File: ExecutableAllocator.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (1488 lines) | stat: -rw-r--r-- 59,141 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
/*
 * Copyright (C) 2008-2024 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "ExecutableAllocator.h"

#if ENABLE(JIT)

#include "ExecutableAllocationFuzz.h"
#include "JITOperationValidation.h"
#include "LinkBuffer.h"
#include <wtf/ByteOrder.h>
#include <wtf/CryptographicallyRandomNumber.h>
#include <wtf/FastBitVector.h>
#include <wtf/FileSystem.h>
#include <wtf/FixedVector.h>
#include <wtf/IterationStatus.h>
#include <wtf/MallocSpan.h>
#include <wtf/PageReservation.h>
#include <wtf/ProcessID.h>
#include <wtf/RedBlackTree.h>
#include <wtf/Scope.h>
#include <wtf/SystemTracing.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/UUID.h>
#include <wtf/WorkQueue.h>

#if ENABLE(LIBPAS_JIT_HEAP)
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
#include <bmalloc/jit_heap.h>
#include <bmalloc/jit_heap_config.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#else
#include <wtf/MetaAllocator.h>
#endif

#if HAVE(IOS_JIT_RESTRICTIONS) || HAVE(MAC_JIT_RESTRICTIONS)
#include <wtf/cocoa/Entitlements.h>
#endif

#if OS(DARWIN)
#include <fcntl.h>
#include <mach/mach.h>
#include <mach/mach_time.h>

extern "C" {
    /* Routine mach_vm_remap */
#ifdef mig_external
    mig_external
#else
    extern
#endif /* mig_external */
    kern_return_t mach_vm_remap
    (
     vm_map_t target_task,
     mach_vm_address_t *target_address,
     mach_vm_size_t size,
     mach_vm_offset_t mask,
     int flags,
     vm_map_t src_task,
     mach_vm_address_t src_address,
     boolean_t copy,
     vm_prot_t *cur_protection,
     vm_prot_t *max_protection,
     vm_inherit_t inheritance
     );
}
#endif

#if USE(INLINE_JIT_PERMISSIONS_API)
#include <wtf/darwin/WeakLinking.h>
WTF_WEAK_LINK_FORCE_IMPORT(be_memory_inline_jit_restrict_with_witness_supported);
#endif

namespace JSC {

using namespace WTF;

#if OS(DARWIN) && CPU(ARM64)
// We already rely on page size being CeilingOnPageSize elsewhere (e.g. MarkedBlock).
// Just use the constexpr CeilingOnPageSize for better efficiency.
static inline constexpr size_t executablePageSize() { return CeilingOnPageSize; }
#else
static inline size_t executablePageSize() { return WTF::pageSize(); }
#endif

#if ENABLE(LIBPAS_JIT_HEAP)
static constexpr size_t minimumPoolSizeForSegregatedHeap = 256 * MB;
#endif

#if defined(FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB) && FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB > 0
static constexpr size_t fixedExecutableMemoryPoolSize = FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB * MB;
#elif CPU(ARM64)
#if ENABLE(JUMP_ISLANDS)
static constexpr size_t fixedExecutableMemoryPoolSize = 512 * MB;
#else
static constexpr size_t fixedExecutableMemoryPoolSize = 128 * MB;
#endif
#elif CPU(ARM_THUMB2)
#if ENABLE(JUMP_ISLANDS)
static constexpr size_t fixedExecutableMemoryPoolSize = 32 * MB;
#else
static constexpr size_t fixedExecutableMemoryPoolSize = 16 * MB;
#endif
#elif CPU(X86_64)
static constexpr size_t fixedExecutableMemoryPoolSize = 1 * GB;
#else
static constexpr size_t fixedExecutableMemoryPoolSize = 32 * MB;
#endif

#if ENABLE(JUMP_ISLANDS)
#if CPU(ARM64)
static constexpr double islandRegionSizeFraction = 0.125;
static constexpr size_t islandSizeInBytes = 4;
#elif CPU(ARM_THUMB2)
static constexpr double islandRegionSizeFraction = 0.05;
static constexpr size_t islandSizeInBytes = 4;
#endif
#endif

// Quick sanity check, in case FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB was set.
#if !ENABLE(JUMP_ISLANDS)
static_assert(fixedExecutableMemoryPoolSize <= MacroAssembler::nearJumpRange, "Executable pool size is too large for near jump/call without JUMP_ISLANDS");
#endif

#if CPU(ARM)
static constexpr double executablePoolReservationFraction = 0.15;
#else
static constexpr double executablePoolReservationFraction = 0.25;
#endif

#if ENABLE(LIBPAS_JIT_HEAP)
// This size is derived from jit_config's medium table size.
static constexpr size_t minimumExecutablePoolReservationSize = 256 * KB;
static_assert(fixedExecutableMemoryPoolSize * executablePoolReservationFraction >= minimumExecutablePoolReservationSize);
static_assert(fixedExecutableMemoryPoolSize < 4 * GB, "ExecutableMemoryHandle assumes it is less than 4GB");
#endif

#if HAVE(KDEBUG_H)
// 325696c8-e7cc-11ee-9f4e-325096b39f47
static constexpr WTF::UUID jscJITNamespace { static_cast<UInt128>(0x325696c8e7cc11eeULL) << 64 | (0x9f4e325096b39f47ULL) };
#endif

static bool isJITEnabled()
{
    bool jitEnabled = !g_jscConfig.jitDisabled;
#if HAVE(IOS_JIT_RESTRICTIONS)
    jitEnabled = jitEnabled && (processHasEntitlement("dynamic-codesigning"_s) || processHasEntitlement("com.apple.developer.cs.allow-jit"_s));
#elif HAVE(MAC_JIT_RESTRICTIONS) && USE(APPLE_INTERNAL_SDK)
    jitEnabled = jitEnabled && processHasEntitlement("com.apple.security.cs.allow-jit"_s);
#endif
    return jitEnabled;
}

void ExecutableAllocator::disableJIT()
{
    ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator);
    if (g_jscConfig.jitDisabled) {
        RELEASE_ASSERT(!Options::useJIT());
        return;
    }

    g_jscConfig.jitDisabled = true;
    Options::useJIT() = false;

#if HAVE(IOS_JIT_RESTRICTIONS) || HAVE(MAC_JIT_RESTRICTIONS) && USE(APPLE_INTERNAL_SDK)
#if HAVE(IOS_JIT_RESTRICTIONS)
    bool shouldDisableJITMemory = processHasEntitlement("dynamic-codesigning"_s) || processHasEntitlement("com.apple.developer.cs.allow-jit"_s);
#else
    bool shouldDisableJITMemory = processHasEntitlement("com.apple.security.cs.allow-jit"_s) && !isKernOpenSource();
#endif
    if (shouldDisableJITMemory) {
        // Because of an OS quirk, even after the JIT region has been unmapped,
        // the OS thinks that region is reserved, and as such, can cause Gigacage
        // allocation to fail. We work around this by initializing the Gigacage
        // first.
        // Note: when called, disableJIT() is always called extra early in the
        // process bootstrap. Under normal operation (when disableJIT() isn't
        // called at all), we will naturally initialize the Gigacage before we
        // allocate the JIT region. Hence, this workaround is merely ensuring the
        // same behavior of allocation ordering.
        Gigacage::ensureGigacage();

        constexpr size_t size = 1;
        constexpr int protection = PROT_READ | PROT_WRITE | PROT_EXEC;
        constexpr int fd = OSAllocator::JSJITCodePages;
        int flags = MAP_PRIVATE | MAP_ANON | (Options::useJITCage() ? MAP_EXECUTABLE_FOR_JIT_WITH_JIT_CAGE : MAP_EXECUTABLE_FOR_JIT);
        void* allocation = mmap(nullptr, size, protection, flags, fd, 0);
        const void* executableMemoryAllocationFailure = reinterpret_cast<void*>(-1);
        RELEASE_ASSERT_WITH_MESSAGE(allocation && allocation != executableMemoryAllocationFailure, "We should not have allocated executable memory before disabling the JIT.");
        RELEASE_ASSERT_WITH_MESSAGE(!munmap(allocation, size), "Unmapping executable memory should succeed so we do not have any executable memory in the address space");
        RELEASE_ASSERT_WITH_MESSAGE(mmap(nullptr, size, protection, flags, fd, 0) == executableMemoryAllocationFailure, "Allocating executable memory should fail after disableJIT() is called.");
    }
#endif
}

