1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
|
/*
* Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003-2024 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#pragma once
#include "ExecutableInfo.h"
#include "Lexer.h"
#include "ModuleScopeData.h"
#include "Nodes.h"
#include "ParseHash.h"
#include "ParserArena.h"
#include "ParserError.h"
#include "ParserFunctionInfo.h"
#include "ParserTokens.h"
#include "SourceProvider.h"
#include "SourceProviderCache.h"
#include "SourceProviderCacheItem.h"
#include "VariableEnvironment.h"
#include <wtf/FixedVector.h>
#include <wtf/Forward.h>
#include <wtf/IterationStatus.h>
#include <wtf/Noncopyable.h>
#include <wtf/RefPtr.h>
#include <wtf/TZoneMalloc.h>
#include <wtf/text/MakeString.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC {
class FunctionMetadataNode;
class FunctionParameters;
class Identifier;
class VM;
class SourceCode;
class SyntaxChecker;
struct DebuggerParseData;
// Macros to make the more common TreeBuilder types a little less verbose
#define TreeStatement typename TreeBuilder::Statement
#define TreeExpression typename TreeBuilder::Expression
#define TreeFormalParameterList typename TreeBuilder::FormalParameterList
#define TreeSourceElements typename TreeBuilder::SourceElements
#define TreeClause typename TreeBuilder::Clause
#define TreeClauseList typename TreeBuilder::ClauseList
#define TreeArguments typename TreeBuilder::Arguments
#define TreeArgumentsList typename TreeBuilder::ArgumentsList
#define TreeFunctionBody typename TreeBuilder::FunctionBody
#define TreeClassExpression typename TreeBuilder::ClassExpression
#define TreeProperty typename TreeBuilder::Property
#define TreePropertyList typename TreeBuilder::PropertyList
#define TreeDestructuringPattern typename TreeBuilder::DestructuringPattern
static_assert(LastUntaggedToken < 64, "Less than 64 untagged tokens");
enum SourceElementsMode { CheckForStrictMode, DontCheckForStrictMode };
enum FunctionBodyType { ArrowFunctionBodyExpression, ArrowFunctionBodyBlock, StandardFunctionBodyBlock };
enum class FunctionNameRequirements { None, Named, Unnamed };
enum class DestructuringKind {
DestructureToVariables,
DestructureToLet,
DestructureToConst,
DestructureToCatchParameters,
DestructureToParameters,
DestructureToExpressions
};
enum class DeclarationType {
VarDeclaration,
LetDeclaration,
ConstDeclaration
};
enum class DeclarationImportType {
Imported,
ImportedNamespace,
NotImported
};
enum DeclarationResult {
Valid = 0,
InvalidStrictMode = 1 << 0,
InvalidDuplicateDeclaration = 1 << 1,
InvalidPrivateStaticNonStatic = 1 << 2
};
typedef uint8_t DeclarationResultMask;
enum class DeclarationDefaultContext {
Standard,
ExportDefault,
};
enum class InferName {
Allowed,
Disallowed,
};
template <typename T> inline bool isEvalNode() { return false; }
template <> inline bool isEvalNode<EvalNode>() { return true; }
struct ScopeLabelInfo {
UniquedStringImpl* uid;
bool isLoop;
};
ALWAYS_INLINE static bool isArguments(const VM& vm, const Identifier* ident)
{
return vm.propertyNames->arguments == *ident;
}
ALWAYS_INLINE static bool isEval(const VM& vm, const Identifier* ident)
{
return vm.propertyNames->eval == *ident;
}
ALWAYS_INLINE static bool isEvalOrArgumentsIdentifier(const VM& vm, const Identifier* ident)
{
return isEval(vm, ident) || isArguments(vm, ident);
}
ALWAYS_INLINE static bool isIdentifierOrKeyword(const JSToken& token)
{
return token.m_type == IDENT || token.m_type & KeywordTokenFlag;
}
// "let", "yield", and "await" may be keywords or identifiers depending on context.
