1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
/*
* Copyright (C) 2015-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGStoreBarrierInsertionPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGAbstractInterpreterInlines.h"
#include "DFGBlockMapInlines.h"
#include "DFGClobberize.h"
#include "DFGDoesGC.h"
#include "DFGGraph.h"
#include "DFGInPlaceAbstractState.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "JSCInlines.h"
#include "StructureID.h"
#include <wtf/CommaPrinter.h>
#include <wtf/HashSet.h>
namespace JSC { namespace DFG {
namespace {
namespace DFGStoreBarrierInsertionPhaseInternal {
static constexpr bool verbose = false;
}
enum class PhaseMode {
// Does only a local analysis for store barrier insertion and assumes that pointers live
// from predecessor blocks may need barriers. Assumes CPS conventions. Does not use AI for
// eliminating store barriers, but does a best effort to eliminate barriers when you're
// storing a non-cell value by using Node::result() and by looking at constants. The local
// analysis is based on GC epochs, so it will eliminate a lot of locally redundant barriers.
Fast,
// Does a global analysis for store barrier insertion. Reuses the GC-epoch-based analysis
// used by Fast, but adds a conservative merge rule for propagating information from one
// block to the next. This will ensure for example that if a value V coming from multiple
// predecessors in B didn't need any more barriers at the end of each predecessor (either
// because it was the last allocated object in that predecessor or because it just had a
// barrier executed), then until we hit another GC point in B, we won't need another barrier
// on V. Uses AI for eliminating barriers when we know that the value being stored is not a
// cell. Assumes SSA conventions.
Global
};
template<PhaseMode mode>
class StoreBarrierInsertionPhase : public Phase {
public:
StoreBarrierInsertionPhase(Graph& graph)
: Phase(graph, mode == PhaseMode::Fast ? "fast store barrier insertion"_s : "global store barrier insertion"_s)
, m_insertionSet(graph)
{
}
bool run()
{
dataLogIf(DFGStoreBarrierInsertionPhaseInternal::verbose, "Starting store barrier insertion:\n", m_graph);
switch (mode) {
case PhaseMode::Fast: {
DFG_ASSERT(m_graph, nullptr, m_graph.m_form != SSA);
m_graph.clearEpochs();
for (BasicBlock* block : m_graph.blocksInNaturalOrder())
handleBlock(block);
return true;
}
case PhaseMode::Global: {
DFG_ASSERT(m_graph, nullptr, m_graph.m_form == SSA);
m_state = makeUnique<InPlaceAbstractState>(m_graph);
m_interpreter = makeUnique<AbstractInterpreter<InPlaceAbstractState>>(m_graph, *m_state);
m_isConverged = false;
// First run the analysis. Inside basic blocks we use an epoch-based analysis that
// is very precise. At block boundaries, we just propagate which nodes may need a
// barrier. This gives us a very nice bottom->top fixpoint: we start out assuming
// that no node needs any barriers at block boundaries, and then we converge
// towards believing that all nodes need barriers. "Needing a barrier" is like
// saying that the node is in a past epoch. "Not needing a barrier" is like saying
// that the node is in the current epoch.
m_stateAtHead = makeUnique<BlockMap<UncheckedKeyHashSet<Node*>>>(m_graph);
m_stateAtTail = makeUnique<BlockMap<UncheckedKeyHashSet<Node*>>>(m_graph);
BlockList postOrder = m_graph.blocksInPostOrder();
bool changed = true;
while (changed) {
changed = false;
// Intentional backwards loop because we are using RPO.
for (unsigned blockIndex = postOrder.size(); blockIndex--;) {
BasicBlock* block = postOrder[blockIndex];
if (!handleBlock(block)) {
// If the block didn't finish, then it cannot affect the fixpoint.
continue;
}
// Construct the state-at-tail based on the epochs of live nodes and the
// current epoch. We grow state-at-tail monotonically to ensure convergence.
bool thisBlockChanged = false;
for (NodeFlowProjection node : block->ssa->liveAtTail) {
if (node.kind() == NodeFlowProjection::Shadow)
continue;
if (node->epoch() != m_currentEpoch) {
// If the node is older than the current epoch, then we may need to
// run a barrier on it in the future. So, add it to the state.
