File: DFGBackwardsPropagationPhase.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (673 lines) | stat: -rw-r--r-- 25,886 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*
 * Copyright (C) 2013-2015 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "DFGBackwardsPropagationPhase.h"

#if ENABLE(DFG_JIT)

#include "DFGBlockMapInlines.h"
#include "DFGGraph.h"
#include "DFGPhase.h"
#include "JSCJSValueInlines.h"
#include <wtf/MathExtras.h>

namespace JSC { namespace DFG {

// This phase is run at the end of BytecodeParsing, so the graph isn't in a fully formed state.
// For example, we can't access the predecessor list of any basic blocks yet.
//
// Note that, so far, this phase should only be used in the byte code parsing phase
// or after the fix up phases. We don't want to validate graph since
// unreachable blocks won't be removed until the end of the parsing phase.
class BackwardsPropagationPhase : public Phase {
public:
    BackwardsPropagationPhase(Graph& graph)
        : Phase(graph, "backwards propagation"_s, !graph.afterFixup())
        , m_flagsAtHead(graph)
    {
    }

    bool run()
    {
        for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
            m_flagsAtHead[block] = Operands<NodeFlags>(OperandsLike, m_graph.block(0)->variablesAtHead);
            m_flagsAtHead[block].fill(0);
        }

        bool changed;
        do {
            changed = false;

            for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
                BasicBlock* block = m_graph.block(blockIndex);
                if (!block)
                    continue;

                {
                    unsigned numSuccessors = block->numSuccessors();
                    if (!numSuccessors) {
                        m_currentFlags = Operands<NodeFlags>(OperandsLike, m_graph.block(0)->variablesAtHead);
                        m_currentFlags.fill(0);
                    } else {
                        m_currentFlags = m_flagsAtHead[block->successor(0)];
                        for (unsigned i = 1; i < numSuccessors; ++i) {
                            BasicBlock* successor = block->successor(i);
                            for (size_t i = 0; i < m_currentFlags.size(); ++i)
                                m_currentFlags[i] |= m_flagsAtHead[successor][i];
                        }
                    }
                }

            
                // Prevent a tower of overflowing additions from creating a value that is out of the
                // safe 2^48 range.
                m_allowNestedOverflowingAdditions = block->size() < (1 << 16);
            
                for (unsigned indexInBlock = block->size(); indexInBlock--;)
                    propagate(block->at(indexInBlock));

                if (m_flagsAtHead[block] != m_currentFlags) {
                    m_flagsAtHead[block] = m_currentFlags;
                    changed = true;
                }
            }
        } while (changed);
        
        return true;
    }

private:
    bool isNotNegZero(Node* node, unsigned timeToLive = 3)
    {
        if (!timeToLive)
            return false;

        switch (node->op()) {
        case DoubleConstant:
        case JSConstant:
        case Int52Constant: {
            if (!node->isNumberConstant())
                return false;
            double value = node->asNumber();
            return (value || 1.0 / value > 0.0);
        }

        case ValueBitAnd:
        case ValueBitOr:
        case ValueBitXor:
        case ValueBitLShift:
        case ValueBitRShift:
        case ArithBitAnd:
        case ArithBitOr:
        case ArithBitXor:
        case ArithBitLShift:
        case ArithBitRShift:
        case BitURShift: {
            return true;
        }

        case ValueAdd:
        case ArithAdd: {
            if (isNotNegZero(node->child1().node(), timeToLive - 1) || isNotNegZero(node->child2().node(), timeToLive - 1))
                return true;
            return false;
        }

        default:
            return false;
        }
    }

    bool isNotPosZero(Node* node)
    {
        if (!node->isNumberConstant())
            return false;
        double value = node->asNumber();
        return (value || 1.0 / value < 0.0);
    }