#if OS(DARWIN) && HAVE(REMAP_JIT)

#if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
static ALWAYS_INLINE MacroAssemblerCodeRef<JITThunkPtrTag> jitWriteThunkGenerator(void* writableAddr, void* stubBase, size_t stubSize)
{
    auto exitScope = makeScopeExit([] {
        RELEASE_ASSERT(!g_jscConfig.useFastJITPermissions);
    });

    using namespace ARM64Registers;
    using TrustedImm32 = MacroAssembler::TrustedImm32;

    MacroAssembler jit;

    jit.tagReturnAddress();
    jit.move(MacroAssembler::TrustedImmPtr(writableAddr), x7);
    jit.addPtr(x7, x0);

    jit.move(x0, x3);
    MacroAssembler::Jump smallCopy = jit.branch64(MacroAssembler::Below, x2, MacroAssembler::TrustedImm64(64));

    jit.add64(TrustedImm32(32), x3);
    jit.and64(TrustedImm32(-32), x3);
    jit.loadPair64(x1, x12, x13);
    jit.loadPair64(x1, TrustedImm32(16), x14, x15);
    jit.sub64(x3, x0, x5);
    jit.addPtr(x5, x1);

    jit.loadPair64(x1, x8, x9);
    jit.loadPair64(x1, TrustedImm32(16), x10, x11);
    jit.add64(TrustedImm32(32), x1);
    jit.sub64(x5, x2);
    jit.storePair64(x12, x13, x0);
    jit.storePair64(x14, x15, x0, TrustedImm32(16));
    MacroAssembler::Jump cleanup = jit.branchSub64(MacroAssembler::BelowOrEqual, TrustedImm32(64), x2);

    MacroAssembler::Label copyLoop = jit.label();
    jit.storePair64WithNonTemporalAccess(x8, x9, x3);
    jit.storePair64WithNonTemporalAccess(x10, x11, x3, TrustedImm32(16));
    jit.add64(TrustedImm32(32), x3);
    jit.loadPair64WithNonTemporalAccess(x1, x8, x9);
    jit.loadPair64WithNonTemporalAccess(x1, TrustedImm32(16), x10, x11);
    jit.add64(TrustedImm32(32), x1);
    jit.branchSub64(MacroAssembler::Above, TrustedImm32(32), x2).linkTo(copyLoop, &jit);

    cleanup.link(&jit);
    jit.add64(x2, x1);
    jit.loadPair64(x1, x12, x13);
    jit.loadPair64(x1, TrustedImm32(16), x14, x15);
    jit.storePair64(x8, x9, x3);
    jit.storePair64(x10, x11, x3, TrustedImm32(16));
    jit.addPtr(x2, x3);
    jit.storePair64(x12, x13, x3, TrustedImm32(32));
    jit.storePair64(x14, x15, x3, TrustedImm32(48));
    jit.ret();

    MacroAssembler::Label local0 = jit.label();
    jit.load64(MacroAssembler::PostIndexAddress(x1, 8), x6);
    jit.store64(x6, MacroAssembler::PostIndexAddress(x3, 8));
    smallCopy.link(&jit);
    jit.branchSub64(MacroAssembler::AboveOrEqual, TrustedImm32(8), x2).linkTo(local0, &jit);
    MacroAssembler::Jump local2 = jit.branchAdd64(MacroAssembler::Equal, TrustedImm32(8), x2);
    MacroAssembler::Label local1 = jit.label();
    jit.load8(x1, PostIndex(1), x6);
    jit.store8(x6, x3, PostIndex(1));
    jit.branchSub64(MacroAssembler::NotEqual, TrustedImm32(1), x2).linkTo(local1, &jit);
    local2.link(&jit);
    jit.ret();

    auto stubBaseCodePtr = CodePtr<LinkBufferPtrTag>(tagCodePtr<LinkBufferPtrTag>(stubBase));
    LinkBuffer linkBuffer(jit, stubBaseCodePtr, stubSize, LinkBuffer::Profile::Thunk);
    // We don't use FINALIZE_CODE() for two reasons.
    // The first is that we don't want the writeable address, as disassembled instructions,
    // to appear in the console or anywhere in memory, via the PrintStream buffer.
    // The second is we can't guarantee that the code is readable when using the
    // asyncDisassembly option as our caller will set our pages execute only.
    return linkBuffer.finalizeCodeWithoutDisassembly<JITThunkPtrTag>(nullptr);
}
#else // not USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
static void genericWriteToJITRegion(off_t offset, const void* data, size_t dataSize)
{
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    memcpy((void*)(g_jscConfig.startOfFixedWritableMemoryPool + offset), data, dataSize);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}

static MacroAssemblerCodeRef<JITThunkPtrTag> ALWAYS_INLINE jitWriteThunkGenerator(void* address, void*, size_t)
{
    g_jscConfig.startOfFixedWritableMemoryPool = reinterpret_cast<uintptr_t>(address);
    void* function = reinterpret_cast<void*>(&genericWriteToJITRegion);
#if CPU(ARM_THUMB2)
    // Handle thumb offset
    uintptr_t functionAsInt = reinterpret_cast<uintptr_t>(function);
    functionAsInt -= 1;
    function = reinterpret_cast<void*>(functionAsInt);
#endif
    auto codePtr = CodePtr<JITThunkPtrTag>(tagCFunctionPtr<JITThunkPtrTag>(function));
    return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(codePtr);
}
#endif // USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)

static ALWAYS_INLINE void initializeSeparatedWXHeaps(void* stubBase, size_t stubSize, void* jitBase, size_t jitSize)
{
    auto exitScope = makeScopeExit([] {
        RELEASE_ASSERT(!g_jscConfig.useFastJITPermissions);
    });

    mach_vm_address_t writableAddr = 0;

    // Create a second mapping of the JIT region at a random address.
    vm_prot_t cur, max;
    int remapFlags = VM_FLAGS_ANYWHERE;
#if defined(VM_FLAGS_RANDOM_ADDR)
    remapFlags |= VM_FLAGS_RANDOM_ADDR;
#endif
    kern_return_t ret = mach_vm_remap(mach_task_self(), &writableAddr, jitSize, 0,
        remapFlags,
        mach_task_self(), (mach_vm_address_t)jitBase, FALSE,
        &cur, &max, VM_INHERIT_DEFAULT);

    bool remapSucceeded = (ret == KERN_SUCCESS);
    if (!remapSucceeded)
        return;

    // Assemble a thunk that will serve as the means for writing into the JIT region.
    MacroAssemblerCodeRef<JITThunkPtrTag> writeThunk = jitWriteThunkGenerator(reinterpret_cast<void*>(writableAddr), stubBase, stubSize);

    int result = 0;

#if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
    // Prevent reading the write thunk code.
    result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(stubBase), stubSize, true, VM_PROT_EXECUTE);
    RELEASE_ASSERT(!result);
#endif

    // Prevent writing into the executable JIT mapping.
    result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(jitBase), jitSize, true, VM_PROT_READ | VM_PROT_EXECUTE);
    RELEASE_ASSERT(!result);

