File: FTLOSRExitCompiler.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (694 lines) | stat: -rw-r--r-- 35,627 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/*
 * Copyright (C) 2013-2022 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "FTLOSRExitCompiler.h"

#if ENABLE(FTL_JIT)

#include "AssemblyHelpersSpoolers.h"
#include "BytecodeStructs.h"
#include "CheckpointOSRExitSideState.h"
#include "DFGOSRExitCompilerCommon.h"
#include "FTLJITCode.h"
#include "FTLLocation.h"
#include "FTLOSRExit.h"
#include "FTLOperations.h"
#include "FTLSaveRestore.h"
#include "FTLState.h"
#include "JSCJSValueInlines.h"
#include "LinkBuffer.h"
#include "MaxFrameExtentForSlowPathCall.h"
#include "OperandsInlines.h"
#include "ProbeContext.h"

#include <wtf/Scope.h>

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace JSC { namespace FTL {

using namespace DFG;

static void reboxAccordingToFormat(
    DataFormat format, AssemblyHelpers& jit, GPRReg value, GPRReg scratch1, GPRReg scratch2)
{
    switch (format) {
    case DataFormatInt32: {
        jit.zeroExtend32ToWord(value, value);
        jit.or64(GPRInfo::numberTagRegister, value);
        break;
    }

    case DataFormatInt52: {
        jit.rshift64(AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), value);
        jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch2);
        jit.boxInt52(value, value, scratch1, FPRInfo::fpRegT0);
        jit.move64ToDouble(scratch2, FPRInfo::fpRegT0);
        break;
    }

    case DataFormatStrictInt52: {
        jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch2);
        jit.boxInt52(value, value, scratch1, FPRInfo::fpRegT0);
        jit.move64ToDouble(scratch2, FPRInfo::fpRegT0);
        break;
    }

    case DataFormatBoolean: {
        jit.zeroExtend32ToWord(value, value);
        jit.or32(MacroAssembler::TrustedImm32(JSValue::ValueFalse), value);
        break;
    }

    case DataFormatJS: {
        // Done already!
        break;
    }

    case DataFormatDouble: {
        jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch1);
        jit.move64ToDouble(value, FPRInfo::fpRegT0);
        jit.purifyNaN(FPRInfo::fpRegT0, FPRInfo::fpRegT0);
        jit.boxDouble(FPRInfo::fpRegT0, value);
        jit.move64ToDouble(scratch1, FPRInfo::fpRegT0);
        break;
    }

    default:
        RELEASE_ASSERT_NOT_REACHED();
        break;
    }
}

static void compileRecovery(
    CCallHelpers& jit, const ExitValue& value,
    const FixedVector<B3::ValueRep>& valueReps,
    char* registerScratch,
    const UncheckedKeyHashMap<ExitTimeObjectMaterialization*, EncodedJSValue*>& materializationToPointer)
{
    switch (value.kind()) {
    case ExitValueDead:
        jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0);
        break;
            
    case ExitValueConstant:
        jit.move(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), GPRInfo::regT0);
        break;
            
    case ExitValueArgument:
        Location::forValueRep(valueReps[value.exitArgument().argument()]).restoreInto(
            jit, registerScratch, GPRInfo::regT0);
        break;
            
    case ExitValueInJSStack:
    case ExitValueInJSStackAsInt32:
    case ExitValueInJSStackAsInt52:
    case ExitValueInJSStackAsDouble:
        jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0);
        break;
            
    case ExitValueMaterializeNewObject:
        jit.loadPtr(materializationToPointer.get(value.objectMaterialization()), GPRInfo::regT0);
        break;
            
    default:
        RELEASE_ASSERT_NOT_REACHED();
        break;
    }
        
    reboxAccordingToFormat(
        value.dataFormat(), jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
}

static void compileStub(VM& vm, unsigned exitID, JITCode* jitCode, OSRExit& exit, CodeBlock* codeBlock)
{
    // This code requires framePointerRegister is the same as callFrameRegister
    static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same");

