1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
/*
* Copyright (C) 2015-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(JIT)
#include "CachedRecovery.h"
#include "CallFrameShuffleData.h"
#include "MacroAssembler.h"
#include "RegisterSet.h"
#include <wtf/TZoneMalloc.h>
#include <wtf/Vector.h>
namespace JSC {
class CCallHelpers;
class CallFrameShuffler {
WTF_MAKE_TZONE_ALLOCATED(CallFrameShuffler);
public:
CallFrameShuffler(CCallHelpers&, const CallFrameShuffleData&);
void dump(PrintStream&) const;
// Any register that has been locked or acquired must be released
// before calling prepareForTailCall() or prepareForSlowPath().
// Unless you know the register is not the target of a recovery.
void lockGPR(GPRReg gpr)
{
ASSERT(!m_lockedRegisters.contains(gpr, IgnoreVectors));
ASSERT(Reg(gpr).isGPR());
m_lockedRegisters.add(gpr, IgnoreVectors);
if (verbose)
dataLog(" * Locking ", gpr, "\n");
}
GPRReg acquireGPR()
{
ensureGPR();
GPRReg gpr { getFreeGPR() };
ASSERT(!m_registers[gpr]);
lockGPR(gpr);
return gpr;
}
void releaseGPR(GPRReg gpr)
{
ASSERT(Reg::fromIndex(gpr).isGPR());
if (verbose) {
if (m_lockedRegisters.contains(gpr, IgnoreVectors))
dataLog(" * Releasing ", gpr, "\n");
else
dataLog(" * ", gpr, " was not locked\n");
}
m_lockedRegisters.remove(gpr);
}
void restoreGPR(GPRReg gpr)
{
ASSERT(Reg::fromIndex(gpr).isGPR());
if (!m_newRegisters[gpr])
return;
ensureGPR();
#if USE(JSVALUE32_64)
GPRReg tempGPR { getFreeGPR() };
lockGPR(tempGPR);
ensureGPR();
releaseGPR(tempGPR);
#endif
emitDisplace(*m_newRegisters[gpr]);
}
// You can only take a snapshot if the recovery has not started
// yet. The only operations that are valid before taking a
// snapshot are lockGPR(), acquireGPR() and releaseGPR().
//
// Locking status is *NOT* preserved by the snapshot: it only
// contains information about where the
// arguments/callee/callee-save registers are by taking into
// account any spilling that acquireGPR() could have done.
CallFrameShuffleData snapshot() const
{
ASSERT(isUndecided());
CallFrameShuffleData data;
data.numLocals = numLocals();
data.numPassedArgs = m_numPassedArgs;
data.numParameters = m_numParameters;
data.callee = getNew(VirtualRegister { CallFrameSlot::callee })->recovery();
data.args.grow(argCount());
for (size_t i = 0; i < argCount(); ++i)
data.args[i] = getNew(virtualRegisterForArgumentIncludingThis(i))->recovery();
for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
CachedRecovery* cachedRecovery { m_newRegisters[reg] };
if (!cachedRecovery)
continue;
#if USE(JSVALUE64)
data.registers[reg] = cachedRecovery->recovery();
#elif USE(JSVALUE32_64)
ValueRecovery recovery = cachedRecovery->recovery();
if (reg.isGPR() && recovery.technique() == DisplacedInJSStack) {
JSValueRegs wantedJSValueReg = cachedRecovery->wantedJSValueRegs();
ASSERT(reg == wantedJSValueReg.payloadGPR() || reg == wantedJSValueReg.tagGPR());
bool inTag = reg == wantedJSValueReg.tagGPR();
data.registers[reg] = ValueRecovery::calleeSaveGPRDisplacedInJSStack(recovery.virtualRegister(), inTag);
} else
data.registers[reg] = recovery;
#else
RELEASE_ASSERT_NOT_REACHED();
#endif
}
return data;
}
// Ask the shuffler to put the callee into some registers once the
// shuffling is done. You should call this before any of the
// prepare() methods, and must not take a snapshot afterwards, as
// this would crash 32bits platforms.
void setCalleeJSValueRegs(JSValueRegs jsValueRegs)
{
ASSERT(isUndecided());
ASSERT(!getNew(jsValueRegs));
CachedRecovery* cachedRecovery { getNew(CallFrameSlot::callee) };
ASSERT(cachedRecovery);
addNew(jsValueRegs, cachedRecovery->recovery());
}
// Ask the suhffler to assume the callee has already be checked to
// be a cell. This is a no-op on 64bit platforms, but allows to
// free up a GPR on 32bit platforms.