    // Prevent execution in the writable JIT mapping.
    result = vm_protect(mach_task_self(), static_cast<vm_address_t>(writableAddr), jitSize, true, VM_PROT_READ | VM_PROT_WRITE);
    RELEASE_ASSERT(!result);

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    // Zero out writableAddr to avoid leaking the address of the writable mapping.
    memset_s(&writableAddr, sizeof(writableAddr), 0, sizeof(writableAddr));
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#if ENABLE(SEPARATED_WX_HEAP)
    g_jscConfig.jitWriteSeparateHeaps = reinterpret_cast<JITWriteSeparateHeapsFunction>(writeThunk.code().taggedPtr());
#endif
}

#endif // OS(DARWIN) && HAVE(REMAP_JIT)

struct JITReservation {
    PageReservation pageReservation;
    void* base { nullptr };
    size_t size { 0 };
};

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

static ALWAYS_INLINE JITReservation initializeJITPageReservation()
{
    JITReservation reservation;
    if (!isJITEnabled())
        return reservation;

#if OS(DARWIN)
    // Call pageSize() to run its assertions to enforce invariants that executablePageSize() relies on.
    WTF::pageSize();
#endif
    reservation.size = fixedExecutableMemoryPoolSize;

    if (Options::jitMemoryReservationSize()) {
        reservation.size = Options::jitMemoryReservationSize();
#if ENABLE(LIBPAS_JIT_HEAP)
        if (reservation.size * executablePoolReservationFraction < minimumExecutablePoolReservationSize)
            reservation.size += minimumExecutablePoolReservationSize;
#endif
    }
    reservation.size = std::max(roundUpToMultipleOf(executablePageSize(), reservation.size), executablePageSize() * 2);

#if !ENABLE(JUMP_ISLANDS)
    RELEASE_ASSERT(reservation.size <= MacroAssembler::nearJumpRange, "Executable pool size is too large for near jump/call without JUMP_ISLANDS");
#endif

#if ENABLE(LIBPAS_JIT_HEAP)
    if (reservation.size < minimumPoolSizeForSegregatedHeap)
        jit_heap_runtime_config.max_segregated_object_size = 0;
#endif

    auto tryCreatePageReservation = [] (size_t reservationSize) {
#if OS(LINUX)
        // On Linux, if we use uncommitted reservation, mmap operation is recorded with small page size in perf command's output.
        // This makes the following JIT code logging broken and some of JIT code is not recorded correctly.
        // To avoid this problem, we use committed reservation if we need perf JITDump logging.
        if (Options::logJITCodeForPerf())
            return PageReservation::tryReserveAndCommitWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true, false);
#endif
        if (Options::useJITCage() && JSC_ALLOW_JIT_CAGE_SPECIFIC_RESERVATION)
            return PageReservation::tryReserve(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true, Options::useJITCage());
        return PageReservation::tryReserveWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true, false);
    };

    reservation.pageReservation = tryCreatePageReservation(reservation.size);

    if (Options::verboseExecutablePoolAllocation())
        dataLog(getpid(), ": Got executable pool reservation at ", RawPointer(reservation.pageReservation.base()), "...", RawPointer(reservation.pageReservation.end()), ", while I'm at ", RawPointer(reinterpret_cast<void*>(initializeJITPageReservation)), "\n");
    
    if (reservation.pageReservation) {
        ASSERT(reservation.pageReservation.size() == reservation.size);
        reservation.base = reservation.pageReservation.base();
        g_jscConfig.useFastJITPermissions = threadSelfRestrictSupported<MemoryRestriction::kRwxToRw>();

        if (g_jscConfig.useFastJITPermissions)
            threadSelfRestrict<MemoryRestriction::kRwxToRx>();

#if ENABLE(SEPARATED_WX_HEAP)
        if (!g_jscConfig.useFastJITPermissions) {
            // First page of our JIT allocation is reserved.
            ASSERT(reservation.size >= executablePageSize() * 2);
            reservation.base = (void*)((uintptr_t)(reservation.base) + executablePageSize());
            reservation.size -= executablePageSize();
            initializeSeparatedWXHeaps(reservation.pageReservation.base(), executablePageSize(), reservation.base, reservation.size);
        }
#endif

        void* reservationEnd = static_cast<uint8_t*>(reservation.base) + reservation.size;
        g_jscConfig.startExecutableMemory = reservation.base;
        g_jscConfig.endExecutableMemory = reservationEnd;

#if !USE(SYSTEM_MALLOC)
        static_assert(WebConfig::reservedSlotsForExecutableAllocator >= 2);
        WebConfig::g_config[0] = std::bit_cast<uintptr_t>(reservation.base);
        WebConfig::g_config[1] = std::bit_cast<uintptr_t>(reservationEnd);
#endif

#if HAVE(KDEBUG_H)
        {
            uint64_t pid = getCurrentProcessID();
            auto uuid = WTF::UUID::createVersion5(jscJITNamespace, std::span { std::bit_cast<const uint8_t*>(&pid), sizeof(pid) });
            kdebug_trace(KDBG_CODE(DBG_DYLD, DBG_DYLD_UUID, DBG_DYLD_UUID_MAP_A), WTF::byteSwap64(uuid.high()), WTF::byteSwap64(uuid.low()), std::bit_cast<uintptr_t>(reservation.base), 0);
        }
#endif
    }

    return reservation;
}

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

class FixedVMPoolExecutableAllocator final {
    // This does not need to be TZONE_ALLOCATED because it's only used as a singleton
    // and is only allocated once long before any scripts are executed.
    WTF_MAKE_FAST_ALLOCATED(FixedVMPoolExecutableAllocator);

#if ENABLE(JUMP_ISLANDS)
    class Islands;
    class RegionAllocator;
#endif

public:
    FixedVMPoolExecutableAllocator()
#if !ENABLE(JUMP_ISLANDS)
        : m_allocator(*this)
#endif
    {
        JITReservation reservation = initializeJITPageReservation();
        m_reservation = WTFMove(reservation.pageReservation);
        if (m_reservation) {
#if ENABLE(JUMP_ISLANDS)
            // Consider this scenario:
            //
            //                                    <------------- nearJumpRange ------------->
            //    <------------- nearJumpRange -------------->
            //    [  island 0 ] [ JIT region 1  ] [ island 1 ] [ JIT region 2  ] [ island 2 ] [ JIT region3  ]
            //
            //                         C1 ---jump---> I1 --------------jump---------> I2 ---jump---> C3
            //
            // In order to jump across a distance that spans multiple nearJumpRanges, we currently
            // use chaining near jumps. Hence, a near jump in a jump island also needs to be able
            // to reach its neighboring jump islands in order to form this chain.
            //
            // For example, let say we have code in JIT region 1 that needs to jump to code in JIT region 3 in
            // the illustration above. That jump will be implemented as:
            //   1. Code C1 in JIT region 1 near jumps to island I1 in island 1.
            //   2. Island I1 near jumps to island I2 in island 2.
            //   3. Island I2 near jumps to code C3 in JIT region 3.
            //
            // Each of these near jumps need to be within the range of MacroAssembler::nearJumpRange.
            //
            // As a result, the maximum size of each JIT region is:
            //     MacroAssembler::nearJumpRange - 2 * islandRegionSize
            //
            // This is why each RegionAllocator tracks a range of m_regionSize instead of
            // MacroAssembler::nearJumpRange.
            //
            // Note: the illustration above shows a jump chain in the forward direction. The jump island
            // scheme also allows for a jump chain in the backward direction e.g. from C3 to C1.
            