    // Tests if the absolute value is strictly less than the power of two.
    template<int power>
    bool isWithinPowerOfTwoForConstant(Node* node)
    {
        JSValue immediateValue = node->asJSValue();
        if (!immediateValue.isNumber())
            return false;
        double immediate = immediateValue.asNumber();
        return immediate > -(static_cast<int64_t>(1) << power) && immediate < (static_cast<int64_t>(1) << power);
    }
    
    template<int power>
    bool isWithinPowerOfTwoNonRecursive(Node* node)
    {
        if (!node->isNumberConstant())
            return false;
        return isWithinPowerOfTwoForConstant<power>(node);
    }
    
    template<int power>
    bool isWithinPowerOfTwo(Node* node)
    {
        switch (node->op()) {
        case DoubleConstant:
        case JSConstant:
        case Int52Constant: {
            return isWithinPowerOfTwoForConstant<power>(node);
        }
            
        case ValueBitAnd:
        case ArithBitAnd: {
            if (power > 31)
                return true;
            
            return isWithinPowerOfTwoNonRecursive<power>(node->child1().node())
                || isWithinPowerOfTwoNonRecursive<power>(node->child2().node());
        }
            
        case ArithBitOr:
        case ArithBitXor:
        case ValueBitOr:
        case ValueBitXor:
        case ValueBitLShift:
        case ArithBitLShift: {
            return power > 31;
        }
            
        case ArithBitRShift:
        case ValueBitRShift:
        case BitURShift: {
            if (power > 31)
                return true;
            
            Node* shiftAmount = node->child2().node();
            if (!node->isNumberConstant())
                return false;
            JSValue immediateValue = shiftAmount->asJSValue();
            if (!immediateValue.isInt32())
                return false;
            return immediateValue.asInt32() > 32 - power;
        }
            
        default:
            return false;
        }
    }

    template<int power>
    bool isWithinPowerOfTwo(Edge edge)
    {
        return isWithinPowerOfTwo<power>(edge.node());
    }

    static bool mergeFlags(NodeFlags& flagsRef, NodeFlags newFlags)
    {
        return checkAndSet(flagsRef, flagsRef | newFlags);
    }

    bool mergeDefaultFlags(Node* node)
    {
        bool changed = false;
        if (node->flags() & NodeHasVarArgs) {
            for (unsigned childIdx = node->firstChild();
                childIdx < node->firstChild() + node->numChildren();
                childIdx++) {
                if (!!m_graph.m_varArgChildren[childIdx])
                    changed |= m_graph.m_varArgChildren[childIdx]->mergeFlags(NodeBytecodeUsesAsValue);
            }
        } else {
            if (!node->child1())
                return changed;
            changed |= node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
            if (!node->child2())
                return changed;
            changed |= node->child2()->mergeFlags(NodeBytecodeUsesAsValue);
            if (!node->child3())
                return changed;
            changed |= node->child3()->mergeFlags(NodeBytecodeUsesAsValue);
        }
        return changed;
    }
    
    static constexpr NodeFlags VariableIsUsed = 1 << (1 + WTF::getMSBSetConstexpr(NodeBytecodeBackPropMask));
    static_assert(!(VariableIsUsed & NodeBytecodeBackPropMask));
    static_assert(VariableIsUsed > NodeBytecodeBackPropMask, "Verify the above doesn't overflow");
    
    void propagate(Node* node)
    {
        NodeFlags flags = node->flags() & NodeBytecodeBackPropMask;
        
        switch (node->op()) {
        case GetLocal: {
            VariableAccessData* variableAccessData = node->variableAccessData();
            flags |= m_currentFlags.operand(variableAccessData->operand());
            flags |= VariableIsUsed;
            m_currentFlags.operand(variableAccessData->operand()) = flags;
            break;
        }
            
        case SetLocal: {
            VariableAccessData* variableAccessData = node->variableAccessData();

            Operand operand = variableAccessData->operand();
            NodeFlags flags = m_currentFlags.operand(operand);
            if (!(flags & VariableIsUsed))
                break;

            flags &= NodeBytecodeBackPropMask;
            flags &= ~NodeBytecodeUsesAsInt; // We don't care about cross-block uses-as-int.