// You obviously must have ensured that this is the case before
// running any of the prepare methods.
void assumeCalleeIsCell()
{
#if USE(JSVALUE32_64)
CachedRecovery& calleeCachedRecovery = *getNew(CallFrameSlot::callee);
switch (calleeCachedRecovery.recovery().technique()) {
case InPair:
updateRecovery(
calleeCachedRecovery,
ValueRecovery::inGPR(
calleeCachedRecovery.recovery().payloadGPR(),
DataFormatCell));
break;
case DisplacedInJSStack:
updateRecovery(
calleeCachedRecovery,
ValueRecovery::displacedInJSStack(
calleeCachedRecovery.recovery().virtualRegister(),
DataFormatCell));
break;
case InFPR:
case UnboxedCellInGPR:
case CellDisplacedInJSStack:
break;
case Constant:
ASSERT(calleeCachedRecovery.recovery().constant().isCell());
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
#endif
}
// This will emit code to build the new frame over the old one.
void prepareForTailCall();
// This will emit code to build the new frame as if performing a
// regular call. However, the callee save registers will be
// restored, and any locals (not the header or arguments) of the
// current frame can be overwritten.
//
// A frame built using prepareForSlowPath() should be used either
// to throw an exception in, or destroyed using
// CCallHelpers::prepareForTailCallSlow() followed by a tail call.
void prepareForSlowPath();
private:
static constexpr bool verbose = false;
CCallHelpers& m_jit;
void prepareAny();
void spill(CachedRecovery&);
// "box" is arguably a bad name here. The meaning is that after
// calling emitBox(), your ensure that subsequently calling
// emitStore() will be able to store the value without additional
// transformation. In particular, this is a no-op for constants,
// and is a complete no-op on 32bits since any unboxed value can
// still be stored by storing the payload and a statically known
// tag.
void emitBox(CachedRecovery&);
bool canBox(CachedRecovery& cachedRecovery)
{
if (cachedRecovery.boxingRequiresGPR() && getFreeGPR() == InvalidGPRReg)
return false;
if (cachedRecovery.boxingRequiresFPR() && getFreeFPR() == InvalidFPRReg)
return false;
return true;
}
void ensureBox(CachedRecovery& cachedRecovery)
{
if (canBox(cachedRecovery))
return;
if (cachedRecovery.boxingRequiresGPR())
ensureGPR();
if (cachedRecovery.boxingRequiresFPR())
ensureFPR();
}
void emitLoad(CachedRecovery&);
bool canLoad(CachedRecovery&);
void ensureLoad(CachedRecovery& cachedRecovery)
{
if (canLoad(cachedRecovery))
return;
ASSERT(cachedRecovery.loadsIntoGPR() || cachedRecovery.loadsIntoFPR());
if (cachedRecovery.loadsIntoFPR()) {
if (cachedRecovery.loadsIntoGPR())
ensureRegister();
else
ensureFPR();
} else
ensureGPR();
}
bool canLoadAndBox(CachedRecovery& cachedRecovery)
{
// We don't have interfering loads & boxes
ASSERT(!cachedRecovery.loadsIntoFPR() || !cachedRecovery.boxingRequiresFPR());
ASSERT(!cachedRecovery.loadsIntoGPR() || !cachedRecovery.boxingRequiresGPR());
return canLoad(cachedRecovery) && canBox(cachedRecovery);
}
DataFormat emitStore(CachedRecovery&, MacroAssembler::Address);
void emitDisplace(CachedRecovery&);
void emitDeltaCheck();
Bag<CachedRecovery> m_cachedRecoveries;
void updateRecovery(CachedRecovery& cachedRecovery, ValueRecovery recovery)
{
clearCachedRecovery(cachedRecovery.recovery());
cachedRecovery.setRecovery(recovery);
setCachedRecovery(recovery, &cachedRecovery);
}
CachedRecovery* getCachedRecovery(ValueRecovery);
CachedRecovery* setCachedRecovery(ValueRecovery, CachedRecovery*);
void clearCachedRecovery(ValueRecovery recovery)
{
if (!recovery.isConstant())
setCachedRecovery(recovery, nullptr);
}
CachedRecovery* addCachedRecovery(ValueRecovery recovery)
{
if (recovery.isConstant())
return m_cachedRecoveries.add(recovery);
CachedRecovery* cachedRecovery = getCachedRecovery(recovery);
if (!cachedRecovery)
return setCachedRecovery(recovery, m_cachedRecoveries.add(recovery));
return cachedRecovery;
}
// This is the current recoveries present in the old frame's
// slots. A null CachedRecovery means we can trash the current
// value as we don't care about it.
