File: LowLevelInterpreter.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (645 lines) | stat: -rw-r--r-- 25,161 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*
 * Copyright (C) 2012-2024 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "LowLevelInterpreter.h"

#include "LLIntOfflineAsmConfig.h"
#include <wtf/InlineASM.h>

#if ENABLE(C_LOOP)
#include "Bytecodes.h"
#include "CLoopStackInlines.h"
#include "CodeBlock.h"
#include "CommonSlowPaths.h"
#include "Interpreter.h"
#include "LLIntCLoop.h"
#include "LLIntData.h"
#include "LLIntSlowPaths.h"
#include "JSCInlines.h"
#include "SuperSampler.h"
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>

using namespace JSC::LLInt;

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

// LLInt C Loop opcodes
// ====================
// In the implementation of the C loop, the LLint trampoline glue functions
// (e.g. llint_program_prologue, llint_eval_prologue, etc) are addressed as
// if they are bytecode handlers. That means the names of the trampoline
// functions will be added to the OpcodeID list via the
// FOR_EACH_LLINT_OPCODE_EXTENSION() macro that FOR_EACH_OPCODE_ID()
// includes.
//
// In addition, some JIT trampoline functions which are needed by LLInt
// (e.g. ctiOpThrowNotCaught) are also added as
// bytecodes, and the CLoop will provide bytecode handlers for them.
//
// In the CLoop, we can only dispatch indirectly to these bytecodes
// (including the LLInt and JIT extensions). All other dispatches
// (i.e. goto's) must be to a known label (i.e. local / global labels).


// How are the opcodes named?
// ==========================
// Here is a table to show examples of how each of the manifestation of the
// opcodes are named:
//
//   Type:                        Opcode            Trampoline Glue
//                                ======            ===============
//   [In the llint .asm files]
//   llint labels:                llint_op_enter    llint_program_prologue
//
//   OpcodeID:                    op_enter          llint_program
//                                [in Opcode.h]     [in LLIntOpcode.h]
//
//   When using a switch statement dispatch in the CLoop, each "opcode" is
//   a case statement:
//   Opcode:                      case op_enter:    case llint_program_prologue:
//
//   When using a computed goto dispatch in the CLoop, each opcode is a label:
//   Opcode:                      op_enter:         llint_program_prologue:


//============================================================================
// Define the opcode dispatch mechanism when using the C loop:
//

using WebConfig::g_config;

// These are for building a C Loop interpreter:
#define OFFLINE_ASM_BEGIN
#define OFFLINE_ASM_END

#if ENABLE(OPCODE_TRACING)
#define TRACE_OPCODE(opcode) dataLogF("   op %s\n", #opcode)
#else
#define TRACE_OPCODE(opcode)
#endif

// To keep compilers happy in case of unused labels, force usage of the label:
#define USE_LABEL(label) \
    do { \
        if (false) \
            goto label; \
    } while (false)

#define OFFLINE_ASM_OPCODE_LABEL(opcode) DEFINE_OPCODE(opcode) USE_LABEL(opcode); TRACE_OPCODE(opcode);

#define OFFLINE_ASM_GLOBAL_LABEL(label)  label: USE_LABEL(label);

#if ENABLE(LABEL_TRACING)
#define TRACE_LABEL(prefix, label) dataLog(#prefix, ": ", #label, "\n")
#else
#define TRACE_LABEL(prefix, label) do { } while (false);
#endif


#if ENABLE(COMPUTED_GOTO_OPCODES)
#define OFFLINE_ASM_GLUE_LABEL(label) label: TRACE_LABEL("OFFLINE_ASM_GLUE_LABEL", label); USE_LABEL(label);
#else
#define OFFLINE_ASM_GLUE_LABEL(label)  case label: label: USE_LABEL(label);
#endif

#define OFFLINE_ASM_LOCAL_LABEL(label) label: TRACE_LABEL("OFFLINE_ASM_LOCAL_LABEL", #label); USE_LABEL(label);

namespace JSC {

class CallLinkInfo;

//============================================================================
// CLoopRegister is the storage for an emulated CPU register.
// It defines the policy of how ints smaller than intptr_t are packed into the
// pseudo register, as well as hides endianness differences.