ALWAYS_INLINE static bool isContextualKeyword(const JSToken& token)
{
return token.m_type >= FirstContextualKeywordToken && token.m_type <= LastContextualKeywordToken;
}
JS_EXPORT_PRIVATE extern std::atomic<unsigned> globalParseCount;
struct Scope {
WTF_MAKE_NONCOPYABLE(Scope);
public:
Scope(const VM& vm, ImplementationVisibility implementationVisibility, LexicallyScopedFeatures lexicallyScopedFeatures, bool isFunction, bool isGeneratorFunction, bool isArrowFunction, bool isAsyncFunction, bool isStaticBlock)
: m_vm(vm)
, m_implementationVisibility(implementationVisibility)
, m_lexicallyScopedFeatures(lexicallyScopedFeatures)
, m_isFunction(isFunction)
, m_isGeneratorFunction(isGeneratorFunction)
, m_isArrowFunction(isArrowFunction)
, m_isAsyncFunction(isAsyncFunction)
, m_isStaticBlock(isStaticBlock)
{
m_usedVariables.append(UniquedStringImplPtrSet());
}
Scope(Scope&&) = default;
ImplementationVisibility implementationVisibility() const { return m_implementationVisibility; }
void resetImplementationVisibility()
{
m_implementationVisibility = ImplementationVisibility::Public;
}
void startSwitch() { m_switchDepth++; }
void endSwitch() { m_switchDepth--; }
void startLoop() { m_loopDepth++; }
void endLoop() { ASSERT(m_loopDepth); m_loopDepth--; }
bool inLoop() { return !!m_loopDepth; }
bool breakIsValid() { return m_loopDepth || m_switchDepth; }
bool continueIsValid() { return m_loopDepth; }
void pushLabel(const Identifier* label, bool isLoop)
{
if (!m_labels)
m_labels = makeUnique<LabelStack>();
m_labels->append(ScopeLabelInfo { label->impl(), isLoop });
}
void popLabel()
{
ASSERT(m_labels);
ASSERT(m_labels->size());
m_labels->removeLast();
}
ScopeLabelInfo* getLabel(const Identifier* label)
{
if (!m_labels)
return nullptr;
for (int i = m_labels->size(); i > 0; i--) {
if (m_labels->at(i - 1).uid == label->impl())
return &m_labels->at(i - 1);
}
return nullptr;
}
void setSourceParseMode(SourceParseMode mode)
{
switch (mode) {
case SourceParseMode::AsyncGeneratorBodyMode:
setIsAsyncGeneratorFunctionBody();
break;
case SourceParseMode::AsyncArrowFunctionBodyMode:
setIsAsyncArrowFunctionBody();
break;
case SourceParseMode::AsyncFunctionBodyMode:
setIsAsyncFunctionBody();
break;
case SourceParseMode::GeneratorBodyMode:
setIsGeneratorFunctionBody();
break;
case SourceParseMode::GeneratorWrapperFunctionMode:
case SourceParseMode::GeneratorWrapperMethodMode:
setIsGeneratorFunction();
break;
case SourceParseMode::AsyncGeneratorWrapperMethodMode:
case SourceParseMode::AsyncGeneratorWrapperFunctionMode:
setIsAsyncGeneratorFunction();
break;
case SourceParseMode::NormalFunctionMode:
case SourceParseMode::GetterMode:
case SourceParseMode::SetterMode:
case SourceParseMode::MethodMode:
case SourceParseMode::ClassFieldInitializerMode:
setIsFunction();
break;
case SourceParseMode::ClassStaticBlockMode:
setIsFunction();
setIsStaticBlock();
break;
case SourceParseMode::ArrowFunctionMode:
setIsArrowFunction();
break;
case SourceParseMode::AsyncFunctionMode:
case SourceParseMode::AsyncMethodMode:
setIsAsyncFunction();
break;
case SourceParseMode::AsyncArrowFunctionMode:
setIsAsyncArrowFunction();
break;
case SourceParseMode::ProgramMode:
setIsGlobalCode();
break;
case SourceParseMode::ModuleAnalyzeMode:
case SourceParseMode::ModuleEvaluateMode:
setIsModuleCode();
break;
}
}
bool isFunction() const { return m_isFunction; }
bool isFunctionBoundary() const { return m_isFunctionBoundary; }
bool isGeneratorFunction() const { return m_isGeneratorFunction; }
bool isGeneratorFunctionBoundary() const { return m_isGeneratorFunctionBoundary; }
bool isAsyncFunction() const { return m_isAsyncFunction; }
bool isAsyncFunctionBoundary() const { return m_isAsyncFunctionBoundary; }
bool isPrivateNameScope() const { return m_isClassScope; }
bool isClassScope() const { return m_isClassScope; }
bool isGlobalCode() const { return m_isGlobalCode; }
bool isModuleCode() const { return m_isModuleCode; }
bool hasArguments() const { return m_hasArguments; }
void setIsSimpleCatchParameterScope() { m_isSimpleCatchParameterScope = true; }
bool isSimpleCatchParameterScope() { return m_isSimpleCatchParameterScope; }
void setIsCatchBlockScope() { m_isCatchBlockScope = true; }
bool isCatchBlockScope() { return m_isCatchBlockScope; }
void setIsStaticBlock()
{
m_isStaticBlock = true;
m_isStaticBlockBoundary = true;
}
bool isStaticBlock() { return m_isStaticBlock; }
bool isStaticBlockBoundary() { return m_isStaticBlockBoundary; }
void setIsLexicalScope()
{
m_isLexicalScope = true;
m_allowsLexicalDeclarations = true;
}
void setIsPrivateNameScope()
{
// FIXME: Currently, isPrivateNameScope is an alias for isClassScope --- This is potentially misleading,
// particularly when parsing direct eval code which occurs within a class.
