File: DFGInPlaceAbstractState.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (409 lines) | stat: -rw-r--r-- 15,095 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
 * Copyright (C) 2013-2023 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#pragma once

#if ENABLE(DFG_JIT)

#include "DFGAbstractInterpreterClobberState.h"
#include "DFGAbstractValue.h"
#include "DFGBranchDirection.h"
#include "DFGFlowMap.h"
#include "DFGGraph.h"
#include "DFGNode.h"
#include <wtf/TZoneMalloc.h>

namespace JSC { namespace DFG {

class InPlaceAbstractState {
    WTF_MAKE_TZONE_ALLOCATED(InPlaceAbstractState);
public:
    InPlaceAbstractState(Graph&);
    
    ~InPlaceAbstractState();
    
    explicit operator bool() const { return true; }
    
    void createValueForNode(NodeFlowProjection) { }
    
    ALWAYS_INLINE bool hasClearedAbstractState(NodeFlowProjection node)
    {
        return !m_abstractValues.at(node);
    }

    ALWAYS_INLINE AbstractValue& fastForward(AbstractValue& value)
    {
        value.fastForwardTo(m_effectEpoch);
        return value;
    }
    
    ALWAYS_INLINE void fastForwardAndFilterUnproven(AbstractValue& value, SpeculatedType type)
    {
        value.fastForwardToAndFilterUnproven(m_effectEpoch, type);
    }
    
    ALWAYS_INLINE AbstractValue& forNodeWithoutFastForward(NodeFlowProjection node)
    {
        ASSERT(!node->isTuple());
        return m_abstractValues.at(node);
    }
    
    ALWAYS_INLINE AbstractValue& forNodeWithoutFastForward(Edge edge)
    {
        ASSERT(!edge.node()->isTuple());
        return forNodeWithoutFastForward(edge.node());
    }
    
    ALWAYS_INLINE AbstractValue& forNode(NodeFlowProjection node)
    {
        ASSERT(!node->isTuple());
        return fastForward(m_abstractValues.at(node));
    }
    
    ALWAYS_INLINE AbstractValue& forNode(Edge edge)
    {
        return forNode(edge.node());
    }
    
    ALWAYS_INLINE void clearForNode(NodeFlowProjection node)
    {
        AbstractValue& value = m_abstractValues.at(node);
        value.clear();
        value.m_effectEpoch = m_effectEpoch;
    }
    
    ALWAYS_INLINE void clearForNode(Edge edge)
    {
        clearForNode(edge.node());
    }
    
    template<typename... Arguments>
    ALWAYS_INLINE void setForNode(NodeFlowProjection node, Arguments&&... arguments)
    {
        ASSERT(!node->isTuple());
        AbstractValue& value = m_abstractValues.at(node);
        value.set(m_graph, std::forward<Arguments>(arguments)...);
        value.m_effectEpoch = m_effectEpoch;
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setForNode(Edge edge, Arguments&&... arguments)
    {
        setForNode(edge.node(), std::forward<Arguments>(arguments)...);
    }
    
    template<typename... Arguments>
    ALWAYS_INLINE void setTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
    {
        ASSERT(!node->isTuple());
        AbstractValue& value = m_abstractValues.at(node);
        value.setType(m_graph, std::forward<Arguments>(arguments)...);
        value.m_effectEpoch = m_effectEpoch;
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setTypeForNode(Edge edge, Arguments&&... arguments)
    {
        setTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
    }
    
    template<typename... Arguments>
    ALWAYS_INLINE void setNonCellTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
    {
        ASSERT(!node->isTuple());
        AbstractValue& value = m_abstractValues.at(node);
        value.setNonCellType(std::forward<Arguments>(arguments)...);
        value.m_effectEpoch = m_effectEpoch;
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setNonCellTypeForNode(Edge edge, Arguments&&... arguments)
    {
        setNonCellTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
    }
    
    ALWAYS_INLINE void makeBytecodeTopForNode(NodeFlowProjection node)
    {
        ASSERT(!node->isTuple());
        AbstractValue& value = m_abstractValues.at(node);
        value.makeBytecodeTop();
        value.m_effectEpoch = m_effectEpoch;
    }
    
    ALWAYS_INLINE void makeBytecodeTopForNode(Edge edge)
    {
        makeBytecodeTopForNode(edge.node());
    }
    
    ALWAYS_INLINE void makeHeapTopForNode(NodeFlowProjection node)
    {
        ASSERT(!node->isTuple());
        AbstractValue& value = m_abstractValues.at(node);
        value.makeHeapTop();
        value.m_effectEpoch = m_effectEpoch;
    }
    
