
case UInt32ToNumber: {
node->child1()->mergeFlags(flags);
break;
}
case ValueAdd: {
if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node()))
flags &= ~NodeBytecodeNeedsNegZero;
if (node->child1()->hasNumericResult() || node->child2()->hasNumericResult() || node->child1()->hasNumberResult() || node->child2()->hasNumberResult())
flags &= ~NodeBytecodeUsesAsOther;
if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
flags |= NodeBytecodeUsesAsNumber;
if (!m_allowNestedOverflowingAdditions)
flags |= NodeBytecodeUsesAsNumber;
flags |= NodeBytecodeNeedsNaNOrInfinity;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithAdd: {
flags &= ~NodeBytecodeUsesAsOther;
if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node()))
flags &= ~NodeBytecodeNeedsNegZero;
if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
flags |= NodeBytecodeUsesAsNumber;
if (!m_allowNestedOverflowingAdditions)
flags |= NodeBytecodeUsesAsNumber;
flags |= NodeBytecodeNeedsNaNOrInfinity;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithClz32: {
flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity | NodeBytecodeUsesAsOther | NodeBytecodePrefersArrayIndex);
flags |= NodeBytecodeUsesAsInt;
node->child1()->mergeFlags(flags);
break;
}
case ArithSub: {
flags &= ~NodeBytecodeUsesAsOther;
if (isNotNegZero(node->child1().node()) || isNotPosZero(node->child2().node()))
flags &= ~NodeBytecodeNeedsNegZero;
if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
flags |= NodeBytecodeUsesAsNumber;
if (!m_allowNestedOverflowingAdditions)
flags |= NodeBytecodeUsesAsNumber;
flags |= NodeBytecodeNeedsNaNOrInfinity;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithNegate: {
// negation does not care about NaN, Infinity, -Infinity are converted into 0 if the result is evaluated under the integer context.
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
break;
}
case Inc:
case Dec: {
flags &= ~NodeBytecodeNeedsNegZero;
flags &= ~NodeBytecodeUsesAsOther;
if (!isWithinPowerOfTwo<32>(node->child1()))
flags |= NodeBytecodeUsesAsNumber;
if (!m_allowNestedOverflowingAdditions)
flags |= NodeBytecodeUsesAsNumber;
flags |= NodeBytecodeNeedsNaNOrInfinity;
node->child1()->mergeFlags(flags);
break;
}
case ValueMul:
case ArithMul: {
// As soon as a multiply happens, we can easily end up in the part
// of the double domain where the point at which you do truncation
// can change the outcome. So, ArithMul always forces its inputs to
// check for overflow. Additionally, it will have to check for overflow
// itself unless we can prove that there is no way for the values
// produced to cause double rounding.
if (!isWithinPowerOfTwo<22>(node->child1().node())
&& !isWithinPowerOfTwo<22>(node->child2().node()))
flags |= NodeBytecodeUsesAsNumber;
node->mergeFlags(flags);
flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity;
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ValueDiv:
case ArithDiv: {
// ArithDiv / ValueDiv need to have NodeBytecodeUsesAsNumber even if it is used in the context of integer.
// For example,
// ((@x / @y) + @z) | 0
// In this context, (@x / @y) can have integer context at first, but the result can be different if div
// generates NaN. Div and Mod are operations that can produce NaN / Infinity though only taking binary Int32 operands.
// Thus, we always need to check for overflow since it can affect downstream calculations.
flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity;
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ValueMod:
case ArithMod: {
flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity;
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags & ~NodeBytecodeNeedsNegZero);
break;
}
case EnumeratorGetByVal:
case GetByVal:
case GetByValMegamorphic: {
m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue);
m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
break;
}
case NewTypedArray:
case NewArrayWithSize:
case NewArrayWithConstantSize:
case NewArrayWithSpecies:
case NewArrayWithSizeAndStructure: {
// Negative zero is not observable. NaN versus undefined are only observable
// in that you would get a different exception message. So, like, whatever: we
// claim here that NaN v. undefined is observable.