Vector<CachedRecovery*> m_oldFrame;
int numLocals() const
{
return m_oldFrame.size() - CallerFrameAndPC::sizeInRegisters;
}
CachedRecovery* getOld(VirtualRegister reg) const
{
return m_oldFrame[CallerFrameAndPC::sizeInRegisters - reg.offset() - 1];
}
void setOld(VirtualRegister reg, CachedRecovery* cachedRecovery)
{
m_oldFrame[CallerFrameAndPC::sizeInRegisters - reg.offset() - 1] = cachedRecovery;
}
VirtualRegister firstOld() const
{
return VirtualRegister { static_cast<int>(-numLocals()) };
}
VirtualRegister lastOld() const
{
return VirtualRegister { CallerFrameAndPC::sizeInRegisters - 1 };
}
bool isValidOld(VirtualRegister reg) const
{
return reg >= firstOld() && reg <= lastOld();
}
bool m_didExtendFrame { false };
void extendFrameIfNeeded();
// This stores, for each slot in the new frame, information about
// the recovery for the value that should eventually go into that
// slot.
//
// Once the slot has been written, the corresponding entry in
// m_newFrame will be empty.
Vector<CachedRecovery*> m_newFrame;
size_t argCount() const
{
return m_newFrame.size() - CallFrame::headerSizeInRegisters;
}
CachedRecovery* getNew(VirtualRegister newRegister) const
{
return m_newFrame[newRegister.offset()];
}
void setNew(VirtualRegister newRegister, CachedRecovery* cachedRecovery)
{
m_newFrame[newRegister.offset()] = cachedRecovery;
}
void addNew(VirtualRegister newRegister, ValueRecovery recovery)
{
CachedRecovery* cachedRecovery = addCachedRecovery(recovery);
cachedRecovery->addTarget(newRegister);
setNew(newRegister, cachedRecovery);
}
VirtualRegister firstNew() const
{
return VirtualRegister { 0 };
}
VirtualRegister lastNew() const
{
return VirtualRegister { static_cast<int>(m_newFrame.size()) - 1 };
}
bool isValidNew(VirtualRegister reg) const
{
return reg >= firstNew() && reg <= lastNew();
}
int m_alignedOldFrameSize;
int m_alignedNewFrameSize;
// This is the distance, in slots, between the base of the new
// frame and the base of the old frame. It could be negative when
// preparing for a tail call to a function with smaller argument
// count.
//
// We will overwrite this appropriately for slow path calls, but
// we initialize it as if doing a fast path for the spills we
// could do while undecided (typically while calling acquireGPR()
// for a polymorphic call).
int m_frameDelta;
VirtualRegister newAsOld(VirtualRegister reg) const
{
return reg - m_frameDelta;
}
// This stores the set of locked registers, i.e. registers for
// which we have an implicit requirement that they are not changed.