class CLoopRegister {
public:
    ALWAYS_INLINE intptr_t i() const { return m_value; };
    ALWAYS_INLINE uintptr_t u() const { return m_value; }
    ALWAYS_INLINE int32_t i32() const { return m_value; }
    ALWAYS_INLINE uint32_t u32() const { return m_value; }
    ALWAYS_INLINE int8_t i8() const { return m_value; }
    ALWAYS_INLINE uint8_t u8() const { return m_value; }

    ALWAYS_INLINE intptr_t* ip() const { return std::bit_cast<intptr_t*>(m_value); }
    ALWAYS_INLINE int8_t* i8p() const { return std::bit_cast<int8_t*>(m_value); }
    ALWAYS_INLINE void* vp() const { return std::bit_cast<void*>(m_value); }
    ALWAYS_INLINE const void* cvp() const { return std::bit_cast<const void*>(m_value); }
    ALWAYS_INLINE CallFrame* callFrame() const { return std::bit_cast<CallFrame*>(m_value); }
    ALWAYS_INLINE const void* instruction() const { return std::bit_cast<const void*>(m_value); }
    ALWAYS_INLINE VM* vm() const { return std::bit_cast<VM*>(m_value); }
    ALWAYS_INLINE JSCell* cell() const { return std::bit_cast<JSCell*>(m_value); }
    ALWAYS_INLINE ProtoCallFrame* protoCallFrame() const { return std::bit_cast<ProtoCallFrame*>(m_value); }
    ALWAYS_INLINE NativeFunction nativeFunc() const { return std::bit_cast<NativeFunction>(m_value); }
#if USE(JSVALUE64)
    ALWAYS_INLINE int64_t i64() const { return m_value; }
    ALWAYS_INLINE uint64_t u64() const { return m_value; }
    ALWAYS_INLINE EncodedJSValue encodedJSValue() const { return std::bit_cast<EncodedJSValue>(m_value); }
#endif
    ALWAYS_INLINE Opcode opcode() const { return std::bit_cast<Opcode>(m_value); }

    operator CallFrame*() { return std::bit_cast<CallFrame*>(m_value); }
    operator const JSInstruction*() { return std::bit_cast<const JSInstruction*>(m_value); }
    operator JSCell*() { return std::bit_cast<JSCell*>(m_value); }
    operator ProtoCallFrame*() { return std::bit_cast<ProtoCallFrame*>(m_value); }
    operator Register*() { return std::bit_cast<Register*>(m_value); }
    operator VM*() { return std::bit_cast<VM*>(m_value); }
    operator CallLinkInfo*() { return std::bit_cast<CallLinkInfo*>(m_value); }

    template<typename T, typename = std::enable_if_t<sizeof(T) == sizeof(uintptr_t)>>
    ALWAYS_INLINE void operator=(T value) { m_value = std::bit_cast<uintptr_t>(value); }
#if USE(JSVALUE64)
    ALWAYS_INLINE void operator=(int32_t value) { m_value = static_cast<intptr_t>(value); }
    ALWAYS_INLINE void operator=(uint32_t value) { m_value = static_cast<uintptr_t>(value); }
#endif
    ALWAYS_INLINE void operator=(int16_t value) { m_value = static_cast<intptr_t>(value); }
    ALWAYS_INLINE void operator=(uint16_t value) { m_value = static_cast<uintptr_t>(value); }
    ALWAYS_INLINE void operator=(int8_t value) { m_value = static_cast<intptr_t>(value); }
    ALWAYS_INLINE void operator=(uint8_t value) { m_value = static_cast<uintptr_t>(value); }
    ALWAYS_INLINE void operator=(bool value) { m_value = static_cast<uintptr_t>(value); }

#if USE(JSVALUE64)
    ALWAYS_INLINE double bitsAsDouble() const { return std::bit_cast<double>(m_value); }
    ALWAYS_INLINE int64_t bitsAsInt64() const { return std::bit_cast<int64_t>(m_value); }
#endif

private:
    uintptr_t m_value { static_cast<uintptr_t>(0xbadbeef0baddbeef) };
};

class CLoopDoubleRegister {
public:
    template<typename T>
    explicit operator T() const { return std::bit_cast<T>(m_value); }