            const size_t islandRegionSize = roundUpToMultipleOf(executablePageSize(), static_cast<size_t>(MacroAssembler::nearJumpRange * islandRegionSizeFraction));
            m_regionSize = MacroAssembler::nearJumpRange - islandRegionSize;
            RELEASE_ASSERT(isPageAligned(executablePageSize(), islandRegionSize));
            RELEASE_ASSERT(isPageAligned(executablePageSize(), m_regionSize));
            const unsigned numAllocators = (reservation.size + m_regionSize - 1) / m_regionSize;
            m_allocators = FixedVector<RegionAllocator>::createWithSizeAndConstructorArguments(numAllocators, *this);

            uintptr_t start = std::bit_cast<uintptr_t>(memoryStart());
            uintptr_t reservationEnd = std::bit_cast<uintptr_t>(memoryEnd());
            for (size_t i = 0; i < numAllocators; ++i) {
                uintptr_t end = start + m_regionSize;
                uintptr_t islandBegin = end - islandRegionSize;
                // The island in the very last region is never actually used (everything goes backwards), but we
                // can't put code there in case they do need to use a backward jump island, so set up accordingly.
                if (i == numAllocators - 1)
                    islandBegin = end = std::min(islandBegin, reservationEnd);
                RELEASE_ASSERT(end <= reservationEnd);
                m_allocators[i].configure(start, islandBegin, end);
                m_bytesReserved += m_allocators[i].allocatorSize();
                start += m_regionSize;
            }
#else
            m_allocator.addFreshFreeSpace(reservation.base, reservation.size);
            m_bytesReserved += reservation.size;
#endif

#if ENABLE(MPROTECT_RX_TO_RWX)
            ptrdiff_t pagesInReservation = (std::bit_cast<uint8_t*>(g_jscConfig.endExecutableMemory) - std::bit_cast<uint8_t*>(g_jscConfig.startExecutableMemory)) / executablePageSize();
            m_pageWriterCounts = std::bit_cast<uint8_t*>(WTF::fastZeroedMalloc(pagesInReservation));
#endif
        }
    }

    ~FixedVMPoolExecutableAllocator()
    {
        m_reservation.deallocate();
    }

    void* memoryStart() { return g_jscConfig.startExecutableMemory; }
    void* memoryEnd() { return g_jscConfig.endExecutableMemory; }
    bool isValid() { return !!m_reservation; }

    RefPtr<ExecutableMemoryHandle> allocate(size_t sizeInBytes)
    {
#if ENABLE(LIBPAS_JIT_HEAP)
        Vector<void*, 0> randomAllocations;
        if (UNLIKELY(Options::useRandomizingExecutableIslandAllocation())) {
            // Let's fragment the executable memory agressively
            auto bytesAllocated = m_bytesAllocated.load(std::memory_order_relaxed);
            uint64_t allocationRoom = (m_reservation.size() - bytesAllocated) * 1 / 100 / sizeInBytes;
            if (!allocationRoom)
                allocationRoom = 1;
            int count = cryptographicallyRandomNumber<uint32_t>() % allocationRoom;

            randomAllocations.resize(count);

            for (int i = 0; i < count; ++i) {
                void* result = jit_heap_try_allocate(sizeInBytes);
                if (!result) {
                    // We are running out of memory, so make sure this allocation will succeed.
                    for (int j = 0; j < i; ++j)
                        jit_heap_deallocate(randomAllocations[j]);
                    randomAllocations.resize(0);
                    break;
                }
                randomAllocations[i] = result;
            }
        }
        auto result = ExecutableMemoryHandle::createImpl(sizeInBytes);
        if (LIKELY(result))
            m_bytesAllocated.fetch_add(result->sizeInBytes(), std::memory_order_relaxed);
        if (UNLIKELY(Options::useRandomizingExecutableIslandAllocation())) {
            for (unsigned i = 0; i < randomAllocations.size(); ++i)
                jit_heap_deallocate(randomAllocations[i]);
        }
        return result;
#elif ENABLE(JUMP_ISLANDS)
        Locker locker { getLock() };

        unsigned start = 0;
        if (UNLIKELY(Options::useRandomizingExecutableIslandAllocation()))
            start = cryptographicallyRandomNumber<uint32_t>() % m_allocators.size();

        unsigned i = start;
        while (true) {
            RegionAllocator& allocator = m_allocators[i];
            if (RefPtr<ExecutableMemoryHandle> result = allocator.allocate(locker, sizeInBytes))
                return result;
            i = (i + 1) % m_allocators.size();
            if (i == start)
                break;
        }
        return nullptr;
#else
        return m_allocator.allocate(sizeInBytes);
#endif
    }

    Lock& getLock() WTF_RETURNS_LOCK(m_lock) { return m_lock; }

#if ENABLE(LIBPAS_JIT_HEAP)
    void shrinkBytesAllocated(size_t oldSizeInBytes, size_t newSizeInBytes)
    {
        m_bytesAllocated.fetch_add(newSizeInBytes - oldSizeInBytes, std::memory_order_relaxed);
    }
#endif

    // Non atomic
    size_t bytesAllocated()
    {
#if ENABLE(LIBPAS_JIT_HEAP)
        return m_bytesAllocated.load(std::memory_order_relaxed);
#else
        size_t result = 0;
        forEachAllocator([&] (Allocator& allocator) {
            result += allocator.bytesAllocated();
        });
        return result;
#endif
    }

    size_t bytesReserved() const
    {
        return m_bytesReserved;
    }

    size_t bytesAvailable()
    {
        size_t bytesReserved = this->bytesReserved();
#if ENABLE(LIBPAS_JIT_HEAP)
        size_t nonAvailableSize = static_cast<size_t>(bytesReserved * executablePoolReservationFraction);
        if (nonAvailableSize < minimumExecutablePoolReservationSize)
            return bytesReserved - minimumExecutablePoolReservationSize;
        return bytesReserved - nonAvailableSize;
#else
        return static_cast<size_t>(bytesReserved * (1 - executablePoolReservationFraction));
#endif
    }

#if !ENABLE(LIBPAS_JIT_HEAP)
    size_t bytesCommitted()
    {
        size_t result = 0;
        forEachAllocator([&] (Allocator& allocator) {
            result += allocator.bytesCommitted();
        });
        return result;
    }
#endif

    bool isInAllocatedMemory(const AbstractLocker& locker, void* address)
    {
#if ENABLE(JUMP_ISLANDS)
        if (RegionAllocator* allocator = findRegion(std::bit_cast<uintptr_t>(address)))
            return allocator->isInAllocatedMemory(locker, address);
        return false;
#else
        return m_allocator.isInAllocatedMemory(locker, address);
#endif
    }

#if ENABLE(META_ALLOCATOR_PROFILE)
    void dumpProfile()
    {
        forEachAllocator([&] (Allocator& allocator) {
            allocator.dumpProfile();
        });
    }
#endif

#if ENABLE(MPROTECT_RX_TO_RWX)
    static std::pair<size_t, size_t> pageRangeForWrittenRegion(const void* start, size_t sizeInBytes, size_t pageSize)
    {
        size_t startPage = std::bit_cast<uintptr_t>(std::bit_cast<uint8_t*>(start) - std::bit_cast<uint8_t*>(g_jscConfig.startExecutableMemory)) / pageSize;
        size_t endPage = WTF::roundUpToMultipleOf(pageSize, std::bit_cast<uintptr_t>(start) - std::bit_cast<uintptr_t>(g_jscConfig.startExecutableMemory) + sizeInBytes) / pageSize;
        return { startPage, endPage };
    }

    void startWriting(const void* start, size_t sizeInBytes)
    {
        size_t pageSize = executablePageSize();
        auto [startPage, endPage] = pageRangeForWrittenRegion(start, sizeInBytes, pageSize);
        uint8_t* startAddress = std::bit_cast<uint8_t*>(g_jscConfig.startExecutableMemory);

