1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*
* Copyright (C) 2012-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "JITThunks.h"
#if ENABLE(JIT)
#include "CommonSlowPaths.h"
#include "JIT.h"
#include "JITCode.h"
#include "JSCJSValueInlines.h"
#include "LLIntThunks.h"
#include "SlowPathCall.h"
#include "ThunkGenerators.h"
#include "VM.h"
#include "YarrJIT.h"
#include <wtf/TZoneMallocInlines.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC {
WTF_MAKE_TZONE_ALLOCATED_IMPL(JITThunks);
JITThunks::JITThunks() = default;
JITThunks::~JITThunks() = default;
void JITThunks::initialize(VM& vm)
{
ASSERT(!isCompilationThread());
#define JSC_DEFINE_COMMON_JIT_THUNK(name, func) \
m_commonThunks[static_cast<unsigned>(CommonJITThunkID::name)] = func(vm);
JSC_FOR_EACH_COMMON_THUNK(JSC_DEFINE_COMMON_JIT_THUNK)
JSC_FOR_EACH_YARR_JIT_BACKREFERENCES_THUNK(JSC_DEFINE_COMMON_JIT_THUNK)
#undef JSC_DEFINE_COMMON_JIT_THUNK
}
static inline NativeExecutable& getMayBeDyingNativeExecutable(const Weak<NativeExecutable>& weak)
{
// This never gets Deleted / Empty slots.
WeakImpl* impl = weak.unsafeImpl();
ASSERT(impl);
// We have a callback removing entry when finalizing. This means that we never hold Deallocated entry in HashSet.
ASSERT(impl->state() != WeakImpl::State::Deallocated);
// Never use jsCast here. This is possible that this value is "Dead" but not "Finalized" yet. In this case,
// we can still access to non-JS data, as we are doing in a finalize callback.
auto* executable = static_cast<NativeExecutable*>(impl->jsValue().asCell());
ASSERT(executable);
return *executable;
}
inline unsigned JITThunks::WeakNativeExecutableHash::hash(const NativeExecutable* executable)
{
return hash(executable->function(), executable->constructor(), executable->implementationVisibility(), executable->name());
}
inline unsigned JITThunks::WeakNativeExecutableHash::hash(const Weak<NativeExecutable>& key)
{
return hash(&getMayBeDyingNativeExecutable(key));
}
inline bool JITThunks::WeakNativeExecutableHash::equal(const NativeExecutable& a, const NativeExecutable& b)
{
if (&a == &b)
return true;
return a.function() == b.function() && a.constructor() == b.constructor() && a.implementationVisibility() == b.implementationVisibility() && a.name() == b.name();
}
inline bool JITThunks::WeakNativeExecutableHash::equal(const Weak<NativeExecutable>& a, const Weak<NativeExecutable>& b)
{
return equal(getMayBeDyingNativeExecutable(a), getMayBeDyingNativeExecutable(b));
}
inline bool JITThunks::WeakNativeExecutableHash::equal(const Weak<NativeExecutable>& a, const NativeExecutable* bExecutable)
{
return equal(getMayBeDyingNativeExecutable(a), *bExecutable);
}
inline bool JITThunks::WeakNativeExecutableHash::equal(const Weak<NativeExecutable>& a, const HostFunctionKey& b)
{
auto& aExecutable = getMayBeDyingNativeExecutable(a);
return aExecutable.function() == std::get<0>(b) && aExecutable.constructor() == std::get<1>(b) && aExecutable.implementationVisibility() == std::get<2>(b) && aExecutable.name() == std::get<3>(b);
}
CodePtr<JITThunkPtrTag> JITThunks::ctiNativeCall(VM&)
{
ASSERT(Options::useJIT());
return ctiStub(CommonJITThunkID::NativeCall).code();
}
CodePtr<JITThunkPtrTag> JITThunks::ctiNativeCallWithDebuggerHook(VM& vm)
{
ASSERT(Options::useJIT());
return ctiStub(vm, nativeCallWithDebuggerHookGenerator).code();
}
CodePtr<JITThunkPtrTag> JITThunks::ctiNativeConstruct(VM&)
{
ASSERT(Options::useJIT());
return ctiStub(CommonJITThunkID::NativeConstruct).code();
}
CodePtr<JITThunkPtrTag> JITThunks::ctiNativeConstructWithDebuggerHook(VM& vm)
{
ASSERT(Options::useJIT());
return ctiStub(vm, nativeConstructWithDebuggerHookGenerator).code();
}
CodePtr<JITThunkPtrTag> JITThunks::ctiNativeTailCall(VM&)
{
ASSERT(Options::useJIT());
return ctiStub(CommonJITThunkID::NativeTailCall).code();
}