    ALWAYS_INLINE double d() const { return m_value; }
    ALWAYS_INLINE int64_t bitsAsInt64() const { return std::bit_cast<int64_t>(m_value); }

    ALWAYS_INLINE void operator=(double value) { m_value = value; }

    template<typename T, typename = std::enable_if_t<sizeof(T) == sizeof(uintptr_t) && std::is_integral<T>::value>>
    ALWAYS_INLINE void operator=(T value) { m_value = std::bit_cast<double>(value); }

private:
    double m_value;
};

//============================================================================
// Some utilities:
//

namespace LLInt {

#if USE(JSVALUE32_64)
static double ints2Double(uint32_t lo, uint32_t hi)
{
    uint64_t value = (static_cast<uint64_t>(hi) << 32) | lo;
    return std::bit_cast<double>(value);
}

static void double2Ints(double val, CLoopRegister& lo, CLoopRegister& hi)
{
    uint64_t value = std::bit_cast<uint64_t>(val);
    hi = static_cast<uint32_t>(value >> 32);
    lo = static_cast<uint32_t>(value);
}
#endif // USE(JSVALUE32_64)

static void decodeResult(UGPRPair result, CLoopRegister& t0, CLoopRegister& t1)
{
    const void* t0Result;
    const void* t1Result;
    JSC::decodeResult(result, t0Result, t1Result);
    t0 = t0Result;
    t1 = t1Result;
}

} // namespace LLint

//============================================================================
// The llint C++ interpreter loop:
//

JSValue CLoop::execute(OpcodeID entryOpcodeID, void* executableAddress, VM* vm, ProtoCallFrame* protoCallFrame, bool isInitializationPass)
{
#define CAST std::bit_cast

    // One-time initialization of our address tables. We have to put this code
    // here because our labels are only in scope inside this function. The
    // caller (or one of its ancestors) is responsible for ensuring that this
    // is only called once during the initialization of the VM before threads
    // are at play.
    if (UNLIKELY(isInitializationPass)) {
        Opcode* opcodeMap = LLInt::opcodeMap();
        Opcode* opcodeMapWide16 = LLInt::opcodeMapWide16();
        Opcode* opcodeMapWide32 = LLInt::opcodeMapWide32();

#if ENABLE(COMPUTED_GOTO_OPCODES)
        #define OPCODE_ENTRY(__opcode, length) \
            opcodeMap[__opcode] = std::bit_cast<void*>(&&__opcode); \
            opcodeMapWide16[__opcode] = std::bit_cast<void*>(&&__opcode##_wide16); \
            opcodeMapWide32[__opcode] = std::bit_cast<void*>(&&__opcode##_wide32);

        #define LLINT_OPCODE_ENTRY(__opcode, length) \
            opcodeMap[__opcode] = std::bit_cast<void*>(&&__opcode);
#else
        // FIXME: this mapping is unnecessarily expensive in the absence of COMPUTED_GOTO
        //   narrow opcodes don't need any mapping and wide opcodes just need to add numOpcodeIDs
        #define OPCODE_ENTRY(__opcode, length) \
            opcodeMap[__opcode] = __opcode; \
            opcodeMapWide16[__opcode] = static_cast<OpcodeID>(__opcode##_wide16); \
            opcodeMapWide32[__opcode] = static_cast<OpcodeID>(__opcode##_wide32);

        #define LLINT_OPCODE_ENTRY(__opcode, length) \
            opcodeMap[__opcode] = __opcode;
#endif
        FOR_EACH_BYTECODE_ID(OPCODE_ENTRY)
        FOR_EACH_BYTECODE_HELPER_ID(OPCODE_ENTRY)
        FOR_EACH_CLOOP_BYTECODE_HELPER_ID(LLINT_OPCODE_ENTRY)
        FOR_EACH_LLINT_NATIVE_HELPER(LLINT_OPCODE_ENTRY)
        FOR_EACH_CLOOP_RETURN_HELPER_ID(LLINT_OPCODE_ENTRY)
        #undef OPCODE_ENTRY
        #undef LLINT_OPCODE_ENTRY