        {
            Locker locker(m_pageLock);
            ssize_t firstFirstWriterPage = -1; // We use this to track runs of pages for which we are the first writer, since this means their mprotect() calls can be batched.
            for (size_t i = startPage; i < endPage; i ++) {
                if (!(m_pageWriterCounts[i]++)) {
                    if (firstFirstWriterPage == -1)
                        firstFirstWriterPage = i;
                } else if (firstFirstWriterPage != -1) {
                    mprotect(startAddress + pageSize * firstFirstWriterPage, (i - firstFirstWriterPage) * pageSize, PROT_READ | PROT_WRITE | PROT_EXEC);
                    firstFirstWriterPage = -1;
                }
            }
            if (firstFirstWriterPage != -1)
                mprotect(startAddress + pageSize * firstFirstWriterPage, (endPage - firstFirstWriterPage) * pageSize, PROT_READ | PROT_WRITE | PROT_EXEC);
        }
    }

    void finishWriting(const void* start, size_t sizeInBytes)
    {
        size_t pageSize = executablePageSize();
        auto [startPage, endPage] = pageRangeForWrittenRegion(start, sizeInBytes, pageSize);
        uint8_t* startAddress = std::bit_cast<uint8_t*>(g_jscConfig.startExecutableMemory);

        {
            Locker locker(m_pageLock);
            ssize_t firstLastWriterPage = -1; // We use this to track runs of pages for which we are the last writer, since this means their mprotect() calls can be batched.
            for (size_t i = startPage; i < endPage; i ++) {
                if (!--m_pageWriterCounts[i]) {
                    if (firstLastWriterPage == -1)
                        firstLastWriterPage = i;
                } else if (firstLastWriterPage != -1) {
                    mprotect(startAddress + pageSize * firstLastWriterPage, (i - firstLastWriterPage) * pageSize, PROT_READ | PROT_EXEC);
                    firstLastWriterPage = -1;
                }
            }
            if (firstLastWriterPage != -1)
                mprotect(startAddress + pageSize * firstLastWriterPage, (endPage - firstLastWriterPage) * pageSize, PROT_READ | PROT_EXEC);
        }
    }
#endif

#if !ENABLE(LIBPAS_JIT_HEAP)
    MetaAllocator::Statistics currentStatistics()
    {
        Locker locker { getLock() };
        MetaAllocator::Statistics result { 0, 0, 0 };
        forEachAllocator([&] (Allocator& allocator) {
            auto allocatorStats = allocator.currentStatistics(locker);
            result.bytesAllocated += allocatorStats.bytesAllocated;
            result.bytesReserved += allocatorStats.bytesReserved;
            result.bytesCommitted += allocatorStats.bytesCommitted;
        });
        return result;
    }
#endif // !ENABLE(LIBPAS_JIT_HEAP)

#if ENABLE(LIBPAS_JIT_HEAP)
    void handleWillBeReleased(ExecutableMemoryHandle& handle, size_t sizeInBytes)
    {
        m_bytesAllocated.fetch_sub(sizeInBytes, std::memory_order_relaxed);
#if ENABLE(JUMP_ISLANDS)
        if (m_islandsForJumpSourceLocation.isEmpty())
            return;
        
        Locker locker { getLock() };
        handleWillBeReleased(locker, handle);
#else // ENABLE(JUMP_ISLANDS) -> so !ENABLE(JUMP_ISLANDS)
        UNUSED_PARAM(handle);
#endif // ENABLE(JUMP_ISLANDS) -> so end of !ENABLE(JUMP_ISLANDS)
    }
#endif // ENABLE(LIBPAS_JIT_HEAP)

#if ENABLE(JUMP_ISLANDS)
    void handleWillBeReleased(const Locker<Lock>& locker, ExecutableMemoryHandle& handle)
    {
        if (m_islandsForJumpSourceLocation.isEmpty())
            return;

        Vector<Islands*, 16> toRemove;
        void* start = handle.start().untaggedPtr();
        void* end = handle.end().untaggedPtr();
        m_islandsForJumpSourceLocation.iterate([&] (Islands& islands, bool& visitLeft, bool& visitRight) {
            if (start <= islands.key() && islands.key() < end)
                toRemove.append(&islands);
            if (islands.key() > start)
                visitLeft = true;
            if (islands.key() < end)
                visitRight = true;
        });

        for (Islands* islands : toRemove)
            freeIslands(locker, islands);

        if (ASSERT_ENABLED) {
            m_islandsForJumpSourceLocation.iterate([&] (Islands& islands, bool& visitLeft, bool& visitRight) {
                if (start <= islands.key() && islands.key() < end) {
                    dataLogLn("did not remove everything!");
                    RELEASE_ASSERT_NOT_REACHED();
                }
                visitLeft = true;
                visitRight = true;
            });
        }
    }

    void* makeIsland(uintptr_t jumpLocation, uintptr_t newTarget, bool concurrently, bool useMemcpy)
    {
        Locker locker { getLock() };
        return islandForJumpLocation(locker, jumpLocation, newTarget, concurrently, useMemcpy);
    }

private:
    RegionAllocator* findRegion(uintptr_t ptr)
    {
        RegionAllocator* result = nullptr;
        forEachAllocator([&] (RegionAllocator& allocator) {
            if (allocator.start() <= ptr && ptr < allocator.end()) {
                result = &allocator;
                return IterationStatus::Done;
            }
            return IterationStatus::Continue;
        });
        return result;
    }

    void freeJumpIslands(const Locker<Lock>&, Islands* islands)
    {
        for (CodeLocationLabel<ExecutableMemoryPtrTag> jumpIsland : islands->jumpIslands) {
            uintptr_t untaggedJumpIsland = std::bit_cast<uintptr_t>(jumpIsland.dataLocation());
            RegionAllocator* allocator = findRegion(untaggedJumpIsland);
            RELEASE_ASSERT(allocator);
            allocator->freeIsland(untaggedJumpIsland);
        }
        islands->jumpIslands.clear();
    }

    void freeIslands(const Locker<Lock>& locker, Islands* islands)
    {
        freeJumpIslands(locker, islands);
        m_islandsForJumpSourceLocation.remove(islands);
        delete islands;
    }

    void* islandForJumpLocation(const Locker<Lock>& locker, uintptr_t jumpLocation, uintptr_t target, bool concurrently, bool useMemcpy)
    {
        Islands* islands = m_islandsForJumpSourceLocation.findExact(std::bit_cast<void*>(jumpLocation));
        if (islands) {
            // FIXME: We could create some method of reusing already allocated islands here, but it's
            // unlikely to matter in practice.
            if (!concurrently)
                freeJumpIslands(locker, islands);
        } else {
            islands = new Islands;
            islands->jumpSourceLocation = CodeLocationLabel<ExecutableMemoryPtrTag>(tagCodePtr<ExecutableMemoryPtrTag>(std::bit_cast<void*>(jumpLocation)));
            m_islandsForJumpSourceLocation.insert(islands);
        }

        RegionAllocator* allocator = findRegion(jumpLocation > target ? jumpLocation - m_regionSize : jumpLocation);
        RELEASE_ASSERT(allocator);
        void* result = allocator->allocateIsland();
        void* currentIsland = result;
        jumpLocation = std::bit_cast<uintptr_t>(currentIsland);
        while (true) {
            islands->jumpIslands.append(CodeLocationLabel<ExecutableMemoryPtrTag>(tagCodePtr<ExecutableMemoryPtrTag>(currentIsland)));

            auto emitJumpTo = [&] (void* target) {
                RELEASE_ASSERT(Assembler::canEmitJump(std::bit_cast<void*>(jumpLocation), target));
                if (useMemcpy)
                    Assembler::fillNearTailCall<MachineCodeCopyMode::Memcpy>(currentIsland, target);
                else
                    Assembler::fillNearTailCall<MachineCodeCopyMode::JITMemcpy>(currentIsland, target);
            };

            if (Assembler::canEmitJump(std::bit_cast<void*>(jumpLocation), std::bit_cast<void*>(target))) {
                emitJumpTo(std::bit_cast<void*>(target));
                break;
            }

            uintptr_t nextIslandRegion;
            if (jumpLocation > target)
                nextIslandRegion = jumpLocation - m_regionSize;
            else
                nextIslandRegion = jumpLocation + m_regionSize;