            variableAccessData->mergeFlags(flags);
            // We union with NodeBytecodeUsesAsNumber to account for the fact that control flow may cause overflows that our modeling can't handle.
            // For example, a loop where we always add a constant value.
            node->child1()->mergeFlags(flags | NodeBytecodeUsesAsNumber); 

            m_currentFlags.operand(operand) = 0;
            break;
        }
            
        case Flush: {
            VariableAccessData* variableAccessData = node->variableAccessData();
            mergeFlags(m_currentFlags.operand(variableAccessData->operand()), NodeBytecodeUsesAsValue | VariableIsUsed);
            break;
        }

        case PhantomLocal: {
            VariableAccessData* variableAccessData = node->variableAccessData();
            mergeFlags(m_currentFlags.operand(variableAccessData->operand()), VariableIsUsed);
            break;
        }
            
        case MovHint:
        case Check:
        case CheckVarargs:
            break;
            
        case ValueBitNot:
        case ArithBitNot: {
            flags |= NodeBytecodeUsesAsInt;
            flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity | NodeBytecodeUsesAsOther);
            flags &= ~NodeBytecodePrefersArrayIndex;
            node->child1()->mergeFlags(flags);
            break;
        }

        case ArithBitAnd:
        case ArithBitOr:
        case ArithBitXor:
        case ValueBitAnd:
        case ValueBitOr:
        case ValueBitXor:
        case ValueBitLShift:
        case ArithBitLShift:
        case ArithBitRShift:
        case ValueBitRShift:
        case BitURShift:
        case ArithIMul: {
            flags |= NodeBytecodeUsesAsInt;
            flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity | NodeBytecodeUsesAsOther);
            flags &= ~NodeBytecodePrefersArrayIndex;
            node->child1()->mergeFlags(flags);
            node->child2()->mergeFlags(flags);
            break;
        }
            
        case StringAt:
        case StringCharAt:
        case StringCharCodeAt:
        case StringCodePointAt: {
            node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
            node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodePrefersArrayIndex);
            break;
        }

        case StringIndexOf: {
            node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
            node->child2()->mergeFlags(NodeBytecodeUsesAsValue);
            if (node->child3())
                node->child3()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodePrefersArrayIndex);
            break;
        }

        case StringSlice:
        case StringSubstring: {
            node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
            node->child2()->mergeFlags(NodeBytecodeUsesAsArrayIndex);
            if (node->child3())
                node->child3()->mergeFlags(NodeBytecodeUsesAsArrayIndex);
            break;
        }

        case ArraySlice: {
            m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue);

            if (node->numChildren() == 2)
                m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsValue);
            else if (node->numChildren() == 3) {
                m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
                m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue);
            } else if (node->numChildren() == 4) {
                m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
                m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
                m_graph.varArgChild(node, 3)->mergeFlags(NodeBytecodeUsesAsValue);
            }
            break;
        }

            
        case UInt32ToNumber: {
            node->child1()->mergeFlags(flags);
            break;
        }

        case ValueAdd: {
            if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node()))
                flags &= ~NodeBytecodeNeedsNegZero;
            if (node->child1()->hasNumericResult() || node->child2()->hasNumericResult() || node->child1()->hasNumberResult() || node->child2()->hasNumberResult())
                flags &= ~NodeBytecodeUsesAsOther;
            if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
                flags |= NodeBytecodeUsesAsNumber;
            if (!m_allowNestedOverflowingAdditions)
                flags |= NodeBytecodeUsesAsNumber;
            flags |= NodeBytecodeNeedsNaNOrInfinity;
            
            node->child1()->mergeFlags(flags);
            node->child2()->mergeFlags(flags);
            break;
        }

        case ArithAdd: {
            flags &= ~NodeBytecodeUsesAsOther;
            if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node()))
                flags &= ~NodeBytecodeNeedsNegZero;
            if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
                flags |= NodeBytecodeUsesAsNumber;
            if (!m_allowNestedOverflowingAdditions)
                flags |= NodeBytecodeUsesAsNumber;
            flags |= NodeBytecodeNeedsNaNOrInfinity;
            
            node->child1()->mergeFlags(flags);
            node->child2()->mergeFlags(flags);
            break;
        }

        case ArithClz32: {
            flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity | NodeBytecodeUsesAsOther | NodeBytecodePrefersArrayIndex);
            flags |= NodeBytecodeUsesAsInt;
            node->child1()->mergeFlags(flags);
            break;
        }