    CCallHelpers jit(codeBlock);

    if (UNLIKELY(Options::printEachOSRExit())) {
        SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
        debugInfo->codeBlock = jit.codeBlock();
        debugInfo->kind = exit.m_kind;
        debugInfo->exitIndex = exitID;
        debugInfo->bytecodeIndex = exit.m_codeOrigin.bytecodeIndex();
        jit.probe(tagCFunction<JITProbePtrTag>(operationDebugPrintSpeculationFailure), debugInfo, SavedFPWidth::DontSaveVectors);
    }

    // The first thing we need to do is restablish our frame in the case of an exception.
    if (exit.isGenericUnwindHandler()) {
        RELEASE_ASSERT(vm.callFrameForCatch); // The first time we hit this exit, like at all other times, this field should be non-null.
        jit.restoreCalleeSavesFromEntryFrameCalleeSavesBuffer(vm.topEntryFrame);
        jit.loadPtr(vm.addressOfCallFrameForCatch(), MacroAssembler::framePointerRegister);
        jit.addPtr(CCallHelpers::TrustedImm32(codeBlock->stackPointerOffset() * sizeof(Register)),
            MacroAssembler::framePointerRegister, CCallHelpers::stackPointerRegister);

        // Do a pushToSave because that's what the exit compiler below expects the stack
        // to look like because that's the last thing the ExitThunkGenerator does. The code
        // below doesn't actually use the value that was pushed, but it does rely on the
        // general shape of the stack being as it is in the non-exception OSR case.
        jit.pushToSaveImmediateWithoutTouchingRegisters(CCallHelpers::TrustedImm32(0xbadbeef));
    }

    // We need scratch space to save all registers, to build up the JS stack, to deal with unwind
    // fixup, pointers to all of the objects we materialize, and the elements inside those objects
    // that we materialize.
    
    // Figure out how much space we need for those object allocations.
    unsigned numMaterializations = 0;
    size_t maxMaterializationNumArguments = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) {
        numMaterializations++;
        
        maxMaterializationNumArguments = std::max(
            maxMaterializationNumArguments,
            materialization->properties().size());
    }
    
    ScratchBuffer* scratchBuffer = vm.scratchBufferForSize(
        sizeof(EncodedJSValue) * (
            exit.m_descriptor->m_values.size() + numMaterializations + maxMaterializationNumArguments) +
        requiredScratchMemorySizeInBytes() +
        codeBlock->jitCode()->calleeSaveRegisters()->sizeOfAreaInBytes());
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : nullptr;
    EncodedJSValue* materializationPointers = scratch + exit.m_descriptor->m_values.size();
    EncodedJSValue* materializationArguments = materializationPointers + numMaterializations;
    char* registerScratch = std::bit_cast<char*>(materializationArguments + maxMaterializationNumArguments);
    uint64_t* unwindScratch = std::bit_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes());
    
    UncheckedKeyHashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer;
    unsigned materializationCount = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) {
        materializationToPointer.add(
            materialization, materializationPointers + materializationCount++);
    }

    auto recoverValue = [&] (const ExitValue& value) {
        compileRecovery(
            jit, value,
            exit.m_valueReps,
            registerScratch, materializationToPointer);
    };
    
    // Note that we come in here, the stack used to be as B3 left it except that someone called pushToSave().
    // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use
    // that slot for saveAllRegisters().

    saveAllRegisters(jit, registerScratch);
    
    if constexpr (validateDFGDoesGC) {
        if (Options::validateDoesGC()) {
            // We're about to exit optimized code. So, there's no longer any optimized
            // code running that expects no GC. We need to set this before object
            // materialization below.