            RegionAllocator* allocator = findRegion(nextIslandRegion);
            RELEASE_ASSERT(allocator);
            void* nextIsland = allocator->allocateIsland();
            emitJumpTo(nextIsland);
            jumpLocation = std::bit_cast<uintptr_t>(nextIsland);
            currentIsland = nextIsland;
        }

        return result;
    }
#endif // ENABLE(JUMP_ISLANDS)

private:
    class Allocator
#if !ENABLE(LIBPAS_JIT_HEAP)
        : public MetaAllocator
#endif
    {
#if !ENABLE(LIBPAS_JIT_HEAP)
        using Base = MetaAllocator;
#endif
    public:
        Allocator(FixedVMPoolExecutableAllocator& allocator)
#if !ENABLE(LIBPAS_JIT_HEAP)
            : Base(allocator.getLock(), jitAllocationGranule, executablePageSize()) // round up all allocations to 32 bytes
            ,
#else
            :
#endif
            m_fixedAllocator(allocator)
        {
        }

#if ENABLE(LIBPAS_JIT_HEAP)
        void addFreshFreeSpace(void* start, size_t sizeInBytes)
        {
            RELEASE_ASSERT(!m_start);
            RELEASE_ASSERT(!m_end);
            m_start = reinterpret_cast<uintptr_t>(start);
            m_end = m_start + sizeInBytes;
            jit_heap_add_fresh_memory(pas_range_create(m_start, m_end));
        }

        bool isInAllocatedMemory(const AbstractLocker&, void* address)
        {
            uintptr_t addressAsInt = reinterpret_cast<uintptr_t>(address);
            return addressAsInt >= m_start && addressAsInt < m_end;
        }
#endif // ENABLE(LIBPAS_JIT_HEAP)

#if !ENABLE(LIBPAS_JIT_HEAP)
        FreeSpacePtr allocateNewSpace(size_t&) override
        {
            // We're operating in a fixed pool, so new allocation is always prohibited.
            return nullptr;
        }

        void notifyNeedPage(void* page, size_t count) override
        {
            m_fixedAllocator.m_reservation.commit(page, executablePageSize() * count);
        }

        void notifyPageIsFree(void* page, size_t count) override
        {
            m_fixedAllocator.m_reservation.decommit(page, executablePageSize() * count);
        }
#endif // !ENABLE(LIBPAS_JIT_HEAP)

        FixedVMPoolExecutableAllocator& m_fixedAllocator;
#if ENABLE(LIBPAS_JIT_HEAP)
        uintptr_t m_start { 0 };
        uintptr_t m_end { 0 };
#endif // ENABLE(LIBPAS_JIT_HEAP)
    };

#if ENABLE(JUMP_ISLANDS)
    class RegionAllocator final : public Allocator {
        using Base = Allocator;
    public:
        RegionAllocator(FixedVMPoolExecutableAllocator& allocator)
            : Base(allocator)
        {
            RELEASE_ASSERT(!(executablePageSize() % islandSizeInBytes), "Current implementation relies on this");
        }

        void configure(uintptr_t start, uintptr_t islandBegin, uintptr_t end)
        {
            RELEASE_ASSERT(start < islandBegin);
            RELEASE_ASSERT(islandBegin <= end);
            m_start = std::bit_cast<void*>(start);
            m_islandBegin = std::bit_cast<void*>(islandBegin);
            m_end = std::bit_cast<void*>(end);
            RELEASE_ASSERT(!((this->islandBegin() - this->start()) % executablePageSize()));
            RELEASE_ASSERT(!((this->end() - this->islandBegin()) % executablePageSize()));
            addFreshFreeSpace(std::bit_cast<void*>(this->start()), allocatorSize());
        }

        //  ------------------------------------
        //  | jit allocations -->   <-- islands |
        //  -------------------------------------

        uintptr_t start() { return reinterpret_cast<uintptr_t>(m_start); }
        uintptr_t islandBegin() { return reinterpret_cast<uintptr_t>(m_islandBegin); }
        uintptr_t end() { return reinterpret_cast<uintptr_t>(m_end); }

        size_t maxIslandsInThisRegion() { return (end() - islandBegin()) / islandSizeInBytes; }

        uintptr_t allocatorSize()
        {
            return islandBegin() - start();
        }

        size_t islandsPerPage()
        {
            size_t islandsPerPage = executablePageSize() / islandSizeInBytes;
            ASSERT(islandsPerPage * islandSizeInBytes == executablePageSize());
            ASSERT(isPowerOfTwo(islandsPerPage));
            return islandsPerPage;
        }

#if !ENABLE(LIBPAS_JIT_HEAP)
        void release(const Locker<Lock>& locker, MetaAllocatorHandle& handle) final
        {
            AssemblyCommentRegistry::singleton().unregisterCodeRange(handle.start().untaggedPtr(), handle.end().untaggedPtr());
            m_fixedAllocator.handleWillBeReleased(locker, handle);
            Base::release(locker, handle);
        }
#endif

        void* allocateIsland()
        {
            uintptr_t end = this->end();
            auto findResult = [&] () -> void* {
                size_t resultBit = islandBits.findClearBit(0);
                if (resultBit == islandBits.size())
                    return nullptr;
                islandBits[resultBit] = true;
                uintptr_t result = end - ((resultBit + 1) * islandSizeInBytes); 
                return std::bit_cast<void*>(result);
            };

            if (void* result = findResult())
                return result;

            const size_t oldSize = islandBits.size();
            const size_t maxIslandsInThisRegion = this->maxIslandsInThisRegion();

            RELEASE_ASSERT(oldSize <= maxIslandsInThisRegion);
            if (UNLIKELY(oldSize == maxIslandsInThisRegion))
                crashOnJumpIslandExhaustion();

            const size_t newSize = std::min(oldSize + islandsPerPage(), maxIslandsInThisRegion);
            islandBits.resize(newSize);

            uintptr_t islandsBegin = end - (newSize * islandSizeInBytes); // [islandsBegin, end)
            m_fixedAllocator.m_reservation.commit(std::bit_cast<void*>(islandsBegin), (newSize - oldSize) * islandSizeInBytes);

            void* result = findResult();
            RELEASE_ASSERT(result);
            return result;
        }

        NEVER_INLINE NO_RETURN_DUE_TO_CRASH void crashOnJumpIslandExhaustion()
        {
            CRASH();
        }

        std::optional<size_t> islandBit(uintptr_t island)
        {
            uintptr_t end = this->end();
            if (islandBegin() <= island && island < end)
                return ((end - island) / islandSizeInBytes) - 1;
            return std::nullopt;
        }

        void freeIsland(uintptr_t island)
        {
            RELEASE_ASSERT(islandBegin() <= island && island < end());
            size_t bit = islandBit(island).value();
            RELEASE_ASSERT(!!islandBits[bit]);
            islandBits[bit] = false;
        }

        bool isInAllocatedMemory(const AbstractLocker& locker, void* address)
        {
            if (Base::isInAllocatedMemory(locker, address))
                return true;
            if (std::optional<size_t> bit = islandBit(std::bit_cast<uintptr_t>(address))) {
                if (bit.value() < islandBits.size())
                    return !!islandBits[bit.value()];
            }
            return false;
        }

    private:
#define REGION_ALLOCATOR_CODEPTR(field) \
    WTF_FUNCPTR_PTRAUTH_STR("RegionAllocator." #field) field

