1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
|
/*
* Copyright (C) 2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGLoopUnrollingPhase.h"
#if ENABLE(DFG_JIT)
#include "CodeOrigin.h"
#include "DFGBasicBlockInlines.h"
#include "DFGBlockInsertionSet.h"
#include "DFGCFAPhase.h"
#include "DFGGraph.h"
#include "DFGNaturalLoops.h"
#include "DFGNodeOrigin.h"
#include "DFGNodeType.h"
#include "DFGPhase.h"
#include <wtf/IndexMap.h>
namespace JSC {
namespace DFG {
class LoopUnrollingPhase : public Phase {
public:
using NaturalLoop = CPSNaturalLoop;
using ComparisonFunction = bool (*)(CheckedInt32, CheckedInt32);
using UpdateFunction = CheckedInt32 (*)(CheckedInt32, CheckedInt32);
struct LoopData {
uint32_t loopSize() { return loop->size(); }
BasicBlock* loopBody(uint32_t i) { return loop->at(i).node(); }
BasicBlock* header() const { return loop->header().node(); }
Node* condition() const
{
if (tail && tail->terminal()->isBranch())
return tail->terminal()->child1().node();
return nullptr;
}
bool isInductionVariable(Node* node) { return node->operand() == inductionVariable->operand(); }
void dump(PrintStream& out) const;
const NaturalLoop* loop { nullptr };
BasicBlock* preHeader { nullptr };
BasicBlock* tail { nullptr };
BasicBlock* next { nullptr };
// for (i = initialValue; condition(i, operand); i = update(i, updateValue)) { ... }
Node* inductionVariable { nullptr };
CheckedInt32 initialValue { INT_MIN };
CheckedInt32 operand { INT_MIN };
Node* update { nullptr };
CheckedInt32 updateValue { INT_MIN };
CheckedUint32 iterationCount { 0 };
std::optional<bool> inverseCondition { };
};
LoopUnrollingPhase(Graph& graph)
: Phase(graph, "Loop Unrolling"_s)
, m_blockInsertionSet(graph)
{
}
bool run()
{
dataLogIf(Options::verboseLoopUnrolling(), "Graph before Loop Unrolling Phase:\n", m_graph);
uint32_t unrolledCount = 0;
while (true) {
auto loops = populateCandidateLoops();
if (loops.isEmpty() || unrolledCount >= Options::maxLoopUnrollingCount())
break;
bool unrolled = false;
for (auto [loop, depth] : loops) {
if (!loop)
break;
if (tryUnroll(loop)) {
unrolled = true;
++unrolledCount;
break;
}
}
if (!unrolled)
break;
}
dataLogLnIf(Options::verboseLoopUnrolling(), "Successfully unrolled ", unrolledCount, " loops.");
return !!unrolledCount;
}
Vector<std::tuple<const NaturalLoop*, int32_t>, 16> populateCandidateLoops()
{
m_graph.ensureCPSNaturalLoops();
uint32_t loopCount = m_graph.m_cpsNaturalLoops->numLoops();
Vector<std::tuple<const NaturalLoop*, int32_t>, 16> loops(loopCount, std::tuple { nullptr, INT_MIN });
for (uint32_t loopIndex = loopCount; loopIndex--;) {
const NaturalLoop& loop = m_graph.m_cpsNaturalLoops->loop(loopIndex);
ASSERT(loop.index() == loopIndex && std::get<1>(loops[loopIndex]) == INT_MIN);
int32_t depth = 0;
const NaturalLoop* current = &loop;
while (current) {
int32_t cachedDepth = std::get<1>(loops[current->index()]);
if (cachedDepth != INT_MIN) {
depth += cachedDepth;
break;
}
++depth;
current = m_graph.m_cpsNaturalLoops->innerMostOuterLoop(*current);
}
loops[loopIndex] = std::tuple { &loop, depth };
}
std::sort(loops.begin(), loops.end(), [&](const auto& lhs, const auto& rhs) {
return std::get<1>(lhs) > std::get<1>(rhs);
});
return loops;
}
bool tryUnroll(const NaturalLoop* loop)
{
if (UNLIKELY(Options::verboseLoopUnrolling())) {
const NaturalLoop* outerLoop = m_graph.m_cpsNaturalLoops->innerMostOuterLoop(*loop);
dataLogLnIf(Options::verboseLoopUnrolling(), "\nTry unroll innerMostLoop=", *loop, " with innerMostOuterLoop=", outerLoop ? *outerLoop : NaturalLoop());
}
LoopData data = { loop };
if (!shouldUnrollLoop(data))
return false;
// PreHeader PreHeader
// | |
// Header <--- HeaderBodyTailGraph_0 <-- original loop
// | | unrolled to |
// Body | ================> HeaderBodyTailGraph_1 <-- 1st copy
// | | |
// Tail ------ ...