        // Note: we can only set the exceptionInstructions after we have
        // initialized the opcodeMap above. This is because getCodePtr()
        // can depend on the opcodeMap.
        uint8_t* exceptionInstructions = reinterpret_cast<uint8_t*>(LLInt::exceptionInstructions());
        for (unsigned i = 0; i < maxBytecodeStructLength + 1; ++i)
            exceptionInstructions[i] = llint_throw_from_slow_path_trampoline;

        return JSValue();
    }

    // Define the pseudo registers used by the LLINT C Loop backend:
    static_assert(sizeof(CLoopRegister) == sizeof(intptr_t));

    // The CLoop llint backend is initially based on the ARMv7 backend, and
    // then further enhanced with a few instructions from the x86 backend to
    // support building for X64 targets. Hence, the shape of the generated
    // code and the usage convention of registers will look a lot like the
    // ARMv7 backend's.
    //
    // For example, on a 32-bit build:
    // 1. Outgoing args will be set up as follows:
    //    arg1 in t0 (r0 on ARM)
    //    arg2 in t1 (r1 on ARM)
    // 2. 32 bit return values will be in t0 (r0 on ARM).
    // 3. 64 bit return values (e.g. doubles) will be in t0,t1 (r0,r1 on ARM).
    //
    // But instead of naming these simulator registers based on their ARM
    // counterparts, we'll name them based on their original llint asm names.
    // This will make it easier to correlate the generated code with the
    // original llint asm code.
    //
    // On a 64-bit build, it more like x64 in that the registers are 64 bit.
    // Hence:
    // 1. Outgoing args are still the same: arg1 in t0, arg2 in t1, etc.
    // 2. 32 bit result values will be in the low 32-bit of t0.
    // 3. 64 bit result values will be in t0.

    CLoopRegister t0, t1, t2, t3, t5, t6, t7, sp, cfr, lr, pc;
#if USE(JSVALUE64)
    CLoopRegister numberTag, notCellMask;
#endif
    CLoopRegister pcBase;
    CLoopRegister metadataTable;
    CLoopDoubleRegister d0, d1;

    UNUSED_VARIABLE(t0);
    UNUSED_VARIABLE(t1);
    UNUSED_VARIABLE(t2);
    UNUSED_VARIABLE(t3);
    UNUSED_VARIABLE(t5);
    UNUSED_VARIABLE(t6);
    UNUSED_VARIABLE(t7);

    struct StackPointerScope {
        StackPointerScope(CLoopStack& stack)
            : m_stack(stack)
            , m_originalStackPointer(stack.currentStackPointer())
        { }

        ~StackPointerScope()
        {
            m_stack.setCurrentStackPointer(m_originalStackPointer);
        }

    private:
        CLoopStack& m_stack;
        void* m_originalStackPointer;
    };

    CLoopStack& cloopStack = vm->interpreter.cloopStack();
    StackPointerScope stackPointerScope(cloopStack);

    lr = getOpcode(llint_return_to_host);
    sp = cloopStack.currentStackPointer();
    cfr = vm->topCallFrame;
#ifndef NDEBUG
    void* startSP = sp.vp();
    CallFrame* startCFR = cfr.callFrame();
#endif

    // Initialize the incoming args for doVMEntryToJavaScript:
    t0 = executableAddress;
    t1 = vm;
    t2 = protoCallFrame;

#if USE(JSVALUE64)
    // For the ASM llint, JITStubs takes care of this initialization. We do
    // it explicitly here for the C loop:
    numberTag = JSValue::NumberTag;
    notCellMask = JSValue::NotCellMask;
#endif // USE(JSVALUE64)

    // Interpreter variables for value passing between opcodes and/or helpers:
    NativeFunction nativeFunc = nullptr;
    JSValue functionReturnValue;
    Opcode opcode = getOpcode(entryOpcodeID);

#define PUSH(cloopReg) \
    do { \
        sp = sp.ip() - 1; \
        *sp.ip() = cloopReg.i(); \
    } while (false)

#define POP(cloopReg) \
    do { \
        cloopReg = *sp.ip(); \
        sp = sp.ip() + 1; \
    } while (false)