setIsClassScope();
}
void setIsClassScope()
{
m_isClassScope = true;
}
bool isLexicalScope() const { return m_isLexicalScope; }
bool usesEval() const { return m_usesEval; }
bool usesImportMeta() const { return m_usesImportMeta; }
const UncheckedKeyHashSet<UniquedStringImpl*>& closedVariableCandidates() const { return m_closedVariableCandidates; }
VariableEnvironment& declaredVariables() { return m_declaredVariables; }
VariableEnvironment& lexicalVariables() { return m_lexicalVariables; }
void finalizeLexicalEnvironment()
{
if (m_usesEval || m_needsFullActivation)
m_lexicalVariables.markAllVariablesAsCaptured();
else
computeLexicallyCapturedVariablesAndPurgeCandidates();
}
VariableEnvironment takeLexicalEnvironment() { return WTFMove(m_lexicalVariables); }
VariableEnvironment takeDeclaredVariables() { return WTFMove(m_declaredVariables); }
void computeLexicallyCapturedVariablesAndPurgeCandidates()
{
// Because variables may be defined at any time in the range of a lexical scope, we must
// track lexical variables that might be captured. Then, when we're preparing to pop the top
// lexical scope off the stack, we should find which variables are truly captured, and which
// variable still may be captured in a parent scope.
if (m_lexicalVariables.size() && m_closedVariableCandidates.size()) {
for (UniquedStringImpl* impl : m_closedVariableCandidates)
m_lexicalVariables.markVariableAsCapturedIfDefined(impl);
}
// We can now purge values from the captured candidates because they're captured in this scope.
{
for (const auto& entry : m_lexicalVariables) {
if (entry.value.isCaptured())
m_closedVariableCandidates.remove(entry.key.get());
}
}
}
DeclarationResultMask declareCallee(const Identifier* ident)
{
auto addResult = m_declaredVariables.add(ident->impl());
// We want to track if callee is captured, but we don't want to act like it's a 'var'
// because that would cause the BytecodeGenerator to emit bad code.
