File: ExecutableAllocator.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (389 lines) | stat: -rw-r--r-- 14,349 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
 * Copyright (C) 2008-2023 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#pragma once

#include <bit>
#include "AssemblerCommon.h"
#include "ExecutableMemoryHandle.h"
#include "FastJITPermissions.h"
#include "JITCompilationEffort.h"
#include "JSCConfig.h"
#include "JSCPtrTag.h"
#include "Options.h"
#include <limits>
#include <wtf/Assertions.h>
#include <wtf/ForbidHeapAllocation.h>
#include <wtf/Gigacage.h>
#include <wtf/Lock.h>
#include <wtf/TZoneMalloc.h>

#if !ENABLE(LIBPAS_JIT_HEAP)
#include <wtf/MetaAllocator.h>
#endif

#if OS(DARWIN)
#include <libkern/OSCacheControl.h>
#include <sys/mman.h>
#endif

#if ENABLE(MPROTECT_RX_TO_RWX)
#define EXECUTABLE_POOL_WRITABLE false
#else
#define EXECUTABLE_POOL_WRITABLE true
#endif

namespace JSC {

static constexpr unsigned jitAllocationGranule = 32;

class ExecutableAllocatorBase {
    WTF_FORBID_HEAP_ALLOCATION;
    WTF_MAKE_NONCOPYABLE(ExecutableAllocatorBase);
public:
    bool isValid() const { return false; }

    static bool underMemoryPressure() { return false; }

    static double memoryPressureMultiplier(size_t) { return 1.0; }

    static void dumpProfile() { }

    RefPtr<ExecutableMemoryHandle> allocate(size_t, JITCompilationEffort) { return nullptr; }

    static void disableJIT() { };
    
    bool isValidExecutableMemory(const AbstractLocker&, void*) { return false; }

    static size_t committedByteCount() { return 0; }

    Lock& getLock() const WTF_RETURNS_LOCK(m_lock)
    {
        return m_lock;
    }

protected:
    ExecutableAllocatorBase() = default;
    ~ExecutableAllocatorBase() = default;

private:
    mutable Lock m_lock;
};

#if ENABLE(JIT)

JS_EXPORT_PRIVATE void* startOfFixedExecutableMemoryPoolImpl();
JS_EXPORT_PRIVATE void* endOfFixedExecutableMemoryPoolImpl();

template<typename T = void*>
T startOfFixedExecutableMemoryPool()
{
    return std::bit_cast<T>(startOfFixedExecutableMemoryPoolImpl());
}

template<typename T = void*>
T endOfFixedExecutableMemoryPool()
{
    return std::bit_cast<T>(endOfFixedExecutableMemoryPoolImpl());
}

ALWAYS_INLINE bool isJITPC(void* pc)
{
    return g_jscConfig.startExecutableMemory <= pc && pc < g_jscConfig.endExecutableMemory;
}

JS_EXPORT_PRIVATE void dumpJITMemory(const void*, const void*, size_t);

#if ENABLE(MPROTECT_RX_TO_RWX)
JS_EXPORT_PRIVATE void* performJITMemcpyWithMProtect(void *dst, const void *src, size_t n);
#endif

#if ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)
// This helps with error logging in the case of a crash, as it places the crash
// PC at the point in the instruction stream which would be corrupted --
// while preserving the stack so that we can use that to figure out who might be
// responsible for generating the corrupted instructions.
static NEVER_INLINE NO_RETURN_DUE_TO_CRASH NOT_TAIL_CALLED void dieByJumpingIntoJITBufferWithInfo(int line, void* buffer, size_t offset, size_t size, auto info1, auto info2, auto info3)
{
    RELEASE_ASSERT(offset <= size);
    RELEASE_ASSERT(offset <= std::numeric_limits<uint32_t>::max());
    RELEASE_ASSERT(size <= std::numeric_limits<uint32_t>::max());
    void* targetInstr = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(buffer) + offset);

    // Since this function should only be called w/ buffer+offset pointing at
    // already-zeroed memory, re-zeroing it is somewhat superflous on ARM64E,
    // but necessary on x86-64 (where 0x00 0x00 encodes addb %al, (%rax)), and
    // even on the former ensures that execution will never continue past the
    // branch out of this function even if it is called improperly.
#if OS(DARWIN) && CPU(X86_64)
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    memset(reinterpret_cast<char*>(targetInstr), 0xF4, 1);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
    sys_icache_invalidate(buffer, size);
#elif OS(DARWIN) && CPU(ARM64)
    memset(reinterpret_cast<char*>(targetInstr), 0, 4);
    sys_icache_invalidate(buffer, size);
#else
#error "JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES not supported on this platform."
#endif

    uint64_t lineGpr = static_cast<uint64_t>(static_cast<int64_t>(line));
    uint64_t bufferGpr = reinterpret_cast<uintptr_t>(buffer);
    uint64_t sizeOffsetGpr = static_cast<uint64_t>(offset | size << 32);
    uint64_t info1Gpr = wtfCrashArg(info1);
    uint64_t info2Gpr = wtfCrashArg(info2);
    uint64_t info3Gpr = wtfCrashArg(info3);