            // Even though we set Heap::m_doesGC in compileFTLOSRExit(), we also need
            // to set it here because compileFTLOSRExit() is only called on the first time
            // we exit from this site, but all subsequent exits will take this compiled
            // ramp without calling compileFTLOSRExit() first.
            jit.store64(CCallHelpers::TrustedImm64(DoesGCCheck::encode(true, DoesGCCheck::Special::FTLOSRExit)), vm.addressOfDoesGC());
        }
    }

    // Bring the stack back into a sane form and assert that it's sane.
    jit.popToRestore(GPRInfo::regT0);
    jit.checkStackPointerAlignment();
    
    if (UNLIKELY(vm.m_perBytecodeProfiler && jitCode->dfgCommon()->compilation)) {
        Profiler::Database& database = *vm.m_perBytecodeProfiler;
        Profiler::Compilation* compilation = jitCode->dfgCommon()->compilation.get();
        
        Profiler::OSRExit* profilerExit = compilation->addOSRExit(
            exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
            exit.m_kind, exit.m_kind == UncountableInvalidation);
        jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
    }

    // The remaining code assumes that SP/FP are in the same state that they were in the FTL's
    // call frame.
    
    // Get the call frame and tag thingies.
    // Restore the exiting function's callFrame value into a regT4
    jit.emitMaterializeTagCheckRegisters();
    
    // Do some value profiling.
    if (exit.m_descriptor->m_profileDataFormat != DataFormatNone) {
        Location::forValueRep(exit.m_valueReps[0]).restoreInto(jit, registerScratch, GPRInfo::regT0);
        reboxAccordingToFormat(exit.m_descriptor->m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
        
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            CodeBlock* codeBlock = jit.baselineCodeBlockFor(codeOrigin);
            if (ArrayProfile* arrayProfile = codeBlock->getArrayProfile(ConcurrentJSLocker(codeBlock->m_lock), codeOrigin.bytecodeIndex())) {
                jit.move(CCallHelpers::TrustedImmPtr(arrayProfile), GPRInfo::regT3);
                jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1);
                jit.store32(GPRInfo::regT1, CCallHelpers::Address(GPRInfo::regT3, ArrayProfile::offsetOfSpeculationFailureStructureID()));

                jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::typeInfoTypeOffset()), GPRInfo::regT2);
                jit.sub32(MacroAssembler::TrustedImm32(FirstTypedArrayType), GPRInfo::regT2);
                auto notTypedArray = jit.branch32(MacroAssembler::AboveOrEqual, GPRInfo::regT2, MacroAssembler::TrustedImm32(NumberOfTypedArrayTypesExcludingDataView));
                jit.move(MacroAssembler::TrustedImmPtr(typedArrayModes), GPRInfo::regT1);
                jit.load32(MacroAssembler::BaseIndex(GPRInfo::regT1, GPRInfo::regT2, MacroAssembler::TimesFour), GPRInfo::regT2);
                auto storeArrayModes = jit.jump();

                notTypedArray.link(&jit);
                jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeAndMiscOffset()), GPRInfo::regT1);
                jit.and32(MacroAssembler::TrustedImm32(IndexingModeMask), GPRInfo::regT1);
                jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2);
                jit.lshift32(GPRInfo::regT1, GPRInfo::regT2);
                storeArrayModes.link(&jit);
                jit.or32(GPRInfo::regT2, CCallHelpers::Address(GPRInfo::regT3, ArrayProfile::offsetOfArrayModes()));
            }
        }

        if (exit.m_descriptor->m_valueProfile)
            exit.m_descriptor->m_valueProfile.emitReportValue(jit, jit.codeBlock(), JSValueRegs(GPRInfo::regT0), GPRInfo::regT1);
    }

    // Materialize all objects. Don't materialize an object until all
    // of the objects it needs have been materialized. We break cycles
    // by populating objects late - we only consider an object as
    // needing another object if the later is needed for the
    // allocation of the former.