    ALWAYS_INLINE void makeHeapTopForNode(Edge edge)
    {
        makeHeapTopForNode(edge.node());
    }

    ALWAYS_INLINE AbstractValue& forTupleNodeWithoutFastForward(NodeFlowProjection node, unsigned index)
    {
        ASSERT(node->isTuple());
        ASSERT(index < node->tupleSize());
        return m_tupleAbstractValues.at(node->tupleOffset() + index);
    }
    
    ALWAYS_INLINE AbstractValue& forTupleNode(NodeFlowProjection node, unsigned index)
    {
        ASSERT(index < node->tupleSize());
        return fastForward(m_tupleAbstractValues.at(node->tupleOffset() + index));
    }

    ALWAYS_INLINE AbstractValue& forTupleNode(Edge edge, unsigned index)
    {
        return forTupleNode(edge.node(), index);
    }

    ALWAYS_INLINE void clearForTupleNode(NodeFlowProjection node, unsigned index)
    {
        ASSERT(index < node->tupleSize());
        AbstractValue& value = m_tupleAbstractValues.at(node->tupleOffset() + index);
        value.clear();
        value.m_effectEpoch = m_effectEpoch;
    }

    ALWAYS_INLINE void clearForTupleNode(Edge edge, unsigned index)
    {
        clearForTupleNode(edge.node(), index);
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setForTupleNode(NodeFlowProjection node, unsigned index, Arguments&&... arguments)
    {
        ASSERT(index < node->tupleSize());
        AbstractValue& value = m_tupleAbstractValues.at(node->tupleOffset() + index);
        value.set(m_graph, std::forward<Arguments>(arguments)...);
        value.m_effectEpoch = m_effectEpoch;
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setForTupleNode(Edge edge, unsigned index, Arguments&&... arguments)
    {
        setForTupleNode(edge.node(), index, std::forward<Arguments>(arguments)...);
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setTypeForTupleNode(NodeFlowProjection node, unsigned index, Arguments&&... arguments)
    {
        ASSERT(index < node->tupleSize());
        AbstractValue& value = m_tupleAbstractValues.at(node->tupleOffset() + index);
        value.setType(m_graph, std::forward<Arguments>(arguments)...);
        value.m_effectEpoch = m_effectEpoch;
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setTypeForTupleNode(Edge edge, unsigned index, Arguments&&... arguments)
    {
        setTypeForTupleNode(edge.node(), index, std::forward<Arguments>(arguments)...);
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setNonCellTypeForTupleNode(NodeFlowProjection node, unsigned index, Arguments&&... arguments)
    {
        ASSERT(index < node->tupleSize());
        AbstractValue& value = m_tupleAbstractValues.at(node->tupleOffset() + index);
        value.setNonCellType(std::forward<Arguments>(arguments)...);
        value.m_effectEpoch = m_effectEpoch;
    }

    template<typename... Arguments>
    ALWAYS_INLINE void setNonCellTypeForTupleNode(Edge edge, unsigned index, Arguments&&... arguments)
    {
        setNonCellTypeForTupleNode(edge.node(), index, std::forward<Arguments>(arguments)...);
    }

    ALWAYS_INLINE void makeBytecodeTopForTupleNode(NodeFlowProjection node, unsigned index)
    {
        ASSERT(index < node->tupleSize());
        AbstractValue& value = m_tupleAbstractValues.at(node->tupleOffset() + index);
        value.makeBytecodeTop();
        value.m_effectEpoch = m_effectEpoch;
    }

    ALWAYS_INLINE void makeBytecodeTopForTupleNode(Edge edge, unsigned index)
    {
        makeBytecodeTopForTupleNode(edge.node(), index);
    }

    ALWAYS_INLINE void makeHeapTopForTupleNode(NodeFlowProjection node, unsigned index)
    {
        ASSERT(index < node->tupleSize());
        AbstractValue& value = m_tupleAbstractValues.at(node->tupleOffset() + index);
        value.makeHeapTop();
        value.m_effectEpoch = m_effectEpoch;
    }

    ALWAYS_INLINE void makeHeapTopForTupleNode(Edge edge, unsigned index)
    {
        makeHeapTopForTupleNode(edge.node(), index);
    }

    Operands<AbstractValue>& variablesForDebugging();

    unsigned size() const { return m_variables.size(); }
    unsigned numberOfArguments() const { return m_variables.numberOfArguments(); }
    unsigned numberOfLocals() const { return m_variables.numberOfLocals(); }
    unsigned numberOfTmps() const { return m_variables.numberOfTmps(); }
    
    AbstractValue& atIndex(size_t index)
    {
        activateVariableIfNecessary(index);
        return fastForward(m_variables[index]);
    }