CodePtr<JITThunkPtrTag> JITThunks::ctiNativeTailCallWithoutSavedTags(VM&)
{
ASSERT(Options::useJIT());
return ctiStub(CommonJITThunkID::NativeTailCallWithoutSavedTags).code();
}
CodePtr<JITThunkPtrTag> JITThunks::ctiInternalFunctionCall(VM&)
{
ASSERT(Options::useJIT());
return ctiStub(CommonJITThunkID::InternalFunctionCall).code();
}
CodePtr<JITThunkPtrTag> JITThunks::ctiInternalFunctionConstruct(VM&)
{
ASSERT(Options::useJIT());
return ctiStub(CommonJITThunkID::InternalFunctionConstruct).code();
}
template <typename GenerateThunk>
MacroAssemblerCodeRef<JITThunkPtrTag> JITThunks::ctiStubImpl(ThunkGenerator key, GenerateThunk generateThunk)
{
Locker locker { m_lock };
auto handleEntry = [&] (Entry& entry) {
if (entry.needsCrossModifyingCodeFence && !isCompilationThread()) {
// The main thread will issue a crossModifyingCodeFence before running
// any code the compiler thread generates, including any thunks that they
// generate. However, the main thread may grab the thunk a compiler thread
// generated before we've issued that crossModifyingCodeFence. Hence, we
// conservatively say that when the main thread grabs a thunk generated
// from a compiler thread for the first time, it issues a crossModifyingCodeFence.
WTF::crossModifyingCodeFence();
entry.needsCrossModifyingCodeFence = false;
}
return MacroAssemblerCodeRef<JITThunkPtrTag>(*entry.handle);
};
{
auto iter = m_ctiStubMap.find(key);
if (iter != m_ctiStubMap.end())
return handleEntry(iter->value);
}
// We do two lookups on first addition to the hash table because generateThunk may add to it.
MacroAssemblerCodeRef<JITThunkPtrTag> codeRef = generateThunk();
bool needsCrossModifyingCodeFence = isCompilationThread();
auto addResult = m_ctiStubMap.add(key, Entry { PackedRefPtr<ExecutableMemoryHandle>(codeRef.executableMemory()), needsCrossModifyingCodeFence });
RELEASE_ASSERT(addResult.isNewEntry); // Thunks aren't recursive, so anything we generated transitively shouldn't have generated 'key'.
return handleEntry(addResult.iterator->value);
}
MacroAssemblerCodeRef<JITThunkPtrTag> JITThunks::ctiStub(VM& vm, ThunkGenerator generator)
{
return ctiStubImpl(generator, [&] {
return generator(vm);
});
}
MacroAssemblerCodeRef<JITThunkPtrTag> JITThunks::ctiStub(CommonJITThunkID thunkID)
{
auto result = m_commonThunks[static_cast<unsigned>(thunkID)];
ASSERT(result);
return result;
}
MacroAssemblerCodeRef<JITThunkPtrTag> JITThunks::ctiSlowPathFunctionStub(VM& vm, SlowPathFunction slowPathFunction)
{
auto key = std::bit_cast<ThunkGenerator>(slowPathFunction);
return ctiStubImpl(key, [&] {
return JITSlowPathCall::generateThunk(vm, slowPathFunction);
});
}
struct JITThunks::HostKeySearcher {
static unsigned hash(const HostFunctionKey& key) { return WeakNativeExecutableHash::hash(key); }
static bool equal(const Weak<NativeExecutable>& a, const HostFunctionKey& b) { return WeakNativeExecutableHash::equal(a, b); }
};
struct JITThunks::NativeExecutableTranslator {
static unsigned hash(const NativeExecutable* key) { return WeakNativeExecutableHash::hash(key); }
static bool equal(const Weak<NativeExecutable>& a, const NativeExecutable* b) { return WeakNativeExecutableHash::equal(a, b); }
static void translate(Weak<NativeExecutable>& location, NativeExecutable* executable, unsigned)
{
location = Weak<NativeExecutable>(executable, executable->vm().jitStubs.get());
}
};
void JITThunks::finalize(Handle<Unknown> handle, void*)
{
auto* nativeExecutable = static_cast<NativeExecutable*>(handle.get().asCell());
auto hostFunctionKey = std::make_tuple(nativeExecutable->function(), nativeExecutable->constructor(), nativeExecutable->implementationVisibility(), nativeExecutable->name());
{
AssertNoGC assertNoGC;
auto iterator = m_nativeExecutableSet.find<HostKeySearcher>(hostFunctionKey);
// Because this finalizer is called, this means that we still have dead Weak<> in m_nativeExecutableSet.