//
// This will usually contains the link register on architectures
// that have one, any scratch register used by the macro assembler
// (e.g. r11 on X86_64), as well as any register that we use for
// addressing (see m_oldFrameBase and m_newFrameBase).
//
// We also use this to lock registers temporarily, for instance to
// ensure that we have at least 2 available registers for loading
// a pair on 32bits.
mutable ScalarRegisterSet m_lockedRegisters = { };
// This stores the current recoveries present in registers. A null
// CachedRecovery means we can trash the current value as we don't
// care about it.
RegisterMap<CachedRecovery*> m_registers;
#if USE(JSVALUE64)
mutable GPRReg m_numberTagRegister;
bool tryAcquireNumberTagRegister();
#endif
// This stores, for each register, information about the recovery
// for the value that should eventually go into that register. The
// only registers that have a target recovery will be callee-save
// registers, as well as possibly one JSValueRegs for holding the
// callee.
//
// Once the correct value has been put into the registers, and
// contrary to what we do with m_newFrame, we keep the entry in
// m_newRegisters to simplify spilling.
RegisterMap<CachedRecovery*> m_newRegisters;
template<typename CheckFunctor>
Reg getFreeRegister(const CheckFunctor& check) const
{
Reg nonTemp { };
for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
if (m_lockedRegisters.contains(reg, IgnoreVectors))
continue;
if (!check(reg))
continue;
if (!m_registers[reg]) {
if (!m_newRegisters[reg])
return reg;
if (!nonTemp)
nonTemp = reg;
}
}
#if USE(JSVALUE64)
if (!nonTemp && m_numberTagRegister != InvalidGPRReg && check(Reg { m_numberTagRegister })) {
ASSERT(m_lockedRegisters.contains(m_numberTagRegister, IgnoreVectors));
m_lockedRegisters.remove(m_numberTagRegister);
nonTemp = Reg { m_numberTagRegister };
m_numberTagRegister = InvalidGPRReg;
}
#endif
return nonTemp;
}
GPRReg getFreeTempGPR() const
{
Reg freeTempGPR { getFreeRegister([this] (Reg reg) { return reg.isGPR() && !m_newRegisters[reg]; }) };
if (!freeTempGPR)
return InvalidGPRReg;
return freeTempGPR.gpr();
}
GPRReg getFreeGPR() const
{
Reg freeGPR { getFreeRegister([] (Reg reg) { return reg.isGPR(); }) };
if (!freeGPR)
return InvalidGPRReg;
return freeGPR.gpr();
}
FPRReg getFreeFPR() const
{
Reg freeFPR { getFreeRegister([] (Reg reg) { return reg.isFPR(); }) };
if (!freeFPR)
return InvalidFPRReg;
return freeFPR.fpr();
}
bool hasFreeRegister() const
{
return static_cast<bool>(getFreeRegister([] (Reg) { return true; }));
}
// This frees up a register satisfying the check functor (this
// functor could theoretically have any kind of logic, but it must
// ensure that it will only return true for registers - spill
// assumes and asserts that it is passed a cachedRecovery stored in a
// register).
template<typename CheckFunctor>
void ensureRegister(const CheckFunctor& check)
{
// If we can spill a callee-save, that's best, because it will
// free up a register that would otherwise been taken for the
// longest amount of time.
//
// We could try to bias towards those that are not in their
// target registers yet, but the gain is probably super
// small. Unless you have a huge number of argument (at least
// around twice the number of available registers on your
// architecture), no spilling is going to take place anyways.
for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
if (m_lockedRegisters.contains(reg, IgnoreVectors))
continue;
CachedRecovery* cachedRecovery { m_newRegisters[reg] };
if (!cachedRecovery)
continue;
if (check(*cachedRecovery)) {
if (verbose)
dataLog(" ", cachedRecovery->recovery(), " looks like a good spill candidate\n");
spill(*cachedRecovery);
return;
}
}
// We use the cachedRecovery associated with the first new slot we
// can, because that is the one for which a write will be
// possible the latest, i.e. that is the one that we would
// have had to retain in registers for the longest.