// | |
// Next HeaderBodyTailGraph_n <-- n_th copy
// |
// Next
//
// Note that NaturalLoop's body includes Header, Body, and Tail. The unrolling
// process appends the HeaderBodyTailGraph copies in reverse order (from n_th to 1st).
if (!locatePreHeader(data))
return false;
dataLogLnIf(Options::verboseLoopUnrolling(), "\tFound PreHeader with LoopData=", data);
if (!locateTail(data))
return false;
dataLogLnIf(Options::verboseLoopUnrolling(), "\tFound Tail with LoopData=", data);
if (!identifyInductionVariable(data))
return false;
dataLogLnIf(Options::verboseLoopUnrolling(), "\tFound InductionVariable with LoopData=", data);
if (!canCloneLoop(data))
return false;
BasicBlock* header = data.header();
unrollLoop(data);
dataLogIf(Options::verboseLoopUnrolling(), "\tGraph after Loop Unrolling for loop\n", m_graph);
dataLogLnIf(Options::printEachUnrolledLoop(), "\tIn function ", m_graph.m_codeBlock->inferredName(), ", successfully unrolled the loop header=", *header);
return true;
}
bool locatePreHeader(LoopData& data)
{
BasicBlock* preHeader = nullptr;
BasicBlock* header = data.header();
// This is guaranteed because we expect the CFG not to have unreachable code. Therefore, a
// loop header must have a predecessor. (Also, we don't allow the root block to be a loop,
// which cuts out the one other way of having a loop header with only one predecessor.)
DFG_ASSERT(m_graph, header->at(0), header->predecessors.size() > 1, header->predecessors.size());
uint32_t preHeaderCount = 0;
for (uint32_t i = header->predecessors.size(); i--;) {
BasicBlock* predecessor = header->predecessors[i];
if (m_graph.m_cpsDominators->dominates(header, predecessor))
continue;
preHeader = predecessor;
++preHeaderCount;
}
if (preHeaderCount != 1)
return false;
data.preHeader = preHeader;
return true;
}
bool locateTail(LoopData& data)
{
BasicBlock* header = data.header();
BasicBlock* tail = nullptr;
for (BasicBlock* predecessor : header->predecessors) {
if (!m_graph.m_cpsDominators->dominates(header, predecessor))
continue;
if (tail) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header, " since it contains two tails: ", *predecessor, " and ", *tail);
return false;
}
tail = predecessor;
}
if (!tail) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header, " since it has no tail");
return false;
}
// PreHeader PreHeader
// | |
// Header <--- Header_0
// | | unrolled to |
// | Tail =================> Branch_0
// | | |
// Branch ---- Tail_0
// | |
// Next ...
// |
// Header_n
// |
// Branch_n
// |
// Next
//
// FIXME: This is not supported yet. We should do it only if it's profitable.
if (!tail->terminal()->isBranch()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header, " since it has a non-branch tail");
return false;
}
for (BasicBlock* successor : tail->successors()) {
if (data.loop->contains(successor))
continue;
data.next = successor;
}
data.tail = tail;
// PreHeader
// |
// Header <----------
// | |
// Body |
// | True/False |
// Tail -------------
// | False/True
// Next
//
// Determine if the condition should be inverted based on whether the "not taken" branch points into the loop.
Node* terminal = tail->terminal();
ASSERT(terminal->op() == Branch);
if (data.loop->contains(terminal->branchData()->notTaken.block)) {
// If tail's branch is both jumping into the loop, then it is not a tail.