ASSERT(iterator != m_nativeExecutableSet.end());
ASSERT(iterator->unsafeImpl()->state() == WeakImpl::State::Finalized);
m_nativeExecutableSet.remove(iterator);
}
}
NativeExecutable* JITThunks::hostFunctionStub(VM& vm, TaggedNativeFunction function, TaggedNativeFunction constructor, ImplementationVisibility implementationVisibility, const String& name)
{
return hostFunctionStub(vm, function, constructor, nullptr, implementationVisibility, NoIntrinsic, nullptr, name);
}
NativeExecutable* JITThunks::hostFunctionStub(VM& vm, TaggedNativeFunction function, TaggedNativeFunction constructor, ThunkGenerator generator, ImplementationVisibility implementationVisibility, Intrinsic intrinsic, const DOMJIT::Signature* signature, const String& name)
{
ASSERT(!isCompilationThread());
ASSERT(Options::useJIT());
auto hostFunctionKey = std::make_tuple(function, constructor, implementationVisibility, name);
{
AssertNoGC assertNoGC;
auto iterator = m_nativeExecutableSet.find<HostKeySearcher>(hostFunctionKey);
if (iterator != m_nativeExecutableSet.end()) {
// It is possible that this returns Weak<> which is Dead, but not finalized.
// We should not use this reference to store value created in the subsequent sequence, since allocating NativeExecutable can cause GC, which changes this Set.
if (auto* executable = iterator->get())
return executable;
}
}
RefPtr<JSC::JITCode> forCall;
if (generator) {
MacroAssemblerCodeRef<JSEntryPtrTag> entry = generator(vm).retagged<JSEntryPtrTag>();
forCall = adoptRef(new DirectJITCode(entry, entry.code(), JITType::HostCallThunk, intrinsic));
} else if (signature)
forCall = adoptRef(new NativeDOMJITCode(MacroAssemblerCodeRef<JSEntryPtrTag>::createSelfManagedCodeRef(ctiNativeCall(vm).retagged<JSEntryPtrTag>()), JITType::HostCallThunk, intrinsic, signature));
else
forCall = adoptRef(new NativeJITCode(MacroAssemblerCodeRef<JSEntryPtrTag>::createSelfManagedCodeRef(ctiNativeCall(vm).retagged<JSEntryPtrTag>()), JITType::HostCallThunk, intrinsic));
Ref<JSC::JITCode> forConstruct = adoptRef(*new NativeJITCode(MacroAssemblerCodeRef<JSEntryPtrTag>::createSelfManagedCodeRef(ctiNativeConstruct(vm).retagged<JSEntryPtrTag>()), JITType::HostCallThunk, NoIntrinsic));
NativeExecutable* nativeExecutable = NativeExecutable::create(vm, forCall.releaseNonNull(), function, WTFMove(forConstruct), constructor, implementationVisibility, name);
{
AssertNoGC assertNoGC;
auto addResult = m_nativeExecutableSet.add<NativeExecutableTranslator>(nativeExecutable);
if (!addResult.isNewEntry) {
// Override the existing Weak<NativeExecutable> with the new one since it is dead.
ASSERT(!*addResult.iterator);
*addResult.iterator = Weak<NativeExecutable>(nativeExecutable, this);
ASSERT(*addResult.iterator);
#if ASSERT_ENABLED
auto iterator = m_nativeExecutableSet.find<HostKeySearcher>(hostFunctionKey);
ASSERT(iterator != m_nativeExecutableSet.end());
ASSERT(iterator->get() == nativeExecutable);
ASSERT(iterator->unsafeImpl()->state() == WeakImpl::State::Live);
#endif
}
}
return nativeExecutable;
}
NativeExecutable* JITThunks::hostFunctionStub(VM& vm, TaggedNativeFunction function, ThunkGenerator generator, ImplementationVisibility implementationVisibility, Intrinsic intrinsic, const String& name)
{
return hostFunctionStub(vm, function, callHostFunctionAsConstructor, generator, implementationVisibility, intrinsic, nullptr, name);
}
} // namespace JSC
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#endif // ENABLE(JIT)
|