thisBlockChanged |= m_stateAtTail->at(block).add(node.node()).isNewEntry;
}
}
if (!thisBlockChanged) {
// This iteration didn't learn anything new about this block.
continue;
}
// Changed things. Make sure that we loop one more time.
changed = true;
for (BasicBlock* successor : block->successors()) {
for (Node* node : m_stateAtTail->at(block))
m_stateAtHead->at(successor).add(node);
}
}
}
// Tell handleBlock() that it's time to actually insert barriers for real.
m_isConverged = true;
for (BasicBlock* block : m_graph.blocksInNaturalOrder())
handleBlock(block);
return true;
} }
RELEASE_ASSERT_NOT_REACHED();
return false;
}
private:
bool handleBlock(BasicBlock* block)
{
if (DFGStoreBarrierInsertionPhaseInternal::verbose) {
dataLogLn("Dealing with block ", pointerDump(block));
dataLogLnIf(reallyInsertBarriers(), " Really inserting barriers.");
}
m_currentEpoch = Epoch::first();
if (mode == PhaseMode::Global) {
if (!block->cfaHasVisited)
return false;
m_state->beginBasicBlock(block);
for (NodeFlowProjection node : block->ssa->liveAtHead) {
if (node.kind() == NodeFlowProjection::Shadow)
continue;
if (m_stateAtHead->at(block).contains(node.node())) {
// If previous blocks tell us that this node may need a barrier in the
// future, then put it in the ancient primordial epoch. This forces us to
// emit a barrier on any possibly-cell store, regardless of the epoch of the
// stored value.
node->setEpoch(Epoch());
} else {
// If previous blocks aren't requiring us to run a barrier on this node,
// then put it in the current epoch. This means that we will skip barriers
// on this node so long as we don't allocate. It also means that we won't
// run barriers on stores to on one such node into another such node. That's
// fine, because nodes would be excluded from the state set if at the tails
// of all predecessors they always had the current epoch.
node->setEpoch(m_currentEpoch);
}
}
}
bool result = true;
UncheckedKeyHashMap<AbstractHeap, Node*> potentialStackEscapes;
for (m_nodeIndex = 0; m_nodeIndex < block->size(); ++m_nodeIndex) {
m_node = block->at(m_nodeIndex);
if (DFGStoreBarrierInsertionPhaseInternal::verbose) {
WTF::dataFile().atomically([&](auto&) {
dataLog(
" ", m_currentEpoch, ": Looking at node ", m_node, " with children: ");
CommaPrinter comma;
m_graph.doToChildren(
m_node,
[&] (Edge edge) {
dataLog(comma, edge, " (", edge->epoch(), ")");
});
dataLogLn();
});
}
if (mode == PhaseMode::Global) {
// Execute edges separately because we don't want to insert barriers if the
// operation doing the store does a check that ensures that the child is not
// a cell.
m_interpreter->startExecuting();
m_interpreter->executeEdges(m_node);
}
switch (m_node->op()) {
case PutByValDirect:
case PutByVal:
case PutByValAlias: {
switch (m_node->arrayMode().modeForPut().type()) {
case Array::Generic:
case Array::Float16Array:
case Array::BigInt64Array:
case Array::BigUint64Array: {
Edge child1 = m_graph.varArgChild(m_node, 0);
if (!m_graph.m_slowPutByVal.contains(m_node) && (child1.useKind() == CellUse || child1.useKind() == KnownCellUse))
// FIXME: there are some cases where we can avoid a store barrier by considering the value https://bugs.webkit.org/show_bug.cgi?id=230377
considerBarrier(child1);
break;
}
case Array::Contiguous:
case Array::ArrayStorage:
case Array::SlowPutArrayStorage: {
Edge child1 = m_graph.varArgChild(m_node, 0);
Edge child3 = m_graph.varArgChild(m_node, 2);
considerBarrier(child1, child3);
break;
}
default:
break;
}
break;
}
case ArrayPush: {
switch (m_node->arrayMode().type()) {
case Array::Contiguous:
case Array::ArrayStorage:
case Array::SlowPutArrayStorage:
case Array::ForceExit: {
unsigned elementOffset = 2;
unsigned elementCount = m_node->numChildren() - elementOffset;
Edge& arrayEdge = m_graph.varArgChild(m_node, 1);
for (unsigned i = 0; i < elementCount; ++i) {
Edge& element = m_graph.varArgChild(m_node, i + elementOffset);
considerBarrier(arrayEdge, element);
}
break;
}
default:
break;
}
break;
}
case PutPrivateName: {
if (!m_graph.m_slowPutByVal.contains(m_node) && (m_node->child1().useKind() == CellUse || m_node->child1().useKind() == KnownCellUse))
// FIXME: there are some cases where we can avoid a store barrier by considering the value https://bugs.webkit.org/show_bug.cgi?id=230377
considerBarrier(m_node->child1());
break;
}
case PutPrivateNameById: {
// We emit IC code when we have a non-null cacheableIdentifier and we need to introduce a
// barrier for it. On PutPrivateName, we perform store barrier during slow path execution.