// This happens when we already unrolled this loop before.
if (data.loop->contains(terminal->branchData()->taken.block))
return false;
data.inverseCondition = true;
} else
data.inverseCondition = false;
return true;
}
bool isSupportedConditionOp(NodeType op);
bool isSupportedUpdateOp(NodeType op);
ComparisonFunction comparisonFunction(Node* condition, bool inverseCondition);
UpdateFunction updateFunction(Node* update);
bool identifyInductionVariable(LoopData& data)
{
Node* condition = data.condition();
ASSERT(condition);
auto isConditionValid = [&]() ALWAYS_INLINE_LAMBDA {
if (!isSupportedConditionOp(condition->op()))
return false;
// Condition left
Edge update = condition->child1();
if (!isSupportedUpdateOp(update->op()) || update.useKind() != Int32Use)
return false;
// FIXME: Currently, we assume the left operand is the induction variable.
if (update->child1()->op() != GetLocal)
return false;
if (!update->child2()->isInt32Constant())
return false;
// Condition right
Edge operand = condition->child2();
if (!operand->isInt32Constant() || operand.useKind() != Int32Use)
return false;
data.operand = condition->child2()->asInt32();
data.update = condition->child1().node();
data.updateValue = update->child2()->asInt32();
data.inductionVariable = condition->child1()->child1().node();
return true;
};
if (!isConditionValid()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the invalid loop condition node D@", condition->index());
return false;
}
auto isInitialValueValid = [&]() ALWAYS_INLINE_LAMBDA {
Node* initialization = nullptr;
for (Node* n : *data.preHeader) {
if (n->op() != SetLocal || !data.isInductionVariable(n))
continue;
initialization = n;
}
if (!initialization || !initialization->child1()->isInt32Constant())
return false;
data.initialValue = initialization->child1()->asInt32();
return true;
};
if (!isInitialValueValid()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the initial value is invalid");
return false;
}
auto isInductionVariableValid = [&]() ALWAYS_INLINE_LAMBDA {
uint32_t updateCount = 0;
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
for (Node* node : *body) {
if (node->op() != SetLocal || !data.isInductionVariable(node))
continue;
dataLogLnIf(Options::verboseLoopUnrolling(), "Induction variable ", data.inductionVariable->index(), " is updated at node ", node->index(), " at ", *body);
++updateCount;
// FIXME: Maybe we can extend this and do better here?
if (updateCount != 1)
return false;
if (!m_graph.m_cpsDominators->dominates(data.tail, body))
return false;
}
}
return true;
};
if (!isInductionVariableValid()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the induction variable is invalid");
return false;
}
// Compute the number of iterations in the loop.
{
CheckedUint32 iterationCount = 0;
auto compare = comparisonFunction(condition, data.inverseCondition.value());
auto update = updateFunction(data.update);
for (CheckedInt32 i = data.initialValue; compare(i, data.operand);) {
if (iterationCount > Options::maxLoopUnrollingIterationCount()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since maxLoopUnrollingIterationCount =", Options::maxLoopUnrollingIterationCount());
return false;
}
i = update(i, data.updateValue);
if (i.hasOverflowed()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the induction variable overflowed after the update");
return false;
}
++iterationCount;
if (iterationCount.hasOverflowed()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the iteration count overflowed after the update");
return false;
}
}
if (!iterationCount) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the iteration count is zero");
return false;
}
data.iterationCount = iterationCount;
}
return true;
}
bool shouldUnrollLoop(LoopData& data)
{
uint32_t totalNodeCount = 0;
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
if (!body->isReachable) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since block ", *body, " is not reachable");
return false;
}
// FIXME: We may also need to check whether the block is valid using CFA.
// If the block is unreachable or invalid in the CFG, we can directly
// ignore the loop, avoiding unnecessary cloneability checks for nodes in invalid blocks.
totalNodeCount += body->size();
if (totalNodeCount > Options::maxLoopUnrollingBodyNodeSize()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " and loop node count=", totalNodeCount, " since maxLoopUnrollingBodyNodeSize =", Options::maxLoopUnrollingBodyNodeSize());
return false;
}
}
return true;
}
bool canCloneLoop(LoopData& data)
{
HashSet<Node*> cloneableCache;
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
for (Node* node : *body) {
if (!isNodeCloneable(cloneableCache, node)) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since D@", node->index(), " with op ", node->op(), " is not cloneable");
return false;
}
}
}
return true;
}
BasicBlock* makeBlock(uint32_t executionCount = 0)
{
auto* block = m_blockInsertionSet.insert(m_graph.numBlocks(), executionCount);
block->cfaHasVisited = false;
block->cfaDidFinish = false;
return block;
}
void unrollLoop(LoopData& data)
{
BasicBlock* const header = data.header();
BasicBlock* const tail = data.tail;
dataLogLnIf(Options::verboseLoopUnrolling(), "tailTerminalOriginSemantic ", tail->terminal()->origin.semantic);
// Mapping from the origin to the clones.