    UncheckedKeyHashSet<ExitTimeObjectMaterialization*> toMaterialize;
    for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations)
        toMaterialize.add(materialization);

    while (!toMaterialize.isEmpty()) {
        unsigned previousToMaterializeSize = toMaterialize.size();

        Vector<ExitTimeObjectMaterialization*> worklist;
        worklist.appendRange(toMaterialize.begin(), toMaterialize.end());
        for (ExitTimeObjectMaterialization* materialization : worklist) {
            // Check if we can do anything about this right now.
            bool allGood = true;
            for (ExitPropertyValue value : materialization->properties()) {
                if (!value.value().isObjectMaterialization())
                    continue;
                if (!value.location().neededForMaterialization())
                    continue;
                if (toMaterialize.contains(value.value().objectMaterialization())) {
                    // Gotta skip this one, since it needs a
                    // materialization that hasn't been materialized.
                    allGood = false;
                    break;
                }
            }
            if (!allGood)
                continue;

            // All systems go for materializing the object. First we
            // recover the values of all of its fields and then we
            // call a function to actually allocate the beast.
            // We only recover the fields that are needed for the allocation.
            for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
                const ExitPropertyValue& property = materialization->properties()[propertyIndex];
                if (!property.location().neededForMaterialization())
                    continue;

                ASSERT(property.value().kind() != ExitValueDead);
                recoverValue(property.value());
                jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
            }
            
            static_assert(FunctionTraits<decltype(operationMaterializeObjectInOSR)>::arity < GPRInfo::numberOfArgumentRegisters, "This call assumes that we don't pass arguments on the stack.");
            jit.setupArguments<decltype(operationMaterializeObjectInOSR)>(
                CCallHelpers::TrustedImmPtr(codeBlock->globalObjectFor(materialization->origin())),
                CCallHelpers::TrustedImmPtr(materialization),
                CCallHelpers::TrustedImmPtr(materializationArguments));
            jit.prepareCallOperation(vm);
            jit.move(CCallHelpers::TrustedImmPtr(tagCFunction<OperationPtrTag>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0);
            jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
            jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization));

            // Let everyone know that we're done.
            toMaterialize.remove(materialization);
        }
        
        // We expect progress! This ensures that we crash rather than looping infinitely if there
        // is something broken about this fixpoint. Or, this could happen if we ever violate the
        // "materializations form a DAG" rule.
        RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize);
    }

    // Now that all the objects have been allocated, we populate them
    // with the correct values. This time we can recover all the
    // fields, including those that are only needed for the allocation.
    for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) {
        for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
            recoverValue(materialization->properties()[propertyIndex].value());
            jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
        }

        static_assert(FunctionTraits<decltype(operationPopulateObjectInOSR)>::arity < GPRInfo::numberOfArgumentRegisters, "This call assumes that we don't pass arguments on the stack.");
        jit.setupArguments<decltype(operationPopulateObjectInOSR)>(
            CCallHelpers::TrustedImmPtr(codeBlock->globalObjectFor(materialization->origin())),
            CCallHelpers::TrustedImmPtr(materialization),
            CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)),
            CCallHelpers::TrustedImmPtr(materializationArguments));
        jit.prepareCallOperation(vm);
        jit.move(CCallHelpers::TrustedImmPtr(tagCFunction<OperationPtrTag>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0);
        jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
    }

    // Save all state from wherever the exit data tells us it was, into the appropriate place in
    // the scratch buffer. This also does the reboxing.
    
    {
        std::optional<GPRReg> undefinedGPR;
        jit.move(CCallHelpers::TrustedImmPtr(scratch), GPRInfo::regT3);
        CCallHelpers::CopySpooler spooler(jit, CCallHelpers::framePointerRegister, GPRInfo::regT3, GPRInfo::regT0, GPRInfo::regT1);
        for (unsigned index = exit.m_descriptor->m_values.size(); index--;) {
            auto& value = exit.m_descriptor->m_values[index];
            if (value.dataFormat() == DataFormatJS) {
                switch (value.kind()) {
                case ExitValueDead:
                    if (UNLIKELY(!undefinedGPR)) {
                        jit.move(CCallHelpers::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT4);
                        undefinedGPR = GPRInfo::regT4;
                    }
                    spooler.copyGPR(undefinedGPR.value());
                    spooler.storeGPR(index * sizeof(EncodedJSValue));
                    break;