considerBarrier(m_node->child1());
break;
}
case SetPrivateBrand:
case PutById:
case PutByIdFlush:
case PutByIdDirect:
case PutStructure:
case PutByIdMegamorphic: {
considerBarrier(m_node->child1());
break;
}
case DeleteById:
case DeleteByVal: {
// If child1 is not a cell-speculated, we call a generic implementation which emits write-barrier in C++ side.
// FIXME: We should consider accept base:UntypedUse.
// https://bugs.webkit.org/show_bug.cgi?id=209396
if (isCell(m_node->child1().useKind()))
considerBarrier(m_node->child1());
break;
}
case RegExpTestInline: {
considerBarrier(m_node->child1());
break;
}
case RecordRegExpCachedResult: {
considerBarrier(m_graph.varArgChild(m_node, 0));
break;
}
case PutClosureVar:
case PutToArguments:
case SetRegExpObjectLastIndex:
case PutInternalField: {
considerBarrier(m_node->child1(), m_node->child2());
break;
}
case EnumeratorPutByVal:
case PutByValMegamorphic: {
Edge child1 = m_graph.varArgChild(m_node, 0);
considerBarrier(child1);
break;
}
case MultiPutByOffset:
case MultiDeleteByOffset: {
// These nodes may cause transition too.
considerBarrier(m_node->child1());
break;
}
case PutByOffset: {
considerBarrier(m_node->child2(), m_node->child3());
break;
}
case PutGlobalVariable: {
considerBarrier(m_node->child1(), m_node->child2());
break;
}
case SetFunctionName: {
considerBarrier(m_node->child1(), m_node->child2());
break;
}
case NukeStructureAndSetButterfly: {
considerBarrier(m_node->child1());
break;
}
default:
break;
}
if (doesGC(m_graph, m_node)) {
m_currentEpoch.bump();
potentialStackEscapes.clear();
}
switch (m_node->op()) {
case NewObject:
case NewGenerator:
case NewAsyncGenerator:
case NewArray:
case NewArrayWithSize:
case NewArrayWithConstantSize:
case NewArrayWithSizeAndStructure:
case NewArrayBuffer:
case NewInternalFieldObject:
case NewTypedArray:
case NewRegexp:
case NewStringObject:
case NewMap:
case NewSet:
case NewSymbol:
case MaterializeNewObject:
case MaterializeNewArrayWithConstantSize:
case MaterializeCreateActivation:
case MakeRope:
case MakeAtomString:
case CreateActivation:
case CreateDirectArguments:
case CreateScopedArguments:
case CreateClonedArguments:
case NewFunction:
case NewGeneratorFunction:
case NewAsyncGeneratorFunction:
case NewAsyncFunction:
case NewBoundFunction:
case AllocatePropertyStorage:
case ReallocatePropertyStorage:
// Nodes that allocate get to set their epoch because for those nodes we know
// that they will be the newest object in the heap.
m_node->setEpoch(m_currentEpoch);
break;
case Upsilon:
// Assume the worst for Phis so that we don't have to worry about Phi shadows.
m_node->phi()->setEpoch(Epoch());
m_node->setEpoch(Epoch());
break;
default:
// For nodes that aren't guaranteed to allocate, we say that their return value
// (if there is one) could be arbitrarily old.
m_node->setEpoch(Epoch());
break;
}
{
// We need to consider nodes that might leak objects we've allocated into the heap.
// Once an object is leaked, we can no longer elide barriers on it.