        // Range: [start, end)
        void* REGION_ALLOCATOR_CODEPTR(m_start);
        void* REGION_ALLOCATOR_CODEPTR(m_islandBegin);
        void* REGION_ALLOCATOR_CODEPTR(m_end);
        FastBitVector islandBits;
    };
#endif // ENABLE(JUMP_ISLANDS)

    template <typename Function>
    void forEachAllocator(Function function)
    {
#if ENABLE(JUMP_ISLANDS)
        for (RegionAllocator& allocator : m_allocators) {
            using FunctionResultType = decltype(function(allocator));
            if constexpr (std::is_same<IterationStatus, FunctionResultType>::value) {
                if (function(allocator) == IterationStatus::Done)
                    break;
            } else {
                static_assert(std::is_same<void, FunctionResultType>::value);
                function(allocator);
            }
        }
#else
        function(m_allocator);
#endif // ENABLE(JUMP_ISLANDS)
    }

#if ENABLE(JUMP_ISLANDS)
    class Islands : public RedBlackTree<Islands, void*>::Node {
        WTF_MAKE_TZONE_ALLOCATED(Islands);
    public:
        void* key() { return jumpSourceLocation.dataLocation(); }
        CodeLocationLabel<ExecutableMemoryPtrTag> jumpSourceLocation;
        Vector<CodeLocationLabel<ExecutableMemoryPtrTag>> jumpIslands;
    };
#endif // ENABLE(JUMP_ISLANDS)

    Lock m_lock;
    PageReservation m_reservation;
#if ENABLE(JUMP_ISLANDS)
    size_t m_regionSize;
    FixedVector<RegionAllocator> m_allocators;
    RedBlackTree<Islands, void*> m_islandsForJumpSourceLocation;
#else
    Allocator m_allocator;
#endif // ENABLE(JUMP_ISLANDS)

#if ENABLE(MPROTECT_RX_TO_RWX)
    Lock m_pageLock;
    uint8_t* m_pageWriterCounts;
#endif

    size_t m_bytesReserved { 0 };
#if ENABLE(LIBPAS_JIT_HEAP)
    std::atomic<size_t> m_bytesAllocated { 0 };
#endif
};

#if ENABLE(JUMP_ISLANDS)
WTF_MAKE_TZONE_ALLOCATED_IMPL(FixedVMPoolExecutableAllocator::Islands);
#endif // ENABLE(JUMP_ISLANDS)

// Keep this pointer in a mutable global variable to help Leaks find it.
// But we do not use this pointer.
static FixedVMPoolExecutableAllocator* globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = nullptr;
void ExecutableAllocator::initializeUnderlyingAllocator()
{
    RELEASE_ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator);
    g_jscConfig.fixedVMPoolExecutableAllocator = new FixedVMPoolExecutableAllocator();
    globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = g_jscConfig.fixedVMPoolExecutableAllocator;
}

bool ExecutableAllocator::isValid() const
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return Base::isValid();
    return allocator->isValid();
}

bool ExecutableAllocator::underMemoryPressure()
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return Base::underMemoryPressure();
    return allocator->bytesAllocated() > allocator->bytesReserved() / 2;
}

double ExecutableAllocator::memoryPressureMultiplier(size_t addedMemoryUsage)
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return Base::memoryPressureMultiplier(addedMemoryUsage);
    ASSERT(allocator->bytesAllocated() <= allocator->bytesReserved());
    size_t bytesAllocated = allocator->bytesAllocated() + addedMemoryUsage;
    size_t bytesAvailable = allocator->bytesAvailable();
    if (bytesAllocated >= bytesAvailable)
        bytesAllocated = bytesAvailable;
    double result = 1.0;
    size_t divisor = bytesAvailable - bytesAllocated;
    if (divisor)
        result = static_cast<double>(bytesAvailable) / divisor;
    if (result < 1.0)
        result = 1.0;
    return result;
}

RefPtr<ExecutableMemoryHandle> ExecutableAllocator::allocate(size_t sizeInBytes, JITCompilationEffort effort)
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return Base::allocate(sizeInBytes, effort);
#if !ENABLE(LIBPAS_JIT_HEAP)
    if (Options::logExecutableAllocation()) {
        MetaAllocator::Statistics stats = allocator->currentStatistics();
        dataLog("Allocating ", sizeInBytes, " bytes of executable memory with ", stats.bytesAllocated, " bytes allocated, ", stats.bytesReserved, " bytes reserved, and ", stats.bytesCommitted, " committed.\n");
    }
#endif

    if (effort != JITCompilationCanFail && Options::reportMustSucceedExecutableAllocations()) {
        dataLog("Allocating ", sizeInBytes, " bytes of executable memory with JITCompilationMustSucceed.\n");
        WTFReportBacktrace();
    }

    if (effort == JITCompilationCanFail
        && doExecutableAllocationFuzzingIfEnabled() == PretendToFailExecutableAllocation)
        return nullptr;

    if (effort == JITCompilationCanFail) {
        // Don't allow allocations if we are down to reserve.
        size_t bytesAllocated = allocator->bytesAllocated() + sizeInBytes;
        size_t bytesAvailable = allocator->bytesAvailable();
        if (bytesAllocated > bytesAvailable) {
            if (Options::logExecutableAllocation())
                dataLog("Allocation failed because bytes allocated ", bytesAllocated,  " > ", bytesAvailable, " bytes available.\n");
            return nullptr;
        }
    }

    RefPtr<ExecutableMemoryHandle> result = allocator->allocate(sizeInBytes);
    if (!result) {
        if (effort != JITCompilationCanFail) {
            dataLog("Ran out of executable memory while allocating ", sizeInBytes, " bytes.\n");
            CRASH();
        }
        return nullptr;
    }

    void* start = allocator->memoryStart();
    void* end = allocator->memoryEnd();
    void* resultStart = result->start().untaggedPtr();
    void* resultEnd = result->end().untaggedPtr();
    RELEASE_ASSERT(start <= resultStart && resultStart < end);
    RELEASE_ASSERT(start < resultEnd && resultEnd <= end);
    return result;
}

bool ExecutableAllocator::isValidExecutableMemory(const AbstractLocker& locker, void* address)
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return Base::isValidExecutableMemory(locker, address);
    return allocator->isInAllocatedMemory(locker, address);
}

Lock& ExecutableAllocator::getLock() const
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return Base::getLock();
    return allocator->getLock();
}

size_t ExecutableAllocator::committedByteCount()
{
#if ENABLE(LIBPAS_JIT_HEAP)
    return Base::committedByteCount();
#else // ENABLE(LIBPAS_JIT_HEAP) -> so start of !ENABLE(LIBPAS_JIT_HEAP)
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return Base::committedByteCount();
    return allocator->bytesCommitted();
#endif // ENABLE(LIBPAS_JIT_HEAP) -> so end of !ENABLE(LIBPAS_JIT_HEAP)
}

#if ENABLE(META_ALLOCATOR_PROFILE)
void ExecutableAllocator::dumpProfile()
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return;
    allocator->dumpProfile();
}
#endif