UncheckedKeyHashMap<BasicBlock*, BasicBlock*> blockClones;
UncheckedKeyHashMap<Node*, Node*> nodeClones;
auto replaceOperands = [&](auto& nodes) ALWAYS_INLINE_LAMBDA {
for (uint32_t i = 0; i < nodes.size(); ++i) {
if (auto& node = nodes.at(i)) {
auto itr = nodeClones.find(node);
if (itr != nodeClones.end())
node = itr->value;
}
}
};
auto convertTailBranchToNextJump = [&](BasicBlock* tail, BasicBlock* next) {
// Why don't we use Jump instead of Branch? The reason is tail's original terminal was Branch.
// If we change this from Branch to Jump, we need to preserve how variables are used (via GetLocal, MovHint, SetLocal)
// not to confuse these variables liveness, it involves what blocks are used for successors of this tail block.
// Here, we can simplify the problem by using Branch and using the original "header" successors as never-taken branch.
// FTL's subsequent pass will optimize this and convert this Branch to Jump and/or eliminate this Branch and merge
// multiple blocks easily since its condition is constant boolean True. But we do not need to do the complicated analysis
// here. So let's just use Branch.
ASSERT(tail->terminal()->isBranch());
auto* constant = m_graph.addNode(SpecBoolean, JSConstant, tail->terminal()->origin, OpInfo(m_graph.freezeStrong(jsBoolean(true))));
tail->insertBeforeTerminal(constant);
auto* terminal = tail->terminal();
terminal->child1() = Edge(constant, KnownBooleanUse);
terminal->branchData()->taken = BranchTarget(next);
terminal->branchData()->notTaken = BranchTarget(header);
};
#if ASSERT_ENABLED
m_graph.initializeNodeOwners(); // This is only used for the debug assertion in cloneNodeImpl.
#endif
BasicBlock* next = data.next;
ASSERT(!data.iterationCount.hasOverflowed() && data.iterationCount);
for (uint32_t cloneCount = data.iterationCount - 1; cloneCount--;) {
blockClones.clear();
nodeClones.clear();
// 1. Initialize all block clones.
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
blockClones.add(body, makeBlock(body->executionCount));
}
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* const body = data.loopBody(i);
BasicBlock* const clone = blockClones.get(body);
// 2. Clone Phis.
clone->phis.resize(body->phis.size());
for (size_t i = 0; i < body->phis.size(); ++i) {
Node* bodyPhi = body->phis[i];
Node* phiClone = m_graph.addNode(bodyPhi->prediction(), bodyPhi->op(), bodyPhi->origin, OpInfo(bodyPhi->variableAccessData()));
nodeClones.add(bodyPhi, phiClone);
clone->phis[i] = phiClone;
}
// 3. Clone nodes.
for (Node* node : *body)
cloneNode(nodeClones, clone, node);
// 4. Clone variables and tail and head.
clone->variablesAtTail = body->variablesAtTail;
replaceOperands(clone->variablesAtTail);
clone->variablesAtHead = body->variablesAtHead;
replaceOperands(clone->variablesAtHead);
// 5. Clone successors. (predecessors will be fixed in resetReachability below)
if (body == tail) {
ASSERT(tail->terminal()->isBranch());
convertTailBranchToNextJump(clone, next);
} else {
for (uint32_t i = 0; i < body->numSuccessors(); ++i) {
auto& successor = clone->successor(i);
ASSERT(successor == body->successor(i));
if (data.loop->contains(successor))
successor = blockClones.get(successor);
}
}
}
next = blockClones.get(header);
}
// 6. Replace the original loop tail branch with a jump to the last header clone.
convertTailBranchToNextJump(tail, next);
// Done clone.