node->child1()->mergeFlags(NodeBytecodeUsesAsArrayIndex);
break;
}
case ToString:
case CallStringConstructor: {
if (typeFilterFor(node->child1().useKind()) & SpecOther)
node->child1()->mergeFlags(NodeBytecodeUsesAsOther);
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNaNOrInfinity);
break;
}
case ToPrimitive:
case ToNumber:
case ToNumeric:
case CallNumberConstructor: {
node->child1()->mergeFlags(flags);
break;
}
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareBelow:
case CompareBelowEq:
case CompareEq:
case CompareStrictEq: {
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeNeedsNaNOrInfinity);
node->child2()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeNeedsNaNOrInfinity);
break;
}
case EnumeratorPutByVal:
case PutByValDirect:
case PutByVal:
case PutByValMegamorphic: {
m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue);
m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue);
break;
}
case Switch: {
SwitchData* data = node->switchData();
switch (data->kind) {
case SwitchImm:
// We don't need NodeBytecodeNeedsNegZero because if the cases are all integers
// then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther
// because if all of the cases are integers then NaN and undefined are
// treated the same (i.e. they will take default).
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsInt | NodeBytecodeNeedsNaNOrInfinity);
break;
case SwitchChar: {
// We don't need NodeBytecodeNeedsNegZero because if the cases are all strings
// then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther
// because if all of the cases are single-character strings then NaN
// and undefined are treated the same (i.e. they will take default).
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNaNOrInfinity);
break;
}
case SwitchString:
// We don't need NodeBytecodeNeedsNegZero because if the cases are all strings
// then -0 and 0 are treated the same.
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeNeedsNaNOrInfinity);
break;
case SwitchCell:
// There is currently no point to being clever here since this is used for switching
// on objects.
mergeDefaultFlags(node);
break;
}
break;
}
case Identity:
ASSERT(m_graph.afterFixup());
node->child1()->mergeFlags(flags);
break;
case ValueRep:
ASSERT(m_graph.afterFixup());
// ValueRep is used to box a double or int52 to a JSValue. So, we shouldn't propagate any node flags to its child.
break;
case Int52Rep:
case ValueToInt32:
case DoubleAsInt32:
ASSERT(m_graph.afterFixup());
// The results of these nodes are pure unboxed integers. Then, we
// should definitely tell their children that you will be used as an integer.
node->child1()->mergeFlags(NodeBytecodeUsesAsInt);
break;
case DoubleRep:
case PurifyNaN:
ASSERT(m_graph.afterFixup());
// The result of the node is pure unboxed floating point values.
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber);
break;
case BooleanToNumber:
ASSERT(m_graph.afterFixup());
// The result of BooleanToNumber can be either an unboxed integer or a JSValue.
if (node->child1().useKind() == BooleanUse)
node->child1()->mergeFlags(NodeBytecodeUsesAsInt);
break;
case CheckStructureOrEmpty:
case CheckArrayOrEmpty:
case Arrayify:
case ArrayifyToStructure:
case GetIndexedPropertyStorage:
case ResolveRope:
case MakeRope:
case GetRegExpObjectLastIndex:
case HasIndexedProperty:
case CallDOM:
// Not interested so far.
ASSERT(m_graph.afterFixup());
break;
// Note: ArithSqrt, ArithUnary and other math intrinsics don't have special
// rules in here because they are always followed by Phantoms to signify that if the
// method call speculation fails, the bytecode may use the arguments in arbitrary ways.
// This corresponds to that possibility of someone doing something like:
// Math.sin = function(x) { doArbitraryThingsTo(x); }
default:
mergeDefaultFlags(node);
break;
}
}
bool m_allowNestedOverflowingAdditions;
BlockMap<Operands<NodeFlags>> m_flagsAtHead;
Operands<NodeFlags> m_currentFlags;
};
bool performBackwardsPropagation(Graph& graph)
{
return runPhase<BackwardsPropagationPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|