#if ENABLE(OPCODE_STATS)
#define RECORD_OPCODE_STATS(__opcode) OpcodeStats::recordInstruction(__opcode)
#else
#define RECORD_OPCODE_STATS(__opcode)
#endif

#if ENABLE(COMPUTED_GOTO_OPCODES)

    //========================================================================
    // Loop dispatch mechanism using computed goto statements:

    #define DISPATCH_OPCODE() goto *opcode

    #define DEFINE_OPCODE(__opcode) \
        __opcode: \
            RECORD_OPCODE_STATS(__opcode);

    // Dispatch to the current PC's bytecode:
    DISPATCH_OPCODE();

#else // !ENABLE(COMPUTED_GOTO_OPCODES)
    //========================================================================
    // Loop dispatch mechanism using a C switch statement:

    #define DISPATCH_OPCODE() goto dispatchOpcode

    #define DEFINE_OPCODE(__opcode) \
        case __opcode: \
        __opcode: \
            RECORD_OPCODE_STATS(__opcode);

    // Dispatch to the current PC's bytecode:
    dispatchOpcode:
    switch (static_cast<unsigned>(opcode))

#endif // !ENABLE(COMPUTED_GOTO_OPCODES)

    //========================================================================
    // Bytecode handlers:
    {
        // This is the file generated by offlineasm, which contains all of the
        // bytecode handlers for the interpreter, as compiled from
        // LowLevelInterpreter.asm and its peers.

        IGNORE_CLANG_WARNINGS_BEGIN("unreachable-code")
        #include "LLIntAssembly.h"
        IGNORE_CLANG_WARNINGS_END

        OFFLINE_ASM_GLUE_LABEL(llint_return_to_host)
        {
            ASSERT(startSP == sp.vp());
            ASSERT(startCFR == cfr.callFrame());
#if USE(JSVALUE32_64)
            return JSValue(t1.i(), t0.i()); // returning JSValue(tag, payload);
#else
            return JSValue::decode(t0.encodedJSValue());
#endif
        }

#if !ENABLE(COMPUTED_GOTO_OPCODES)
    default:
        ASSERT(false);
#endif

    } // END bytecode handler cases.

#if ENABLE(COMPUTED_GOTO_OPCODES)
    // Keep the compiler happy so that it doesn't complain about unused
    // labels for the LLInt trampoline glue. The labels are automatically
    // emitted by label macros above, and some of them are referenced by
    // the llint generated code. Since we can't tell ahead of time which
    // will be referenced and which will be not, we'll just passify the
    // compiler on all such labels:
    #define LLINT_OPCODE_ENTRY(__opcode, length) \
        UNUSED_LABEL(__opcode);
        FOR_EACH_OPCODE_ID(LLINT_OPCODE_ENTRY);
    #undef LLINT_OPCODE_ENTRY
#endif

    #undef DEFINE_OPCODE
    #undef CHECK_FOR_TIMEOUT
    #undef CAST

    return JSValue(); // to suppress a compiler warning.
} // Interpreter::llintCLoopExecute()

} // namespace JSC

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#else // !ENABLE(C_LOOP)

//============================================================================
// Define the opcode dispatch mechanism when using an ASM loop:
//

// We need an OFFLINE_ASM_BEGIN_SPACER because we'll be declaring every OFFLINE_ASM_GLOBAL_LABEL
// as an alt entry. However, Clang will error out if the first global label is also an alt entry.
// To work around this, we'll make OFFLINE_ASM_BEGIN emit an unused global label (which will now
// be the first) that is not an alt entry, and insert a spacer instruction between it and the
// actual first global label emitted by the offlineasm. Clang also requires that these 2 labels
// not point to the same spot in memory; hence, the need for the spacer.
//
// For the spacer instruction, we'll choose a breakpoint instruction. However, we can
// also just emit an unused piece of data. A breakpoint instruction is preferable.