if (!m_blockInsertionSet.execute()) {
m_graph.invalidateCFG();
m_graph.dethread();
}
m_graph.resetReachability();
m_graph.killUnreachableBlocks();
ASSERT(m_graph.m_form == LoadStore);
}
bool isNodeCloneable(HashSet<Node*>& cloneableCache, Node*);
Node* cloneNode(UncheckedKeyHashMap<Node*, Node*>& nodeClones, BasicBlock* into, Node*);
Node* cloneNodeImpl(UncheckedKeyHashMap<Node*, Node*>& nodeClones, BasicBlock* into, Node*);
private:
BlockInsertionSet m_blockInsertionSet;
};
bool performLoopUnrolling(Graph& graph)
{
return runPhase<LoopUnrollingPhase>(graph);
}
void LoopUnrollingPhase::LoopData::dump(PrintStream& out) const
{
out.print(*loop);
out.print(" preHeader=");
if (preHeader)
out.print(*preHeader);
else
out.print("<null>");
out.print(", ");
out.print("tail=");
if (tail) {
out.print(*tail, " with branch condition=");
Node* condition = this->condition();
if (condition)
out.print(condition, "<", condition->op(), ">");
else
out.print("<null>");
} else
out.print("<null>");
out.print(", ");
out.print("next=");
if (tail)
out.print(*next);
else
out.print("<null>");
out.print(", ");
out.print("inductionVariable=");
if (inductionVariable)
out.print("D@", inductionVariable->index());
else
out.print("<null>");
out.print(", ");
out.print("initValue=", initialValue, ", ");
out.print("operand=", operand, ", ");
out.print("update=");
if (update)
out.print(update, "<", update->op(), ">");
else
out.print("<null>");
out.print(", ");
out.print("updateValue=", updateValue, ", ");
out.print("iterationCount=", iterationCount, ", ");
out.print("inverseCondition=", inverseCondition);
}
bool LoopUnrollingPhase::isNodeCloneable(HashSet<Node*>& cloneableCache, Node* node)
{
if (cloneableCache.contains(node))
return true;
bool result = true;
switch (node->op()) {
case Phi:
break;
case ValueRep:
case DoubleRep:
case PurifyNaN:
case JSConstant:
case LoopHint:
case PhantomLocal:
case SetArgumentDefinitely:
case Jump:
case Branch:
case MovHint:
case ExitOK:
case ZombieHint:
case InvalidationPoint:
case Check:
case CheckVarargs:
case Flush:
case GetLocal:
case SetLocal:
case GetButterfly:
case CheckArray:
case AssertNotEmpty:
case CheckStructure:
case FilterCallLinkStatus:
case ArrayifyToStructure:
case NewArrayWithConstantSize:
case NewArrayWithSize:
case ValueToInt32:
case ArithAdd:
case ArithSub:
case ArithMul:
case ArithDiv:
case ArithMod:
case ArithBitAnd:
case ArithBitOr:
case ArithBitNot:
case ArithBitRShift:
case ArithBitLShift:
case ArithBitXor:
case BitURShift:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq:
case CompareStrictEq:
case PutByVal:
case PutByValAlias:
case GetByVal: {
m_graph.doToChildrenWithCheck(node, [&](Edge& edge) {
if (isNodeCloneable(cloneableCache, edge.node()))
return IterationStatus::Continue;
result = false;
return IterationStatus::Done;
});
break;
}
default:
result = false;
}
if (result)
cloneableCache.add(node);
return result;
}
Node* LoopUnrollingPhase::cloneNode(UncheckedKeyHashMap<Node*, Node*>& nodeClones, BasicBlock* into, Node* node)
{
ASSERT(node);
auto itr = nodeClones.find(node);
if (itr != nodeClones.end())
return itr->value;
Node* result = cloneNodeImpl(nodeClones, into, node);
ASSERT(result);
nodeClones.add(node, result);
return result;
}
Node* LoopUnrollingPhase::cloneNodeImpl(UncheckedKeyHashMap<Node*, Node*>& nodeClones, BasicBlock* into, Node* node)
{
#if ASSERT_ENABLED
m_graph.doToChildren(node, [&](Edge& e) {
ASSERT(e.node()->owner == node->owner);
});
#endif
auto cloneEdge = [&](Edge& edge) ALWAYS_INLINE_LAMBDA {
return edge ? Edge(cloneNode(nodeClones, into, edge.node()), edge.useKind()) : Edge();
};
switch (node->op()) {
case Phi: {
// Phi nodes should already be cloned in the step 2 of unrollLoop.