    // We do this instead of using explicit register variables because clang
    // seems to struggle with placing those in the same function as an outward
    // function call
#if CPU(X86_64)
    __asm__ volatile(
        "mov %1, %%" CRASH_GPR0 "\n"
        "mov %2, %%" CRASH_GPR1 "\n"
        "mov %3, %%" CRASH_GPR2 "\n"
        "mov %4, %%" CRASH_GPR3 "\n"
        "mov %5, %%" CRASH_GPR4 "\n"
        "mov %6, %%" CRASH_GPR5 "\n"
        "jmp *%0"
            : : "r"(targetInstr), "r"(lineGpr), "r"(bufferGpr), "r"(sizeOffsetGpr), "r"(info1Gpr), "r"(info2Gpr), "r"(info3Gpr)
            : CRASH_GPR0, CRASH_GPR1, CRASH_GPR2, CRASH_GPR3, CRASH_GPR4, CRASH_GPR5);
#elif CPU(ARM64)
    __asm__ volatile(
        "mov " CRASH_GPR0 ", %1\n"
        "mov " CRASH_GPR1 ", %2\n"
        "mov " CRASH_GPR2 ", %3\n"
        "mov " CRASH_GPR3 ", %4\n"
        "mov " CRASH_GPR4 ", %5\n"
        "mov " CRASH_GPR5 ", %6\n"
        "br %0"
            : : "r"(targetInstr), "r"(lineGpr), "r"(bufferGpr), "r"(sizeOffsetGpr), "r"(info1Gpr), "r"(info2Gpr), "r"(info3Gpr)
            : CRASH_GPR0, CRASH_GPR1, CRASH_GPR2, CRASH_GPR3, CRASH_GPR4, CRASH_GPR5);
#else
#error "JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES not supported on this platform."
#endif

            __builtin_unreachable();
}

#define CRASH_BY_JUMPING_INTO_JIT_BUFFER_WITH_INFO(...) do { \
        WTF::isIntegralOrPointerType(__VA_ARGS__); \
        compilerFenceForCrash(); \
        dieByJumpingIntoJITBufferWithInfo(__LINE__, __VA_ARGS__); \
    } while (false)

// We only check whether the run also exists in the source buffer
// once we know we're going to crash and thus can afford the
// overhead.
#define RELEASE_ASSERT_ZERO_CHECK(zeroCount, dstBuff, srcBuff, buffSize, nextIndex) do { \
        if (UNLIKELY(zeroCount > maxZeroByteRunLength)) { \
            size_t firstZeroIndex = nextIndex - zeroCount; \
            auto dstBuffZeroes = reinterpret_cast<const char*>(dstBuff) + firstZeroIndex; \
            auto srcBuffZeroes = reinterpret_cast<const char*>(srcBuff) + firstZeroIndex; \
            bool sourceBufferBytesAlsoZero = !(std::memcmp(dstBuffZeroes, srcBuffZeroes, runLength)); \
            CRASH_BY_JUMPING_INTO_JIT_BUFFER_WITH_INFO(dstBuff, firstZeroIndex, buffSize, nextIndex, srcBuff, sourceBufferBytesAlsoZero); \
        } \
    } while (false)
#endif // ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

static ALWAYS_INLINE void* performJITMemcpy(void *dst, const void *src, size_t n)
{
#if CPU(ARM64)
    static constexpr size_t instructionSize = sizeof(unsigned);
    RELEASE_ASSERT(roundUpToMultipleOf<instructionSize>(dst) == dst);
    RELEASE_ASSERT(roundUpToMultipleOf<instructionSize>(src) == src);
#endif
    if (isJITPC(dst)) {
        RELEASE_ASSERT(!Gigacage::contains(src));
        RELEASE_ASSERT(static_cast<uint8_t*>(dst) + n <= endOfFixedExecutableMemoryPool());

#if ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)
        auto checkForZeroes = [dst, src, n] () {
            if (UNLIKELY(Options::zeroExecutableMemoryOnFree()))
                return;
            // On x86-64, the maximum immediate size is 8B, no opcodes/prefixes have 0x00
            // On other architectures this could be smaller
            constexpr size_t maxZeroByteRunLength = 16;
            // This algorithm works because the number of 0-bytes which can fit into
            // one qword (8) is smaller than the limit on which we assert.
            constexpr size_t stride = sizeof(uint64_t);
            static_assert(stride <= maxZeroByteRunLength);