#if CPU(ARM_THUMB2)
#define OFFLINE_ASM_BEGIN_SPACER "bkpt #0\n"
#elif CPU(ARM64)
#define OFFLINE_ASM_BEGIN_SPACER "brk #" STRINGIZE_VALUE_OF(WTF_FATAL_CRASH_CODE) "\n"
#elif CPU(X86_64)
#define OFFLINE_ASM_BEGIN_SPACER "int3\n"
#else
#define OFFLINE_ASM_BEGIN_SPACER ".int 0xbadbeef0\n"
#endif

// These are for building an interpreter from generated assembly code:
// the jsc_llint_begin and jsc_llint_end labels help lldb_webkit.py find the
// start and end of the llint instruction range quickly.

#define OFFLINE_ASM_BEGIN   asm ( \
    OFFLINE_ASM_GLOBAL_LABEL_IMPL(jsc_llint_begin, OFFLINE_ASM_NO_ALT_ENTRY_DIRECTIVE, OFFLINE_ASM_ALIGN4B, HIDE_SYMBOL) \
    OFFLINE_ASM_BEGIN_SPACER

#define OFFLINE_ASM_END \
    OFFLINE_ASM_BEGIN_SPACER \
    OFFLINE_ASM_GLOBAL_LABEL_IMPL(jsc_llint_end, OFFLINE_ASM_NO_ALT_ENTRY_DIRECTIVE, OFFLINE_ASM_ALIGN4B, HIDE_SYMBOL) \
);

#if ENABLE(LLINT_EMBEDDED_OPCODE_ID)
#define EMBED_OPCODE_ID_IF_NEEDED(__opcode) ".int " __opcode##_value_string "\n"
#else
#define EMBED_OPCODE_ID_IF_NEEDED(__opcode)
#endif

#define OFFLINE_ASM_OPCODE_LABEL(__opcode) \
    EMBED_OPCODE_ID_IF_NEEDED(__opcode) \
    OFFLINE_ASM_OPCODE_DEBUG_LABEL(llint_##__opcode) \
    OFFLINE_ASM_LOCAL_LABEL(llint_##__opcode)

#define OFFLINE_ASM_GLUE_LABEL(__opcode) \
    OFFLINE_ASM_OPCODE_DEBUG_LABEL(__opcode) \
    OFFLINE_ASM_LOCAL_LABEL(__opcode)

#define OFFLINE_ASM_NO_ALT_ENTRY_DIRECTIVE(label)

#if COMPILER(CLANG) && ENABLE(OFFLINE_ASM_ALT_ENTRY)
#define OFFLINE_ASM_ALT_ENTRY_DIRECTIVE(label) \
    ".alt_entry " SYMBOL_STRING(label) "\n"
#else
#define OFFLINE_ASM_ALT_ENTRY_DIRECTIVE(label)
#endif

#if OS(DARWIN)
#define OFFLINE_ASM_TEXT_SECTION ".section __TEXT,__jsc_int,regular,pure_instructions\n"
#else
#define OFFLINE_ASM_TEXT_SECTION ".text\n"
#endif

#if CPU(ARM_THUMB2)
#define OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, ALT_ENTRY, ALIGNMENT, VISIBILITY) \
    OFFLINE_ASM_TEXT_SECTION                     \
    ALIGNMENT                                    \
    ALT_ENTRY(label)                             \
    ".globl " SYMBOL_STRING(label) "\n"          \
    VISIBILITY(label) "\n"                       \
    ".thumb\n"                                   \
    ".thumb_func " THUMB_FUNC_PARAM(label) "\n"  \
    SYMBOL_STRING(label) ":\n"
#elif CPU(RISCV64)
#define OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, ALT_ENTRY, ALIGNMENT, VISIBILITY) \
    OFFLINE_ASM_TEXT_SECTION                    \
    ALIGNMENT                                   \
    ALT_ENTRY(label)                            \
    ".globl " SYMBOL_STRING(label) "\n"         \
    ".attribute arch, \"rv64gc\"" "\n"          \
    VISIBILITY(label) "\n"                      \
    SYMBOL_STRING(label) ":\n"
#else
#define OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, ALT_ENTRY, ALIGNMENT, VISIBILITY) \
    OFFLINE_ASM_TEXT_SECTION                    \
    ALIGNMENT                                   \
    ALT_ENTRY(label)                            \
    ".globl " SYMBOL_STRING(label) "\n"         \
    VISIBILITY(label) "\n"                      \
    SYMBOL_STRING(label) ":\n"
#endif