                case ExitValueConstant: {
                    EncodedJSValue currentConstant = JSValue::encode(value.constant());
                    if (currentConstant == encodedJSUndefined()) {
                        if (UNLIKELY(!undefinedGPR)) {
                            jit.move(CCallHelpers::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT4);
                            undefinedGPR = GPRInfo::regT4;
                        }
                        spooler.copyGPR(undefinedGPR.value());
                    } else
                        spooler.moveConstant(currentConstant);
                    spooler.storeGPR(index * sizeof(EncodedJSValue));
                    break;
                }

                case ExitValueArgument:
                    Location::forValueRep(exit.m_valueReps[value.exitArgument().argument()]).restoreInto(jit, registerScratch, GPRInfo::regT0);
                    jit.store64(GPRInfo::regT0, CCallHelpers::Address(GPRInfo::regT3, index * sizeof(EncodedJSValue)));
                    break;

                case ExitValueInJSStack:
                case ExitValueInJSStackAsInt32:
                case ExitValueInJSStackAsInt52:
                case ExitValueInJSStackAsDouble:
                    spooler.loadGPR(value.virtualRegister().offset() * sizeof(EncodedJSValue));
                    spooler.storeGPR(index * sizeof(EncodedJSValue));
                    break;

                case ExitValueMaterializeNewObject:
                    jit.loadPtr(materializationToPointer.get(value.objectMaterialization()), GPRInfo::regT0);
                    jit.store64(GPRInfo::regT0, CCallHelpers::Address(GPRInfo::regT3, index * sizeof(EncodedJSValue)));
                    break;

                default:
                    RELEASE_ASSERT_NOT_REACHED();
                    break;
                }
            } else {
                recoverValue(value);
                jit.store64(GPRInfo::regT0, CCallHelpers::Address(GPRInfo::regT3, index * sizeof(EncodedJSValue)));
            }
        }
        spooler.finalizeGPR();
    }
    
    // Henceforth we make it look like the exiting function was called through a register
    // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then
    // we restore the various things according to either exit.m_descriptor->m_values or by copying from the
    // old frame, and finally we save the various callee-save registers into where the
    // restoration thunk would restore them from.
    
    // Before we start messing with the frame, we need to set aside any registers that the
    // FTL code was preserving.
    {
        constexpr GPRReg srcBufferGPR = GPRInfo::regT2;
        constexpr GPRReg destBufferGPR = GPRInfo::regT3;
        jit.move(CCallHelpers::framePointerRegister, srcBufferGPR);
        jit.move(CCallHelpers::TrustedImmPtr(unwindScratch), destBufferGPR);
        CCallHelpers::CopySpooler spooler(CCallHelpers::CopySpooler::BufferRegs::AllowModification, jit, srcBufferGPR, destBufferGPR, GPRInfo::regT0, GPRInfo::regT1);
        for (unsigned i = codeBlock->jitCode()->calleeSaveRegisters()->registerCount(); i--;) {
            RegisterAtOffset entry = codeBlock->jitCode()->calleeSaveRegisters()->at(i);
            spooler.loadGPR(entry.offset());
            spooler.storeGPR(i * sizeof(uint64_t));
        }
        spooler.finalizeGPR();
    }
    
    CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin);

    // First set up SP so that our data doesn't get clobbered by signals.
    unsigned conservativeStackDelta =
        (exit.m_descriptor->m_values.numberOfLocals() + CodeBlock::calleeSaveSpaceAsVirtualRegisters(*baselineCodeBlock->jitCode()->calleeSaveRegisters())) * sizeof(Register) +
        maxFrameExtentForSlowPathCall;
    conservativeStackDelta = WTF::roundUpToMultipleOf(
        stackAlignmentBytes(), conservativeStackDelta);
    jit.addPtr(
        MacroAssembler::TrustedImm32(-conservativeStackDelta),
        MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister);
    jit.checkStackPointerAlignment();