for (VirtualRegister reg = firstNew(); reg <= lastNew(); reg += 1) {
CachedRecovery* cachedRecovery { getNew(reg) };
if (!cachedRecovery)
continue;
if (check(*cachedRecovery)) {
spill(*cachedRecovery);
return;
}
}
RELEASE_ASSERT_NOT_REACHED();
}
void ensureRegister()
{
if (hasFreeRegister())
return;
if (verbose)
dataLog(" Finding a register to spill\n");
ensureRegister(
[this] (const CachedRecovery& cachedRecovery) {
if (cachedRecovery.recovery().isInGPR())
return !m_lockedRegisters.contains(cachedRecovery.recovery().gpr(), IgnoreVectors);
if (cachedRecovery.recovery().isInFPR())
return !m_lockedRegisters.contains(cachedRecovery.recovery().fpr(), IgnoreVectors);
#if USE(JSVALUE32_64)
if (cachedRecovery.recovery().technique() == InPair) {
return !m_lockedRegisters.contains(cachedRecovery.recovery().tagGPR(), IgnoreVectors)
&& !m_lockedRegisters.contains(cachedRecovery.recovery().payloadGPR(), IgnoreVectors);
}
#endif
return false;
});
}
void ensureTempGPR()
{
if (getFreeTempGPR() != InvalidGPRReg)
return;
if (verbose)
dataLog(" Finding a temp GPR to spill\n");
ensureRegister(
[this] (const CachedRecovery& cachedRecovery) {
if (cachedRecovery.recovery().isInGPR()) {
return !m_lockedRegisters.contains(cachedRecovery.recovery().gpr(), IgnoreVectors)
&& !m_newRegisters[cachedRecovery.recovery().gpr()];
}
#if USE(JSVALUE32_64)
if (cachedRecovery.recovery().technique() == InPair) {
return !m_lockedRegisters.contains(cachedRecovery.recovery().tagGPR(), IgnoreVectors)
&& !m_lockedRegisters.contains(cachedRecovery.recovery().payloadGPR(), IgnoreVectors)
&& !m_newRegisters[cachedRecovery.recovery().tagGPR()]
&& !m_newRegisters[cachedRecovery.recovery().payloadGPR()];
}
#endif
return false;
});
}
void ensureGPR()
{
if (getFreeGPR() != InvalidGPRReg)
return;
if (verbose)
dataLog(" Finding a GPR to spill\n");
ensureRegister(
[this] (const CachedRecovery& cachedRecovery) {
if (cachedRecovery.recovery().isInGPR())
return !m_lockedRegisters.contains(cachedRecovery.recovery().gpr(), IgnoreVectors);
#if USE(JSVALUE32_64)
if (cachedRecovery.recovery().technique() == InPair) {
return !m_lockedRegisters.contains(cachedRecovery.recovery().tagGPR(), IgnoreVectors)
&& !m_lockedRegisters.contains(cachedRecovery.recovery().payloadGPR(), IgnoreVectors);
}
#endif
return false;
});
}
void ensureFPR()
{
if (getFreeFPR() != InvalidFPRReg)
return;
if (verbose)
dataLog(" Finding an FPR to spill\n");
ensureRegister(
[this] (const CachedRecovery& cachedRecovery) {
if (cachedRecovery.recovery().isInFPR())
return !m_lockedRegisters.contains(cachedRecovery.recovery().fpr(), IgnoreVectors);
return false;
});
}
CachedRecovery* getNew(JSValueRegs jsValueRegs) const
{
#if USE(JSVALUE64)
return m_newRegisters[jsValueRegs.gpr()];
#else
ASSERT(
jsValueRegs.tagGPR() == InvalidGPRReg || jsValueRegs.payloadGPR() == InvalidGPRReg
|| m_newRegisters[jsValueRegs.payloadGPR()] == m_newRegisters[jsValueRegs.tagGPR()]);
if (jsValueRegs.payloadGPR() == InvalidGPRReg)
return m_newRegisters[jsValueRegs.tagGPR()];