#if ENABLE(JUMP_ISLANDS)
void* ExecutableAllocator::getJumpIslandToUsingJITMemcpy(void* from, void* newDestination)
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        RELEASE_ASSERT_NOT_REACHED();

    constexpr bool concurrently = false;
    constexpr bool useMemcpy = false;
    return allocator->makeIsland(std::bit_cast<uintptr_t>(from), std::bit_cast<uintptr_t>(newDestination), concurrently, useMemcpy);
}

void* ExecutableAllocator::getJumpIslandToUsingMemcpy(void* from, void* newDestination)
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        RELEASE_ASSERT_NOT_REACHED();

    constexpr bool concurrently = false;
    constexpr bool useMemcpy = true;
    return allocator->makeIsland(std::bit_cast<uintptr_t>(from), std::bit_cast<uintptr_t>(newDestination), concurrently, useMemcpy);
}

void* ExecutableAllocator::getJumpIslandToConcurrently(void* from, void* newDestination)
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        RELEASE_ASSERT_NOT_REACHED();

    constexpr bool concurrently = true;
    constexpr bool useMemcpy = false;
    return allocator->makeIsland(std::bit_cast<uintptr_t>(from), std::bit_cast<uintptr_t>(newDestination), concurrently, useMemcpy);
}
#endif

void* startOfFixedExecutableMemoryPoolImpl()
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return nullptr;
    return allocator->memoryStart();
}

void* endOfFixedExecutableMemoryPoolImpl()
{
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    if (!allocator)
        return nullptr;
    return allocator->memoryEnd();
}

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

void dumpJITMemory(const void* dst, const void* src, size_t size)
{
    RELEASE_ASSERT(Options::dumpJITMemoryPath());

#if OS(DARWIN)
    static Lock dumpJITMemoryLock;
    static int fd WTF_GUARDED_BY_LOCK(dumpJITMemoryLock) = -1;
    static uint8_t* buffer;
    static constexpr size_t bufferSize = fixedExecutableMemoryPoolSize;
    static size_t offset WTF_GUARDED_BY_LOCK(dumpJITMemoryLock) = 0;
    static bool needsToFlush WTF_GUARDED_BY_LOCK(dumpJITMemoryLock) = false;
    static LazyNeverDestroyed<Ref<WorkQueue>> flushQueue;
    static auto flushQueueSingleton = []() { return flushQueue.get(); };
    struct DumpJIT {
        static void flush() WTF_REQUIRES_LOCK(dumpJITMemoryLock)
        {
            if (fd == -1) {
                auto path = String::fromLatin1(Options::dumpJITMemoryPath());
                path = makeStringByReplacingAll(path, "%pid"_s, String::number(getCurrentProcessID()));
                fd = open(FileSystem::fileSystemRepresentation(path).data(), O_CREAT | O_TRUNC | O_APPEND | O_WRONLY | O_EXLOCK | O_NONBLOCK, 0666);
                RELEASE_ASSERT(fd != -1);
            }
            ::write(fd, buffer, offset);
            offset = 0;
            needsToFlush = false;
        }

        static void enqueueFlush() WTF_REQUIRES_LOCK(dumpJITMemoryLock)
        {
            if (needsToFlush)
                return;

            needsToFlush = true;
            flushQueueSingleton()->dispatchAfter(Seconds(Options::dumpJITMemoryFlushInterval()), [] {
                Locker locker { dumpJITMemoryLock };
                if (!needsToFlush)
                    return;
                flush();
            });
        }

        static void write(const void* src, size_t size) WTF_REQUIRES_LOCK(dumpJITMemoryLock)
        {
            if (UNLIKELY(offset + size > bufferSize))
                flush();
            memcpy(buffer + offset, src, size);
            offset += size;
            enqueueFlush();
        }
    };

    static std::once_flag once;
    std::call_once(once, [] {
        buffer = std::bit_cast<uint8_t*>(malloc(bufferSize));
        flushQueue.construct(WorkQueue::create("jsc.dumpJITMemory.queue"_s, WorkQueue::QOS::Background));
        std::atexit([] {
            Locker locker { dumpJITMemoryLock };
            DumpJIT::flush();
            close(fd);
            fd = -1;
        });
    });

    Locker locker { dumpJITMemoryLock };
    uint64_t time = mach_absolute_time();
    uint64_t dst64 = std::bit_cast<uintptr_t>(dst);
    uint64_t size64 = size;
    TraceScope(DumpJITMemoryStart, DumpJITMemoryStop, time, dst64, size64);
    DumpJIT::write(&time, sizeof(time));
    DumpJIT::write(&dst64, sizeof(dst64));
    DumpJIT::write(&size64, sizeof(size64));
    DumpJIT::write(src, size);
#else
    UNUSED_PARAM(dst);
    UNUSED_PARAM(src);
    UNUSED_PARAM(size);
    RELEASE_ASSERT_NOT_REACHED();
#endif
}

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#if ENABLE(MPROTECT_RX_TO_RWX)
void ExecutableAllocator::startWriting(const void* start, size_t sizeInBytes) { g_jscConfig.fixedVMPoolExecutableAllocator->startWriting(start, sizeInBytes); }
void ExecutableAllocator::finishWriting(const void* start, size_t sizeInBytes) { g_jscConfig.fixedVMPoolExecutableAllocator->finishWriting(start, sizeInBytes); }

void* performJITMemcpyWithMProtect(void *dst, const void *src, size_t n)
{
    g_jscConfig.fixedVMPoolExecutableAllocator->startWriting(dst, n);
    memcpyAtomicIfPossible(dst, src, n);
    g_jscConfig.fixedVMPoolExecutableAllocator->finishWriting(dst, n);
    return dst;
}
#endif

#if ENABLE(LIBPAS_JIT_HEAP) && ENABLE(JIT)
RefPtr<ExecutableMemoryHandle> ExecutableMemoryHandle::createImpl(size_t sizeInBytes)
{
    void* key = jit_heap_try_allocate(sizeInBytes);
    if (!key)
        return nullptr;
    return adoptRef(new ExecutableMemoryHandle(MemoryPtr::fromUntaggedPtr(key), jit_heap_get_size(key)));
}

ExecutableMemoryHandle::~ExecutableMemoryHandle()
{
    AssemblyCommentRegistry::singleton().unregisterCodeRange(start().untaggedPtr(), end().untaggedPtr());
    FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
    allocator->handleWillBeReleased(*this, sizeInBytes());
    if (UNLIKELY(Options::zeroExecutableMemoryOnFree())) {
        // We don't have a performJITMemset so just use a zeroed buffer.
        auto zeros = MallocSpan<uint8_t>::zeroedMalloc(sizeInBytes());
        auto span = zeros.span();
        performJITMemcpy(start().untaggedPtr(), span.data(), span.size());
    }
    jit_heap_deallocate(key());
}

void ExecutableMemoryHandle::shrink(size_t newSizeInBytes)
{
    size_t oldSizeInBytes = sizeInBytes();
    jit_heap_shrink(key(), newSizeInBytes);
    m_sizeInBytes = jit_heap_get_size(key());
    if (oldSizeInBytes != sizeInBytes()) {
        FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
        allocator->shrinkBytesAllocated(oldSizeInBytes, sizeInBytes());
    }
}
#endif // ENABLE(LIBPAS_JIT_HEAP) && ENABLE(JIT)

} // namespace JSC

#endif // ENABLE(JIT)

namespace JSC {

// Keep this pointer in a mutable global variable to help Leaks find it.
// But we do not use this pointer.
static ExecutableAllocator* globalExecutableAllocatorToWorkAroundLeaks = nullptr;
void ExecutableAllocator::initialize()
{
    if (g_jscConfig.jitDisabled)
        return;
    g_jscConfig.executableAllocator = new ExecutableAllocator;
    globalExecutableAllocatorToWorkAroundLeaks = g_jscConfig.executableAllocator;
}

ExecutableAllocator& ExecutableAllocator::singleton()
{
    ASSERT(g_jscConfig.executableAllocator);
    return *g_jscConfig.executableAllocator;
}

} // namespace JSC