1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/*
* Copyright (C) 2011-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGCFAPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGAbstractInterpreterInlines.h"
#include "DFGBlockSet.h"
#include "DFGClobberSet.h"
#include "DFGClobberize.h"
#include "DFGGraph.h"
#include "DFGInPlaceAbstractState.h"
#include "DFGPhase.h"
#include "DFGSafeToExecute.h"
#include "OperandsInlines.h"
#include "JSCInlines.h"
namespace JSC { namespace DFG {
class CFAPhase : public Phase {
public:
CFAPhase(Graph& graph)
: Phase(graph, "control flow analysis"_s)
, m_state(graph)
, m_interpreter(graph, m_state)
, m_verbose(Options::verboseCFA())
{
}
bool run()
{
ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == SSA);
ASSERT(m_graph.m_unificationState == GloballyUnified);
ASSERT(m_graph.m_refCountState == EverythingIsLive || (Options::validateAbstractInterpreterState() && m_graph.m_refCountState == ExactRefCount));
m_count = 0;
dataLogIf((m_verbose && !shouldDumpGraphAtEachPhase(m_graph.m_plan.mode())), "Graph before CFA:\n", m_graph);
// This implements a pseudo-worklist-based forward CFA, except that the visit order
// of blocks is the bytecode program order (which is nearly topological), and
// instead of a worklist we just walk all basic blocks checking if cfaShouldRevisit
// is set to true. This is likely to balance the efficiency properties of both
// worklist-based and forward fixpoint-based approaches. Like a worklist-based
// approach, it won't visit code if it's meaningless to do so (nothing changed at
// the head of the block or the predecessors have not been visited). Like a forward
// fixpoint-based approach, it has a high probability of only visiting a block
// after all predecessors have been visited. Only loops will cause this analysis to
// revisit blocks, and the amount of revisiting is proportional to loop depth.
m_state.initialize();
if (m_graph.m_form != SSA) {
dataLogLnIf(m_verbose, " Widening state at OSR entry block.");
// Widen the abstract values at the block that serves as the must-handle OSR entry.
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
if (!block->isOSRTarget)
continue;
if (block->bytecodeBegin != m_graph.m_plan.osrEntryBytecodeIndex())
continue;
// We record that the block needs some OSR stuff, but we don't do that yet. We want to
// handle OSR entry data at the right time in order to get the best compile times. If we
// simply injected OSR data right now, then we'd potentially cause a loop body to be
// interpreted with just the constants we feed it, which is more expensive than if we
// interpreted it with non-constant values. If we always injected this data after the
// main pass of CFA ran, then we would potentially spend a bunch of time rerunning CFA
// after convergence. So, we try very hard to inject OSR data for a block when we first
// naturally come to see it - see the m_blocksWithOSR check in performBlockCFA(). This
// way, we:
//
// - Reduce the likelihood of interpreting the block with constants, since we will inject
// the OSR entry constants on top of whatever abstract values we got for that block on
// the first pass. The mix of those two things is likely to not be constant.
//
// - Reduce the total number of CFA reexecutions since we inject the OSR data as part of
// the normal flow of CFA instead of having to do a second fixpoint. We may still have
// to do a second fixpoint if we don't even reach the OSR entry block during the main
// run of CFA, but in that case at least we're not being redundant.
m_blocksWithOSR.add(block);
}
}
do {
m_changed = false;
performForwardCFA();
} while (m_changed);
if (m_graph.m_form != SSA) {
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
if (m_blocksWithOSR.remove(block))
m_changed |= injectOSR(block);
}
while (m_changed) {
m_changed = false;
performForwardCFA();
}
// Make sure we record the intersection of all proofs that we ever allowed the
// compiler to rely upon.
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
block->intersectionOfCFAHasVisited &= block->cfaHasVisited;
for (unsigned i = block->intersectionOfPastValuesAtHead.size(); i--;) {
AbstractValue value = block->valuesAtHead[i];
// We need to guarantee that when we do an OSR entry, we validate the incoming
// value as if it could be live past an invalidation point. Otherwise, we may
// OSR enter with a value with the wrong structure, and an InvalidationPoint's
// promise of filtering the structure set of certain values is no longer upheld.
value.m_structure.observeInvalidationPoint();
block->intersectionOfPastValuesAtHead[i].filter(value);
}
}
}
return true;
}
private:
bool injectOSR(BasicBlock* block)
{
dataLogLnIf(m_verbose, " Found must-handle block: ", *block);
// This merges snapshot of stack values while CFA phase want to have proven types and values. This is somewhat tricky.