return m_newRegisters[jsValueRegs.payloadGPR()];
#endif
}
void addNew(JSValueRegs jsValueRegs, ValueRecovery recovery)
{
ASSERT(jsValueRegs && !getNew(jsValueRegs));
CachedRecovery* cachedRecovery = addCachedRecovery(recovery);
#if USE(JSVALUE64)
if (cachedRecovery->wantedJSValueRegs())
m_newRegisters[cachedRecovery->wantedJSValueRegs().gpr()] = nullptr;
m_newRegisters[jsValueRegs.gpr()] = cachedRecovery;
#else
if (JSValueRegs oldRegs { cachedRecovery->wantedJSValueRegs() }) {
if (oldRegs.payloadGPR())
m_newRegisters[oldRegs.payloadGPR()] = nullptr;
if (oldRegs.tagGPR())
m_newRegisters[oldRegs.tagGPR()] = nullptr;
}
if (jsValueRegs.payloadGPR() != InvalidGPRReg)
m_newRegisters[jsValueRegs.payloadGPR()] = cachedRecovery;
if (jsValueRegs.tagGPR() != InvalidGPRReg)
m_newRegisters[jsValueRegs.tagGPR()] = cachedRecovery;
#endif
ASSERT(!cachedRecovery->wantedJSValueRegs());
cachedRecovery->setWantedJSValueRegs(jsValueRegs);
}
#if USE(JSVALUE32_64)
void addNew(GPRReg gpr, ValueRecovery recovery)
{
ASSERT(gpr != InvalidGPRReg && !m_newRegisters[gpr]);
ASSERT(recovery.technique() == Int32DisplacedInJSStack
|| recovery.technique() == Int32TagDisplacedInJSStack
|| recovery.technique() == UnboxedInt32InGPR);
CachedRecovery* cachedRecovery = addCachedRecovery(recovery);
if (JSValueRegs oldRegs { cachedRecovery->wantedJSValueRegs() }) {
ASSERT(recovery.technique() == Int32DisplacedInJSStack
|| recovery.technique() == Int32TagDisplacedInJSStack);
// Combine with the other CSR in the same virtual register slot
ASSERT(oldRegs.tagGPR() == InvalidGPRReg);
ASSERT(oldRegs.payloadGPR() != InvalidGPRReg && oldRegs.payloadGPR() != gpr);
if (recovery.technique() == Int32DisplacedInJSStack) {
ASSERT(cachedRecovery->recovery().technique() == Int32TagDisplacedInJSStack);
cachedRecovery->setWantedJSValueRegs(JSValueRegs(oldRegs.payloadGPR(), gpr));
} else {
ASSERT(cachedRecovery->recovery().technique() == Int32DisplacedInJSStack);
cachedRecovery->setWantedJSValueRegs(JSValueRegs(gpr, oldRegs.payloadGPR()));
}
cachedRecovery->setRecovery(
ValueRecovery::displacedInJSStack(recovery.virtualRegister(), DataFormatJS));
} else
cachedRecovery->setWantedJSValueRegs(JSValueRegs::payloadOnly(gpr));
m_newRegisters[gpr] = cachedRecovery;
}
#endif
void addNew(FPRReg fpr, ValueRecovery recovery)
{
ASSERT(fpr != InvalidFPRReg && !m_newRegisters[fpr]);
CachedRecovery* cachedRecovery = addCachedRecovery(recovery);
m_newRegisters[fpr] = cachedRecovery;
ASSERT(cachedRecovery->wantedFPR() == InvalidFPRReg);
cachedRecovery->setWantedFPR(fpr);
}
// m_oldFrameBase is the register relative to which we access
// slots in the old call frame, with an additional offset of
// m_oldFrameOffset.
//
// - For an actual tail call, m_oldFrameBase is the stack
// pointer, and m_oldFrameOffset is the number of locals of the
// tail caller's frame. We use such stack pointer-based
// addressing because it allows us to load the tail caller's
// caller's frame pointer in the frame pointer register
// immediately instead of awkwardly keeping it around on the
// stack.