        case ArithSub: {
            flags &= ~NodeBytecodeUsesAsOther;
            if (isNotNegZero(node->child1().node()) || isNotPosZero(node->child2().node()))
                flags &= ~NodeBytecodeNeedsNegZero;
            if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
                flags |= NodeBytecodeUsesAsNumber;
            if (!m_allowNestedOverflowingAdditions)
                flags |= NodeBytecodeUsesAsNumber;
            flags |= NodeBytecodeNeedsNaNOrInfinity;
            
            node->child1()->mergeFlags(flags);
            node->child2()->mergeFlags(flags);
            break;
        }
            
        case ArithNegate: {
            // negation does not care about NaN, Infinity, -Infinity are converted into 0 if the result is evaluated under the integer context.
            flags &= ~NodeBytecodeUsesAsOther;

            node->child1()->mergeFlags(flags);
            break;
        }

        case Inc:
        case Dec: {
            flags &= ~NodeBytecodeNeedsNegZero;
            flags &= ~NodeBytecodeUsesAsOther;
            if (!isWithinPowerOfTwo<32>(node->child1()))
                flags |= NodeBytecodeUsesAsNumber;
            if (!m_allowNestedOverflowingAdditions)
                flags |= NodeBytecodeUsesAsNumber;
            flags |= NodeBytecodeNeedsNaNOrInfinity;

            node->child1()->mergeFlags(flags);
            break;
        }

        case ValueMul:
        case ArithMul: {
            // As soon as a multiply happens, we can easily end up in the part
            // of the double domain where the point at which you do truncation
            // can change the outcome. So, ArithMul always forces its inputs to
            // check for overflow. Additionally, it will have to check for overflow
            // itself unless we can prove that there is no way for the values
            // produced to cause double rounding.
            
            if (!isWithinPowerOfTwo<22>(node->child1().node())
                && !isWithinPowerOfTwo<22>(node->child2().node()))
                flags |= NodeBytecodeUsesAsNumber;
            
            node->mergeFlags(flags);
            
            flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity;
            flags &= ~NodeBytecodeUsesAsOther;

            node->child1()->mergeFlags(flags);
            node->child2()->mergeFlags(flags);
            break;
        }
            
        case ValueDiv:
        case ArithDiv: {
            // ArithDiv / ValueDiv need to have NodeBytecodeUsesAsNumber even if it is used in the context of integer.
            // For example,
            //     ((@x / @y) + @z) | 0
            // In this context, (@x / @y) can have integer context at first, but the result can be different if div
            // generates NaN. Div and Mod are operations that can produce NaN / Infinity though only taking binary Int32 operands.
            // Thus, we always need to check for overflow since it can affect downstream calculations.
            flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity;
            flags &= ~NodeBytecodeUsesAsOther;

            node->child1()->mergeFlags(flags);
            node->child2()->mergeFlags(flags);
            break;
        }
            
        case ValueMod:
        case ArithMod: {
            flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeNeedsNaNOrInfinity;
            flags &= ~NodeBytecodeUsesAsOther;

            node->child1()->mergeFlags(flags);
            node->child2()->mergeFlags(flags & ~NodeBytecodeNeedsNegZero);
            break;
        }

        case EnumeratorGetByVal:
        case GetByVal:
        case GetByValMegamorphic: {
            m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue);
            m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
            break;
        }
            
        case NewTypedArray:
        case NewArrayWithSize:
        case NewArrayWithConstantSize:
        case NewArrayWithSpecies:
        case NewArrayWithSizeAndStructure: {
            // Negative zero is not observable. NaN versus undefined are only observable
            // in that you would get a different exception message. So, like, whatever: we
            // claim here that NaN v. undefined is observable.
            node->child1()->mergeFlags(NodeBytecodeUsesAsArrayIndex);
            break;
        }
            
        case ToString:
        case CallStringConstructor: {
            if (typeFilterFor(node->child1().useKind()) & SpecOther)
                node->child1()->mergeFlags(NodeBytecodeUsesAsOther);
            node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNaNOrInfinity);
            break;
        }
            
        case ToPrimitive:
        case ToNumber:
        case ToNumeric:
        case CallNumberConstructor: {
            node->child1()->mergeFlags(flags);
            break;
        }