// But this is OK as long as DFG OSR entry validates the inputs with *proven* AbstractValue values. And it turns out that this
// type widening is critical to navier-stokes. Without it, navier-stokes has more strict constraint on OSR entry and
// fails OSR entry repeatedly.
bool changed = false;
const Operands<std::optional<JSValue>>& mustHandleValues = m_graph.m_plan.mustHandleValues();
for (size_t i = mustHandleValues.size(); i--;) {
Operand operand = mustHandleValues.operandForIndex(i);
std::optional<JSValue> value = mustHandleValues[i];
if (!value) {
dataLogLnIf(m_verbose, " Not live in bytecode: ", operand);
continue;
}
Node* node = block->variablesAtHead.operand(operand);
if (!node) {
dataLogLnIf(m_verbose, " Not live: ", operand);
continue;
}
dataLogLnIf(m_verbose, " Widening ", operand, " with ", value.value());
AbstractValue& target = block->valuesAtHead.operand(operand);
changed |= target.mergeOSREntryValue(m_graph, value.value(), node->variableAccessData(), node);
}
if (changed || !block->cfaHasVisited) {
block->cfaShouldRevisit = true;
return true;
}
return false;
}
void performBlockCFA(BasicBlock* block)
{
if (!block)
return;
if (!block->cfaShouldRevisit)
return;
dataLogLnIf(m_verbose, " Block ", *block, ":");
if (m_blocksWithOSR.remove(block))
injectOSR(block);
m_state.beginBasicBlock(block);
if (UNLIKELY(m_verbose)) {
dataLogLn(" head vars: ", block->valuesAtHead);
if (m_graph.m_form == SSA)
dataLogLn(" head regs: ", nodeValuePairListDump(block->ssa->valuesAtHead));
}
for (unsigned i = 0; i < block->size(); ++i) {
Node* node = block->at(i);
if (UNLIKELY(m_verbose)) {
WTF::dataFile().atomically([&](auto&) {
dataLog(" ", Graph::opName(node->op()), " @", node->index(), ": ");
if (!safeToExecute(m_state, m_graph, node))
dataLog("(UNSAFE) ");
dataLog(m_state.variablesForDebugging(), " ", m_interpreter);
dataLogLn();
});
}
if (!m_interpreter.execute(i)) {
dataLogLnIf(m_verbose, " Expect OSR exit.");
break;
}
if (ASSERT_ENABLED
&& m_state.didClobberOrFolded() != writesOverlap(m_graph, node, JSCell_structureID))
DFG_CRASH(m_graph, node, toCString("AI-clobberize disagreement; AI says ", m_state.clobberState(), " while clobberize says ", writeSet(m_graph, node)).data());
}
if (m_verbose) {
WTF::dataFile().atomically([&](auto&) {
dataLog(" tail regs: ");
m_interpreter.dump(WTF::dataFile());
dataLogLn();
});
}
m_changed |= m_state.endBasicBlock();
if (m_verbose) {
WTF::dataFile().atomically([&](auto&) {
dataLogLn(" tail vars: ", block->valuesAtTail);
if (m_graph.m_form == SSA)
dataLogLn(" head regs: ", nodeValuePairListDump(block->ssa->valuesAtTail));
});
}
}
void performForwardCFA()
{
++m_count;
dataLogLnIf(m_verbose, "CFA [", m_count, "]");
for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex)
performBlockCFA(m_graph.block(blockIndex));
}
private:
InPlaceAbstractState m_state;
AbstractInterpreter<InPlaceAbstractState> m_interpreter;
BlockSet m_blocksWithOSR;
const bool m_verbose;
bool m_changed;
unsigned m_count;
};
bool performCFA(Graph& graph)
{
return runPhase<CFAPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|