//
// - For a slow path call, m_oldFrameBase is just the frame
// pointer, and m_oldFrameOffset is 0.
GPRReg m_oldFrameBase { MacroAssembler::framePointerRegister };
int m_oldFrameOffset { 0 };
MacroAssembler::Address addressForOld(VirtualRegister reg) const
{
return MacroAssembler::Address(m_oldFrameBase,
(m_oldFrameOffset + reg.offset()) * sizeof(Register));
}
// m_newFrameBase is the register relative to which we access
// slots in the new call frame, and we always make it point to
// wherever the stack pointer will be right before making the
// actual call/jump. The actual base of the new frame is at offset
// m_newFrameOffset relative to m_newFrameBase.
//
// - For an actual tail call, m_newFrameBase is computed
// dynamically, and m_newFrameOffset varies between 0 and -2
// depending on the architecture's calling convention (see
// prepareForTailCall).
//
// - For a slow path call, m_newFrameBase is the actual stack
// pointer, and m_newFrameOffset is - CallerFrameAndPCSize,
// following the convention for a regular call.
GPRReg m_newFrameBase { InvalidGPRReg };
int m_newFrameOffset { 0};
bool isUndecided() const
{
return m_newFrameBase == InvalidGPRReg;
}
bool isSlowPath() const
{
return m_newFrameBase == MacroAssembler::stackPointerRegister;
}
MacroAssembler::Address addressForNew(VirtualRegister reg) const
{
return MacroAssembler::Address(m_newFrameBase,
(m_newFrameOffset + reg.offset()) * sizeof(Register));
}
// We use a concept of "danger zone". The danger zone consists of
// all the writes in the new frame that could overlap with reads
// in the old frame.
//
// Because we could have a higher actual number of arguments than
// parameters, when preparing a tail call, we need to assume that
// writing to a slot on the new frame could overlap not only with
// the corresponding slot in the old frame, but also with any slot
// above it. Thus, the danger zone consists of all writes between
// the first write and what I call the "danger frontier": the
// highest slot in the old frame we still care about. Thus, the
// danger zone contains all the slots between the first slot of
// the new frame and the danger frontier. Because the danger
// frontier is related to the new frame, it is stored as a virtual
// register *in the new frame*.
VirtualRegister m_dangerFrontier;
VirtualRegister dangerFrontier() const
{
ASSERT(!isUndecided());
return m_dangerFrontier;
}
bool isDangerNew(VirtualRegister reg) const
{
ASSERT(!isUndecided() && isValidNew(reg));
return reg <= dangerFrontier();
}
void updateDangerFrontier()
{
ASSERT(!isUndecided());
m_dangerFrontier = firstNew() - 1;
for (VirtualRegister reg = lastNew(); reg >= firstNew(); reg -= 1) {
if (!getNew(reg) || !isValidOld(newAsOld(reg)) || !getOld(newAsOld(reg)))
continue;
m_dangerFrontier = reg;
if (verbose)
dataLog(" Danger frontier now at NEW ", m_dangerFrontier, "\n");
break;
}
if (verbose)
dataLog(" All clear! Danger zone is empty.\n");
}
// A safe write is a write that never writes into the danger zone.
bool hasOnlySafeWrites(CachedRecovery& cachedRecovery) const
{
for (VirtualRegister target : cachedRecovery.targets()) {
if (isDangerNew(target))
return false;
}
return true;
}
// You must ensure that there is no dangerous writes before
// calling this function.
bool tryWrites(CachedRecovery&);
// This function tries to ensure that there is no longer any
// possible safe write, i.e. all remaining writes are either to
// the danger zone or callee save restorations.
//
// It returns false if it was unable to perform some safe writes
// due to high register pressure.
bool performSafeWrites();
unsigned m_numPassedArgs { UINT_MAX };
unsigned m_numParameters { UINT_MAX };
};
} // namespace JSC
#endif // ENABLE(JIT)
|