// Let's motivate this requirement with an example:
// D@30: JSConstant(Int32: 42)
// D@35: GetStack(arg1)
// D@21: CheckStructure(Cell:D@35, [%ED:Object])
// D@23: GetStack(arg2)
// D@25: NewObject()
// D@33: PutByOffset(KnownCell:D@25, KnownCell:D@25, Check:Untyped:Kill:D@30, id0{x})
// D@34: PutStructure(KnownCell:D@25, %DN:Object -> %Ch:Object)
// D@40: PutByOffset(KnownCell:D@35, KnownCell:D@35, Check:Untyped:D@25, id1{p})
// D@45: FencedStoreBarrier(Check:KnownCell:Kill:D@35)
// <-- P1
// D@41: PutByOffset(KnownCell:D@25, KnownCell:D@25, Check:Untyped:Kill:D@23, id2{y})
// <-- P2
//
// Let's say at the program point P1, the barrier @45 didn't fire because @35 is already grey.
// Because @35 is grey, at P1, let's say the concurrent marker marks and traces @35, and also
// marks and traces @25. So at P1, the concurrent marker blackens @35 and @25.
// Now, let's consider program point P2.
// If we didn't barrier @25 at P2, we will never see that @25 points to @23, because @25 is already
// black. This is because after @25 was allocated, it escaped into the heap (at @40). Once an allocation
// escapes into the heap, it can be blackened at any point by the concurrent marker.
// So this analysis must mark an allocation that escapes to the heap as being part of the primordial
// epoch.
auto readFunc = [&] (const AbstractHeap& heap) {
if (!heap.overlaps(Stack))
return;
potentialStackEscapes.removeIf([&] (const auto& entry) {
if (entry.key.overlaps(heap)) {
entry.value->setEpoch(Epoch());
return true;
}
return false;
});
};
bool wroteHeapOrStack = false;
unsigned numberOfPreciseStackWrites = 0;
AbstractHeap preciseStackWrite;
auto writeFunc = [&] (const AbstractHeap& heap) {
wroteHeapOrStack |= heap.overlaps(Heap) || heap.overlaps(Stack);
if (heap.kind() == Stack && !heap.payload().isTop()) {
++numberOfPreciseStackWrites;
preciseStackWrite = heap;
}
};
clobberize(m_graph, m_node, readFunc, writeFunc, NoOpClobberize());
if (wroteHeapOrStack) {
auto escape = [&] (Node* node) {
node->setEpoch(Epoch());
};
auto escapeToTheStack = [&] (Node* node) {
if (node->epoch() == m_currentEpoch) {
RELEASE_ASSERT(!!preciseStackWrite);
RELEASE_ASSERT(numberOfPreciseStackWrites == 1);
potentialStackEscapes.set(preciseStackWrite, node);
}
};
switch (m_node->op()) {
case PutStructure:
case MultiDeleteByOffset:
break;
case PutInternalField:
escape(m_node->child2().node());
break;
case PutByOffset:
escape(m_node->child3().node());
break;
case MultiPutByOffset:
escape(m_node->child2().node());
break;
case PutClosureVar:
escape(m_node->child2().node());
break;
case NukeStructureAndSetButterfly:
escape(m_node->child2().node());
break;
case SetLocal:
case PutStack:
escapeToTheStack(m_node->child1().node());
break;
default:
m_graph.doToChildren(m_node, [&] (Edge edge) {
escape(edge.node());
});
break;
}
}
}
if (DFGStoreBarrierInsertionPhaseInternal::verbose) {
WTF::dataFile().atomically([&](auto&) {
dataLog(
" ", m_currentEpoch, ": Done with node ", m_node, " (", m_node->epoch(),
") with children: ");
CommaPrinter comma;
m_graph.doToChildren(
m_node,
[&] (Edge edge) {
dataLog(comma, edge, " (", edge->epoch(), ")");
});
dataLogLn();
});
}
if (mode == PhaseMode::Global) {
if (!m_interpreter->executeEffects(m_nodeIndex, m_node)) {
result = false;
break;
}
}
}
{
for (auto* node : potentialStackEscapes.values())
node->setEpoch(Epoch());
potentialStackEscapes.clear();
}
if (mode == PhaseMode::Global)
m_state->reset();
if (reallyInsertBarriers())
m_insertionSet.execute(block);
return result;
}
void considerBarrier(Edge base, Edge child)
{
dataLogLnIf(DFGStoreBarrierInsertionPhaseInternal::verbose, " Considering adding barrier ", base, " => ", child);
// We don't need a store barrier if the child is guaranteed to not be a cell.