    AbstractValue& operand(Operand operand)
    {
        return atIndex(m_variables.operandIndex(operand));
    }
    
    AbstractValue& local(size_t index)
    {
        return atIndex(m_variables.localIndex(index));
    }
    
    AbstractValue& argument(size_t index)
    {
        return atIndex(m_variables.argumentIndex(index));
    }
    
    // Call this before beginning CFA to initialize the abstract values of
    // arguments, and to indicate which blocks should be listed for CFA
    // execution.
    void initialize();

    // Start abstractly executing the given basic block. Initializes the
    // notion of abstract state to what we believe it to be at the head
    // of the basic block, according to the basic block's data structures.
    // This method also sets cfaShouldRevisit to false.
    void beginBasicBlock(BasicBlock*);
    
    BasicBlock* block() const { return m_block; }
    
    // Finish abstractly executing a basic block. If MergeToTail or
    // MergeToSuccessors is passed, then this merges everything we have
    // learned about how the state changes during this block's execution into
    // the block's data structures.
    //
    // Returns true if the state of the block at the tail was changed,
    // and, if the state at the heads of successors was changed.
    // A true return means that you must revisit (at least) the successor
    // blocks. This also sets cfaShouldRevisit to true for basic blocks
    // that must be visited next.
    bool endBasicBlock();
    
    // Reset the AbstractState. This throws away any results, and at this point
    // you can safely call beginBasicBlock() on any basic block.
    void reset();
    
    AbstractInterpreterClobberState clobberState() const { return m_clobberState; }
    
    // Would have the last executed node clobbered things had we not found a way to fold it?
    bool didClobberOrFolded() const { return clobberState() != AbstractInterpreterClobberState::NotClobbered; }
    
    // Did the last executed node clobber the world?
    bool didClobber() const { return clobberState() == AbstractInterpreterClobberState::ClobberedStructures; }
    
    // Are structures currently clobbered?
    StructureClobberState structureClobberState() const { return m_structureClobberState; }
    
    // Is the execution state still valid? This will be false if execute() has
    // returned false previously.
    bool isValid() const { return m_isValid; }
    
    // Merge the abstract state stored at the first block's tail into the second
    // block's head. Returns true if the second block's state changed. If so,
    // that block must be abstractly interpreted again. This also sets
    // to->cfaShouldRevisit to true, if it returns true, or if to has not been
    // visited yet.
    bool merge(BasicBlock* from, BasicBlock* to);
    
    // Merge the abstract state stored at the block's tail into all of its
    // successors. Returns true if any of the successors' states changed. Note
    // that this is automatically called in endBasicBlock() if MergeMode is
    // MergeToSuccessors.
    bool mergeToSuccessors(BasicBlock*);
    
    void clobberStructures() { m_effectEpoch.clobber(); }
    
    void observeInvalidationPoint() { m_effectEpoch.observeInvalidationPoint(); }
    
    // Methods intended to be called from AbstractInterpreter.
    void setClobberState(AbstractInterpreterClobberState state) { m_clobberState = state; }
    void mergeClobberState(AbstractInterpreterClobberState state) { m_clobberState = mergeClobberStates(m_clobberState, state); }
    void setStructureClobberState(StructureClobberState value) { m_structureClobberState = value; }
    void setIsValid(bool isValid) { m_isValid = isValid; }
    void setBranchDirection(BranchDirection branchDirection) { m_branchDirection = branchDirection; }

    void setShouldTryConstantFolding(bool) { }

    void setProofStatus(Edge& edge, ProofStatus status)
    {
        edge.setProofStatus(status);
    }

private:
    ALWAYS_INLINE void activateVariableIfNecessary(size_t variableIndex)
    {
        if (!m_activeVariables[variableIndex])
            activateVariable(variableIndex);
    }
    
    void activateVariable(size_t variableIndex);
    void activateAllVariables();
    
    static bool mergeVariableBetweenBlocks(AbstractValue& destination, AbstractValue& source, Node* destinationNode, Node* sourceNode);
    
    Graph& m_graph;

    FlowMap<AbstractValue>& m_abstractValues;
    Operands<AbstractValue> m_variables;
    Vector<AbstractValue> m_tupleAbstractValues;
    FastBitVector m_activeVariables;
    BasicBlock* m_block;

    bool m_isValid;
    AbstractInterpreterClobberState m_clobberState;
    StructureClobberState m_structureClobberState;
    AbstractValueClobberEpoch m_epochAtHead;
    AbstractValueClobberEpoch m_effectEpoch;
    
    BranchDirection m_branchDirection; // This is only set for blocks that end in Branch and that execute to completion (i.e. m_isValid == true).
};

} } // namespace JSC::DFG

#endif // ENABLE(DFG_JIT)