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
case Branch: {
Node* clone = into->cloneAndAppend(m_graph, node);
clone->setOpInfo(OpInfo(m_graph.m_branchData.add(WTFMove(*node->branchData()))));
clone->child1() = cloneEdge(node->child1());
return clone;
}
case PutByVal:
case GetByVal:
case PutByValAlias:
case CheckVarargs: {
if (node->hasVarArgs()) {
size_t firstChild = m_graph.m_varArgChildren.size();
uint32_t validChildrenCount = 0;
m_graph.doToChildren(node, [&](Edge& edge) {
m_graph.m_varArgChildren.append(cloneEdge(edge));
++validChildrenCount;
});
uint32_t expectedCount = m_graph.numChildren(node);
for (uint32_t i = validChildrenCount; i < expectedCount; ++i)
m_graph.m_varArgChildren.append(Edge());
Node* clone = into->cloneAndAppend(m_graph, node);
clone->children.setFirstChild(firstChild);
return clone;
}
FALLTHROUGH;
}
case ValueRep:
case DoubleRep:
case PurifyNaN:
case ExitOK:
case LoopHint:
case GetButterfly:
case JSConstant:
case Jump:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq:
case CompareStrictEq:
case CheckStructure:
case ArithBitNot:
case ArrayifyToStructure:
case ArithBitAnd:
case ArithBitOr:
case ArithBitRShift:
case ArithBitLShift:
case ArithBitXor:
case BitURShift:
case ArithAdd:
case ArithSub:
case ArithMul:
case ArithDiv:
case ArithMod:
case CheckArray:
case FilterCallLinkStatus:
case GetLocal:
case MovHint:
case Flush:
case ZombieHint:
case SetLocal:
case PhantomLocal:
case Check:
case AssertNotEmpty:
case SetArgumentDefinitely:
case NewArrayWithSize:
case NewArrayWithConstantSize:
case ValueToInt32:
case InvalidationPoint: {
Node* clone = into->cloneAndAppend(m_graph, node);
clone->child1() = cloneEdge(node->child1());
clone->child2() = cloneEdge(node->child2());
clone->child3() = cloneEdge(node->child3());
return clone;
}
default:
dataLogLnIf(Options::verboseLoopUnrolling(), "Could not clone node: ", node, " into ", into);
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
}
// FIXME: Add more condition and update operations if they are profitable.
bool LoopUnrollingPhase::isSupportedConditionOp(NodeType op)
{
switch (op) {
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq:
case CompareStrictEq:
return true;
default:
return false;
}
}
bool LoopUnrollingPhase::isSupportedUpdateOp(NodeType op)
{
switch (op) {
case ArithAdd:
case ArithSub:
case ArithMul:
case ArithDiv:
return true;
default:
return false;
}
}
LoopUnrollingPhase::ComparisonFunction LoopUnrollingPhase::comparisonFunction(Node* condition, bool inverseCondition)
{
static const ComparisonFunction less = [](auto a, auto b) { return a < b; };
static const ComparisonFunction lessEq = [](auto a, auto b) { return a <= b; };
static const ComparisonFunction greater = [](auto a, auto b) { return a > b; };
static const ComparisonFunction greaterEq = [](auto a, auto b) { return a >= b; };
static const ComparisonFunction equal = [](auto a, auto b) { return a == b; };
static const ComparisonFunction notEqual = [](auto a, auto b) { return a != b; };
switch (condition->op()) {
case CompareLess:
return inverseCondition ? greaterEq : less;
case CompareLessEq:
return inverseCondition ? greater : lessEq;
case CompareGreater:
return inverseCondition ? lessEq : greater;
case CompareGreaterEq:
return inverseCondition ? less : greaterEq;
case CompareEq:
case CompareStrictEq:
return inverseCondition ? notEqual : equal;
default:
RELEASE_ASSERT_NOT_REACHED();
return [](auto, auto) { return false; };
}
}
LoopUnrollingPhase::UpdateFunction LoopUnrollingPhase::updateFunction(Node* update)
{
switch (update->op()) {
case ArithAdd:
return [](auto a, auto b) { return a + b; };
case ArithSub:
return [](auto a, auto b) { return a - b; };
case ArithMul:
return [](auto a, auto b) { return a * b; };
case ArithDiv:
return [](auto a, auto b) { return a / b; };
default:
RELEASE_ASSERT_NOT_REACHED();
return [](auto, auto) { return CheckedInt32(); };
}
}
}
} // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|