    {
        auto allFTLCalleeSaves = RegisterSetBuilder::ftlCalleeSaveRegisters();
        const RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->jitCode()->calleeSaveRegisters();
        auto iterateCalleeSavesImpl = [&](auto check, auto func) {
            for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
                if (!allFTLCalleeSaves.contains(reg, IgnoreVectors))
                    continue;
                if (!check(reg))
                    continue;
                unsigned unwindIndex = codeBlock->jitCode()->calleeSaveRegisters()->indexOf(reg);
                const RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg);
                func(reg, unwindIndex, baselineRegisterOffset);
            }
        };

        auto iterateGPRCalleeSaves = [&](auto func) {
            iterateCalleeSavesImpl([](Reg reg) { return reg.isGPR(); }, func);
        };

        auto iterateFPRCalleeSaves = [&](auto func) {
            iterateCalleeSavesImpl([](Reg reg) { return reg.isFPR(); }, func);
        };

        {
            // unwindIndex == UINT_MAX indicates that the FTL compilation didn't preserve these registers.
            // This means that it also didn't use them. Their values at the beginning of OSR exit should
            // be the ones to retain. We saved all registers into the register scratch buffer at the beginning
            // of the thunk. So we can restore them from there.
            ASSERT(!allFTLCalleeSaves.contains(GPRInfo::regT3, IgnoreVectors));
            ASSERT(!allFTLCalleeSaves.contains(GPRInfo::regT0, IgnoreVectors));
            ASSERT(!allFTLCalleeSaves.contains(GPRInfo::regT1, IgnoreVectors));
            ASSERT(!allFTLCalleeSaves.contains(FPRInfo::fpRegT0, IgnoreVectors));
            ASSERT(!allFTLCalleeSaves.contains(FPRInfo::fpRegT1, IgnoreVectors));
            jit.move(CCallHelpers::TrustedImmPtr(registerScratch), GPRInfo::regT3);
            {
                // Load from registerScratch buffer to callee-save registers.
                CCallHelpers::LoadRegSpooler spooler(jit, GPRInfo::regT3);
                iterateGPRCalleeSaves([&](Reg reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex == UINT_MAX && !baselineRegisterOffset)
                        spooler.loadGPR({ reg, static_cast<ptrdiff_t>(offsetOfReg(reg)), conservativeWidthWithoutVectors(reg) });
                });
                spooler.finalizeGPR();
                iterateFPRCalleeSaves([&](Reg reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex == UINT_MAX && !baselineRegisterOffset)
                        spooler.loadFPR({ reg, static_cast<ptrdiff_t>(offsetOfReg(reg)), conservativeWidthWithoutVectors(reg) });
                });
                spooler.finalizeFPR();
            }
            {
                // Copy from registerScratch buffer to call frame.
                CCallHelpers::CopySpooler spooler(jit, GPRInfo::regT3, CCallHelpers::framePointerRegister, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0, FPRInfo::fpRegT1);
                iterateGPRCalleeSaves([&](Reg reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex == UINT_MAX && baselineRegisterOffset) {
                        spooler.loadGPR(offsetOfReg(reg));