switch (mode) {
case PhaseMode::Fast: {
// Don't try too hard because it's too expensive to run AI.
if (child->hasConstant()) {
if (!child->asJSValue().isCell()) {
dataLogLnIf(DFGStoreBarrierInsertionPhaseInternal::verbose, " Rejecting because of constant type.");
return;
}
} else {
switch (child->result()) {
case NodeResultNumber:
case NodeResultDouble:
case NodeResultInt32:
case NodeResultInt52:
case NodeResultBoolean:
dataLogLnIf(DFGStoreBarrierInsertionPhaseInternal::verbose, " Rejecting because of result type.");
return;
default:
break;
}
}
break;
}
case PhaseMode::Global: {
// Go into rage mode to eliminate any chance of a barrier with a non-cell child. We
// can afford to keep around AI in Global mode.
if (!m_interpreter->needsTypeCheck(child, ~SpecCell)) {
dataLogLnIf(DFGStoreBarrierInsertionPhaseInternal::verbose, " Rejecting because of AI type.");
return;
}
break;
} }
considerBarrier(base);
}
void considerBarrier(Edge base)
{
dataLogLnIf(DFGStoreBarrierInsertionPhaseInternal::verbose, " Considering adding barrier on ", base);
// We don't need a store barrier if the epoch of the base is identical to the current
// epoch. That means that we either just allocated the object and so it's guaranteed to
// be in newgen, or we just ran a barrier on it so it's guaranteed to be remembered
// already.
if (base->epoch() == m_currentEpoch) {
dataLogLnIf(DFGStoreBarrierInsertionPhaseInternal::verbose, " Rejecting because it's in the current epoch.");
return;
}
dataLogLnIf(DFGStoreBarrierInsertionPhaseInternal::verbose, " Inserting barrier.");
insertBarrier(m_nodeIndex + 1, base);
}
void insertBarrier(unsigned nodeIndex, Edge base)
{
// This is just our way of saying that barriers are not redundant with each other according
// to forward analysis: if we proved one time that a barrier was necessary then it'll for
// sure be necessary next time.
base->setEpoch(Epoch());
// If we're in global mode, we should only insert the barriers once we have converged.
if (!reallyInsertBarriers())
return;
// FIXME: We could support StoreBarrier(UntypedUse:). That would be sort of cool.
// But right now we don't need it.
// https://bugs.webkit.org/show_bug.cgi?id=209396
DFG_ASSERT(m_graph, m_node, isCell(base.useKind()), m_node->op(), base.useKind());
// Barriers are always inserted after the node that they service. Therefore, we always know
// that the thing is a cell now.
base.setUseKind(KnownCellUse);
NodeOrigin origin = m_node->origin;
if (clobbersExitState(m_graph, m_node))
origin = origin.withInvalidExit();
m_insertionSet.insertNode(nodeIndex, SpecNone, FencedStoreBarrier, origin, base);
}
bool reallyInsertBarriers()
{
return mode == PhaseMode::Fast || m_isConverged;
}
InsertionSet m_insertionSet;
Epoch m_currentEpoch;
unsigned m_nodeIndex;
Node* m_node;
// Things we only use in Global mode.
std::unique_ptr<InPlaceAbstractState> m_state;
std::unique_ptr<AbstractInterpreter<InPlaceAbstractState>> m_interpreter;
std::unique_ptr<BlockMap<UncheckedKeyHashSet<Node*>>> m_stateAtHead;
std::unique_ptr<BlockMap<UncheckedKeyHashSet<Node*>>> m_stateAtTail;
bool m_isConverged;
};
} // anonymous namespace
bool performFastStoreBarrierInsertion(Graph& graph)
{
return runPhase<StoreBarrierInsertionPhase<PhaseMode::Fast>>(graph);
}
bool performGlobalStoreBarrierInsertion(Graph& graph)
{
return runPhase<StoreBarrierInsertionPhase<PhaseMode::Global>>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|