#define OFFLINE_ASM_ALIGN4B ".balign 4\n"
#define OFFLINE_ASM_NOALIGN ""

#if CPU(ARM64) || CPU(ARM64E)
#define OFFLINE_ASM_ALIGN_TRAP(align) OFFLINE_ASM_BEGIN_SPACER "\n .balignl " #align ", 0xd4388e20\n" // pad with brk instructions
#elif CPU(X86_64)
#define OFFLINE_ASM_ALIGN_TRAP(align) OFFLINE_ASM_BEGIN_SPACER "\n .balign " #align ", 0xcc\n" // pad with int 3 instructions
#elif CPU(ARM)
#define OFFLINE_ASM_ALIGN_TRAP(align) OFFLINE_ASM_BEGIN_SPACER "\n .balignw " #align ", 0xde00\n" // pad with udf instructions
#elif CPU(RISCV64)
#define OFFLINE_ASM_ALIGN_TRAP(align) OFFLINE_ASM_BEGIN_SPACER "\n .balignw " #align ", 0x9002\n" // pad with c.ebreak instructions
#endif

#define OFFLINE_ASM_EXPORT_SYMBOL(symbol)

#define OFFLINE_ASM_GLOBAL_LABEL(label) \
    OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, OFFLINE_ASM_ALT_ENTRY_DIRECTIVE, OFFLINE_ASM_ALIGN4B, HIDE_SYMBOL)
#define OFFLINE_ASM_UNALIGNED_GLOBAL_LABEL(label) \
    OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, OFFLINE_ASM_ALT_ENTRY_DIRECTIVE, OFFLINE_ASM_NOALIGN, HIDE_SYMBOL)
#define OFFLINE_ASM_ALIGNED_GLOBAL_LABEL(label, align) \
    OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, OFFLINE_ASM_ALT_ENTRY_DIRECTIVE, OFFLINE_ASM_ALIGN_TRAP(align), HIDE_SYMBOL)
#define OFFLINE_ASM_GLOBAL_EXPORT_LABEL(label) \
    OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, OFFLINE_ASM_ALT_ENTRY_DIRECTIVE, OFFLINE_ASM_ALIGN4B, OFFLINE_ASM_EXPORT_SYMBOL)
#define OFFLINE_ASM_UNALIGNED_GLOBAL_EXPORT_LABEL(label) \
    OFFLINE_ASM_GLOBAL_LABEL_IMPL(label, OFFLINE_ASM_ALT_ENTRY_DIRECTIVE, OFFLINE_ASM_NOALIGN, OFFLINE_ASM_EXPORT_SYMBOL)

#if COMPILER(CLANG) && ENABLE(OFFLINE_ASM_ALT_ENTRY)
#define OFFLINE_ASM_ALT_GLOBAL_LABEL(label) OFFLINE_ASM_GLOBAL_LABEL(label)
#else
#define OFFLINE_ASM_ALT_GLOBAL_LABEL(label)
#endif

#define OFFLINE_ASM_LOCAL_LABEL(label) \
    LOCAL_LABEL_STRING(label) ":\n" \
    OFFLINE_ASM_ALT_GLOBAL_LABEL(label)

#if OS(LINUX)
#define OFFLINE_ASM_OPCODE_DEBUG_LABEL(label)  #label ":\n"
#else
#define OFFLINE_ASM_OPCODE_DEBUG_LABEL(label)
#endif

#include "WasmCallee.h"

// This works around a bug in GDB where, if the compilation unit
// doesn't have any address range information, its line table won't
// even be consulted. Emit {before,after}_llint_asm so that the code
// emitted in the top level inline asm statement is within functions
// visible to the compiler. This way, GDB can resolve a PC in the
// llint asm code to this compilation unit and the successfully look
// up the line number information.
DEBUGGER_ANNOTATION_MARKER(before_llint_asm)

// This is a file generated by offlineasm, which contains all of the assembly code
// for the interpreter, as compiled from LowLevelInterpreter.asm.
#include "LLIntAssembly.h"

DEBUGGER_ANNOTATION_MARKER(after_llint_asm)

#endif // ENABLE(C_LOOP)