                        spooler.storeGPR(baselineRegisterOffset->offset());
                    }
                });
                spooler.finalizeGPR();
                iterateFPRCalleeSaves([&](Reg reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex == UINT_MAX && baselineRegisterOffset) {
                        spooler.loadFPR(offsetOfReg(reg));
                        spooler.storeFPR(baselineRegisterOffset->offset());
                    }
                });
                spooler.finalizeFPR();
            }
        }
        {
            // The FTL compilation preserved these registers. Their new values are therefore irrelevant,
            // but we can get their values that were preserved by using the unwind data. We've already
            // copied all unwind-able preserved registers into the unwind scratch buffer, so we can get
            // the values to restore from there.
            ASSERT((std::bit_cast<uintptr_t>(unwindScratch) - std::bit_cast<uintptr_t>(registerScratch)) == requiredScratchMemorySizeInBytes());
            jit.addPtr(CCallHelpers::TrustedImm32(requiredScratchMemorySizeInBytes()), GPRInfo::regT3); // Change registerScratch to unwindScratch.
            {
                // Load from unwindScratch buffer to callee-save registers.
                CCallHelpers::LoadRegSpooler spooler(jit, GPRInfo::regT3);
                iterateGPRCalleeSaves([&](Reg reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex != UINT_MAX && !baselineRegisterOffset)
                        spooler.loadGPR({ reg, static_cast<ptrdiff_t>(unwindIndex * sizeof(uint64_t)), conservativeWidthWithoutVectors(reg) });
                });
                spooler.finalizeGPR();
                iterateFPRCalleeSaves([&](Reg reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex != UINT_MAX && !baselineRegisterOffset)
                        spooler.loadFPR({ reg, static_cast<ptrdiff_t>(unwindIndex * sizeof(uint64_t)), conservativeWidthWithoutVectors(reg) });
                });
                spooler.finalizeFPR();
            }
            {
                // Copy from unwindScratch buffer to call frame.
                CCallHelpers::CopySpooler spooler(jit, GPRInfo::regT3, CCallHelpers::framePointerRegister, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0, FPRInfo::fpRegT1);
                iterateGPRCalleeSaves([&](Reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex != UINT_MAX && baselineRegisterOffset) {
                        spooler.loadGPR(static_cast<ptrdiff_t>(unwindIndex * sizeof(uint64_t)));
                        spooler.storeGPR(baselineRegisterOffset->offset());
                    }
                });
                spooler.finalizeGPR();
                iterateFPRCalleeSaves([&](Reg, unsigned unwindIndex, const RegisterAtOffset* baselineRegisterOffset) {
                    if (unwindIndex != UINT_MAX && baselineRegisterOffset) {
                        spooler.loadFPR(static_cast<ptrdiff_t>(unwindIndex * sizeof(uint64_t)));
                        spooler.storeFPR(baselineRegisterOffset->offset());
                    }
                });
                spooler.finalizeFPR();
            }
        }
    }