            const char* dstBuff = reinterpret_cast<const char*>(dst);
            size_t runLength = 0;
            size_t i = 0;
            if (n > stride) {
                for (; (reinterpret_cast<uintptr_t>(dstBuff) + i) % stride; i++) {
                    if (!(dstBuff[i]))
                        runLength++;
                    else
                        runLength = 0;
                }
                for (; i + stride <= n; i += stride) {
                    uint64_t chunk = *reinterpret_cast<const uint64_t*>(dstBuff + i);
                    if (!chunk) {
                        runLength += sizeof(chunk);
                        RELEASE_ASSERT_ZERO_CHECK(runLength, dst, src, n, i + stride);
                    } else {
                        runLength += (std::countr_zero(chunk) / 8);
                        RELEASE_ASSERT_ZERO_CHECK(runLength, dst, src, n, i + (std::countr_zero(chunk) / 8));
                        runLength = std::countl_zero(chunk) / 8;
                    }
                }
                for (; i < n; i++) {
                    if (!(dstBuff[i])) {
                        runLength++;
                        RELEASE_ASSERT_ZERO_CHECK(runLength, dst, src, n, i + 1);
                    }
                }
            }
        };
#endif

        if (UNLIKELY(Options::dumpJITMemoryPath()))
            dumpJITMemory(dst, src, n);

#if ENABLE(MPROTECT_RX_TO_RWX)
        auto ret = performJITMemcpyWithMProtect(dst, src, n);
#if ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)
        checkForZeroes();
#endif
        return ret;
#endif

        if (g_jscConfig.useFastJITPermissions) {
            threadSelfRestrict<MemoryRestriction::kRwxToRw>();
            memcpyAtomicIfPossible(dst, src, n);
            threadSelfRestrict<MemoryRestriction::kRwxToRx>();
#if ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)
            checkForZeroes();
#endif
            return dst;
        }

#if ENABLE(SEPARATED_WX_HEAP)
        if (g_jscConfig.jitWriteSeparateHeaps) {
            // Use execute-only write thunk for writes inside the JIT region. This is a variant of
            // memcpy that takes an offset into the JIT region as its destination (first) parameter.
            off_t offset = (off_t)((uintptr_t)dst - startOfFixedExecutableMemoryPool<uintptr_t>());
            retagCodePtr<JITThunkPtrTag, CFunctionPtrTag>(g_jscConfig.jitWriteSeparateHeaps)(offset, src, n);
            RELEASE_ASSERT(!Gigacage::contains(src));
#if ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)
            checkForZeroes();
#endif
            return dst;
        }
#endif

        auto ret = memcpyAtomicIfPossible(dst, src, n);
#if ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)
        checkForZeroes();
#endif
        return ret;
    }

    return memcpyAtomicIfPossible(dst, src, n);
}

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

class ExecutableAllocator : private ExecutableAllocatorBase {
    // This does not need to be TZONE_ALLOCATED because it is only used as a singleton, and
    // is only allocated once long before any script is executed.
    WTF_MAKE_FAST_ALLOCATED(ExecutableAllocator);
public:
    using Base = ExecutableAllocatorBase;

    JS_EXPORT_PRIVATE static ExecutableAllocator& singleton();
    static void initialize();
    static void initializeUnderlyingAllocator();

    bool isValid() const;

    static bool underMemoryPressure();
    
    static double memoryPressureMultiplier(size_t addedMemoryUsage);
    
#if ENABLE(META_ALLOCATOR_PROFILE)
    static void dumpProfile();
#else
    static void dumpProfile() { }
#endif
    
    JS_EXPORT_PRIVATE static void disableJIT();

    RefPtr<ExecutableMemoryHandle> allocate(size_t sizeInBytes, JITCompilationEffort);

    bool isValidExecutableMemory(const AbstractLocker&, void* address);

    static size_t committedByteCount();

    Lock& getLock() const;

#if ENABLE(MPROTECT_RX_TO_RWX)
    void startWriting(const void* start, size_t sizeInBytes);
    void finishWriting(const void* start, size_t sizeInBytes);
#endif

#if ENABLE(JUMP_ISLANDS)
    JS_EXPORT_PRIVATE void* getJumpIslandToUsingJITMemcpy(void* from, void* newDestination);
    JS_EXPORT_PRIVATE void* getJumpIslandToUsingMemcpy(void* from, void* newDestination);
    JS_EXPORT_PRIVATE void* getJumpIslandToConcurrently(void* from, void* newDestination);
#endif

private:
    ExecutableAllocator() = default;
    ~ExecutableAllocator() = default;
};

#else

class ExecutableAllocator : public ExecutableAllocatorBase {
    // This does not need to be TZONE_ALLOCATED because it is only used as a singleton, and
    // is only allocated once long before any script is executed.
    WTF_MAKE_FAST_ALLOCATED(ExecutableAllocator);
public:
    static ExecutableAllocator& singleton();
    static void initialize();
    static void initializeUnderlyingAllocator() { }

private:
    ExecutableAllocator() = default;
    ~ExecutableAllocator() = default;
};

static inline void* performJITMemcpy(void *dst, const void *src, size_t n)
{
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
    return memcpy(dst, src, n);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
}

inline bool isJITPC(void*) { return false; }
#endif // ENABLE(JIT)

} // namespace JSC