        case CompareLess:
        case CompareLessEq:
        case CompareGreater:
        case CompareGreaterEq:
        case CompareBelow:
        case CompareBelowEq:
        case CompareEq:
        case CompareStrictEq: {
            node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeNeedsNaNOrInfinity);
            node->child2()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeNeedsNaNOrInfinity);
            break;
        }

        case EnumeratorPutByVal:
        case PutByValDirect:
        case PutByVal:
        case PutByValMegamorphic: {
            m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue);
            m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsArrayIndex);
            m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue);
            break;
        }
            
        case Switch: {
            SwitchData* data = node->switchData();
            switch (data->kind) {
            case SwitchImm:
                // We don't need NodeBytecodeNeedsNegZero because if the cases are all integers
                // then -0 and 0 are treated the same.  We don't need NodeBytecodeUsesAsOther
                // because if all of the cases are integers then NaN and undefined are
                // treated the same (i.e. they will take default).
                node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsInt | NodeBytecodeNeedsNaNOrInfinity);
                break;
            case SwitchChar: {
                // We don't need NodeBytecodeNeedsNegZero because if the cases are all strings
                // then -0 and 0 are treated the same.  We don't need NodeBytecodeUsesAsOther
                // because if all of the cases are single-character strings then NaN
                // and undefined are treated the same (i.e. they will take default).
                node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNaNOrInfinity);
                break;
            }
            case SwitchString:
                // We don't need NodeBytecodeNeedsNegZero because if the cases are all strings
                // then -0 and 0 are treated the same.
                node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeNeedsNaNOrInfinity);
                break;
            case SwitchCell:
                // There is currently no point to being clever here since this is used for switching
                // on objects.
                mergeDefaultFlags(node);
                break;
            }
            break;
        }

        case Identity:
            ASSERT(m_graph.afterFixup());
            node->child1()->mergeFlags(flags);
            break;

        case ValueRep:
            ASSERT(m_graph.afterFixup());
            // ValueRep is used to box a double or int52 to a JSValue. So, we shouldn't propagate any node flags to its child.
            break;

        case Int52Rep:
        case ValueToInt32:
        case DoubleAsInt32:
            ASSERT(m_graph.afterFixup());
            // The results of these nodes are pure unboxed integers. Then, we
            // should definitely tell their children that you will be used as an integer.
            node->child1()->mergeFlags(NodeBytecodeUsesAsInt);
            break;

        case DoubleRep:
        case PurifyNaN:
            ASSERT(m_graph.afterFixup());
            // The result of the node is pure unboxed floating point values.
            node->child1()->mergeFlags(NodeBytecodeUsesAsNumber);
            break;

        case BooleanToNumber:
            ASSERT(m_graph.afterFixup());
            // The result of BooleanToNumber can be either an unboxed integer or a JSValue.
            if (node->child1().useKind() == BooleanUse)
                node->child1()->mergeFlags(NodeBytecodeUsesAsInt);
            break;

        case CheckStructureOrEmpty:
        case CheckArrayOrEmpty:
        case Arrayify:
        case ArrayifyToStructure:
        case GetIndexedPropertyStorage:
        case ResolveRope:
        case MakeRope:
        case GetRegExpObjectLastIndex:
        case HasIndexedProperty:
        case CallDOM:
            // Not interested so far.
            ASSERT(m_graph.afterFixup());
            break;

        // Note: ArithSqrt, ArithUnary and other math intrinsics don't have special
        // rules in here because they are always followed by Phantoms to signify that if the
        // method call speculation fails, the bytecode may use the arguments in arbitrary ways.
        // This corresponds to that possibility of someone doing something like:
        // Math.sin = function(x) { doArbitraryThingsTo(x); }
            
        default:
            mergeDefaultFlags(node);
            break;
        }
    }
    
    bool m_allowNestedOverflowingAdditions;

    BlockMap<Operands<NodeFlags>> m_flagsAtHead;
    Operands<NodeFlags> m_currentFlags;
};

bool performBackwardsPropagation(Graph& graph)
{
    return runPhase<BackwardsPropagationPhase>(graph);
}

} } // namespace JSC::DFG

#endif // ENABLE(DFG_JIT)