    size_t baselineVirtualRegistersForCalleeSaves = CodeBlock::calleeSaveSpaceAsVirtualRegisters(*baselineCodeBlock->jitCode()->calleeSaveRegisters());

    if (exit.m_codeOrigin.inlineStackContainsActiveCheckpoint()) {
        EncodedJSValue* tmpScratch = scratch + exit.m_descriptor->m_values.tmpIndex(0);
        jit.setupArguments<decltype(operationMaterializeOSRExitSideState)>(CCallHelpers::TrustedImmPtr(&vm), CCallHelpers::TrustedImmPtr(&exit), CCallHelpers::TrustedImmPtr(tmpScratch));
        jit.prepareCallOperation(vm);
        jit.move(AssemblyHelpers::TrustedImmPtr(tagCFunction<OperationPtrTag>(operationMaterializeOSRExitSideState)), GPRInfo::nonArgGPR0);
        jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
    }

    // Now get state out of the scratch buffer and place it back into the stack. The values are
    // already reboxed so we just move them.
    {
        constexpr GPRReg srcBufferGPR = GPRInfo::regT2;
        constexpr GPRReg destBufferGPR = GPRInfo::regT3;
        jit.move(CCallHelpers::TrustedImmPtr(scratch), srcBufferGPR);
        jit.move(GPRInfo::callFrameRegister, destBufferGPR);
        CCallHelpers::CopySpooler spooler(CCallHelpers::CopySpooler::BufferRegs::AllowModification, jit, srcBufferGPR, destBufferGPR, GPRInfo::regT0, GPRInfo::regT1);
        for (unsigned index = exit.m_descriptor->m_values.size(); index--;) {
            Operand operand = exit.m_descriptor->m_values.operandForIndex(index);

            if (operand.isTmp())
                continue;

            if (operand.isLocal() && operand.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves))
                continue;

            spooler.loadGPR(index * sizeof(EncodedJSValue));
            spooler.storeGPR(operand.virtualRegister().offset() * sizeof(EncodedJSValue));
        }
        spooler.finalizeGPR();
    }
    
    handleExitCounts(vm, jit, exit);
    reifyInlinedCallFrames(jit, exit);
    adjustAndJumpToTarget(vm, jit, exit);
    
    LinkBuffer patchBuffer(jit, codeBlock, LinkBuffer::Profile::FTLOSRExit);
    exit.m_code = FINALIZE_CODE_IF(
        shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(),
        patchBuffer, OSRExitPtrTag, nullptr,
        "FTL OSR exit #%u (D@%u, %s, %s) from %s, with operands = %s",
            exitID, exit.m_dfgNodeIndex, toCString(exit.m_codeOrigin).data(),
            toCString(exit.m_kind).data(), toCString(*codeBlock).data(),
            toCString(ignoringContext<DumpContext>(exit.m_descriptor->m_values)).data()
        );
}

JSC_DEFINE_NOEXCEPT_JIT_OPERATION(operationCompileFTLOSRExit, void*, (CallFrame* callFrame, unsigned exitID))
{
    dataLogLnIf(shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(), "Compiling OSR exit with exitID = ", exitID);

    VM& vm = callFrame->deprecatedVM();
    // Don't need an ActiveScratchBufferScope here because we DeferGCForAWhile below.

    if constexpr (validateDFGDoesGC) {
        // We're about to exit optimized code. So, there's no longer any optimized
        // code running that expects no GC.
        vm.setDoesGCExpectation(true, DoesGCCheck::Special::FTLOSRExit);
    }

    if (vm.callFrameForCatch)
        RELEASE_ASSERT(vm.callFrameForCatch == callFrame);
    
    CodeBlock* codeBlock = callFrame->codeBlock();
    
    ASSERT(codeBlock);
    ASSERT(codeBlock->jitType() == JITType::FTLJIT);
    
    // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't
    // really be profitable.
    DeferGCForAWhile deferGC(vm);

    JITCode* jitCode = codeBlock->jitCode()->ftl();
    OSRExit& exit = jitCode->m_osrExit[exitID];
    
    if (shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) {
        dataLogLn(
            "    Owning block: ", pointerDump(codeBlock), "\n",
            "    Origin: ", exit.m_codeOrigin);
        if (exit.m_codeOriginForExitProfile != exit.m_codeOrigin)
            dataLogLn("    Origin for exit profile: ", exit.m_codeOriginForExitProfile);
        dataLogLn(
            "    Current call site index: ", callFrame->callSiteIndex().bits(), "\n",
            "    Exit is exception handler: ", exit.isExceptionHandler(), "\n",
            "    Is unwind handler: ", exit.isGenericUnwindHandler(), "\n",
            "    Exit values: ", exit.m_descriptor->m_values, "\n",
            "    Value reps: ", listDump(exit.m_valueReps));
        if (!exit.m_descriptor->m_materializations.isEmpty()) {
            dataLogLn("    Materializations:");
            for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations)
                dataLogLn("        ", pointerDump(materialization));
        }
    }

    compileStub(vm, exitID, jitCode, exit, codeBlock);

    MacroAssembler::repatchJump(
        exit.codeLocationForRepatch(codeBlock), CodeLocationLabel<OSRExitPtrTag>(exit.m_code.code()));
    
    return exit.m_code.code().taggedPtr();
}

} } // namespace JSC::FTL

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#endif // ENABLE(FTL_JIT)