addResult.iterator->value.clearIsVar();
DeclarationResultMask result = DeclarationResult::Valid;
if (isEvalOrArgumentsIdentifier(m_vm, ident))
result |= DeclarationResult::InvalidStrictMode;
return result;
}
DeclarationResultMask declareVariable(const Identifier* ident)
{
ASSERT(m_allowsVarDeclarations);
DeclarationResultMask result = DeclarationResult::Valid;
bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
auto addResult = m_declaredVariables.add(ident->impl());
addResult.iterator->value.setIsVar();
if (!isValidStrictMode)
result |= DeclarationResult::InvalidStrictMode;
return result;
}
DeclarationResultMask declareFunctionAsVar(const Identifier* ident)
{
ASSERT(m_allowsVarDeclarations);
DeclarationResultMask result = DeclarationResult::Valid;
bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
if (!isValidStrictMode)
result |= DeclarationResult::InvalidStrictMode;
m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
auto addResult = m_declaredVariables.add(ident->impl());
addResult.iterator->value.setIsVar();
addResult.iterator->value.setIsFunction();
if (m_lexicalVariables.contains(ident->impl()))
result |= DeclarationResult::InvalidDuplicateDeclaration;
return result;
}
DeclarationResultMask declareFunctionAsLet(const Identifier* ident, bool isFunctionDeclaration)
{
ASSERT(m_allowsLexicalDeclarations);
DeclarationResultMask result = DeclarationResult::Valid;
bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
if (!isValidStrictMode)
result |= DeclarationResult::InvalidStrictMode;
m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
auto addResult = m_lexicalVariables.add(ident->impl());
if (!addResult.isNewEntry) {
if (strictMode() || !addResult.iterator->value.isFunctionDeclaration() || !isFunctionDeclaration)
result |= DeclarationResult::InvalidDuplicateDeclaration;
}
if (m_declaredVariables.contains(ident->impl()) || m_variablesBeingHoisted.contains(ident->impl()))
result |= DeclarationResult::InvalidDuplicateDeclaration;
addResult.iterator->value.setIsLet();
addResult.iterator->value.setIsFunction();
if (isFunctionDeclaration)
addResult.iterator->value.setIsFunctionDeclaration();
return result;
}
void addVariableBeingHoisted(const Identifier* ident)
{
ASSERT(!m_allowsVarDeclarations);
m_variablesBeingHoisted.add(ident->impl());
}
enum class NeedsDuplicateDeclarationCheck : bool { No, Yes };
template<NeedsDuplicateDeclarationCheck needsCheck>
void addSloppyModeFunctionHoistingCandidate(FunctionMetadataNode* node)
{
ASSERT(node);
ASSERT(!strictMode());
m_sloppyModeFunctionHoistingCandidates.set(node, needsCheck);
}
void appendFunction(FunctionMetadataNode* node)
{
ASSERT(node);
m_functionDeclarations.append(node);
}
DeclarationStacks::FunctionStack takeFunctionDeclarations() { return WTFMove(m_functionDeclarations); }
DeclarationResultMask declareLexicalVariable(const Identifier* ident, bool isConstant, DeclarationImportType importType = DeclarationImportType::NotImported)
{
ASSERT(m_allowsLexicalDeclarations);
DeclarationResultMask result = DeclarationResult::Valid;
bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
auto addResult = m_lexicalVariables.add(ident->impl());
if (isConstant)
addResult.iterator->value.setIsConst();
else
addResult.iterator->value.setIsLet();
if (importType == DeclarationImportType::Imported)
addResult.iterator->value.setIsImported();
else if (importType == DeclarationImportType::ImportedNamespace) {
addResult.iterator->value.setIsImported();
addResult.iterator->value.setIsImportedNamespace();
}
if (!addResult.isNewEntry || m_variablesBeingHoisted.contains(ident->impl()))
result |= DeclarationResult::InvalidDuplicateDeclaration;
if (!isValidStrictMode)
result |= DeclarationResult::InvalidStrictMode;
return result;
}
ALWAYS_INLINE bool hasDeclaredGlobalArguments()
{
const Identifier& ident = m_vm.propertyNames->arguments;
return hasLexicallyDeclaredVariable(ident) || hasDeclaredVariable(ident) || shadowsArguments();
}
ALWAYS_INLINE bool hasDeclaredVariable(const Identifier& ident)
{
return hasDeclaredVariable(ident.impl());
}
bool hasDeclaredVariable(const RefPtr<UniquedStringImpl>& ident)
{
auto iter = m_declaredVariables.find(ident.get());
if (iter == m_declaredVariables.end())
return false;
VariableEnvironmentEntry entry = iter->value;
return entry.isVar(); // The callee isn't a "var".
}
ALWAYS_INLINE bool hasLexicallyDeclaredVariable(const Identifier& ident)
{
return hasLexicallyDeclaredVariable(ident.impl());
}
bool hasLexicallyDeclaredVariable(const RefPtr<UniquedStringImpl>& ident) const
{
return m_lexicalVariables.contains(ident.get());
}
bool hasPrivateName(const Identifier& ident)
{
return m_lexicalVariables.hasPrivateName(ident);
}
DeclarationResultMask declarePrivateMethod(const Identifier& ident, ClassElementTag tag)
{
ASSERT(m_allowsLexicalDeclarations);
DeclarationResultMask result = DeclarationResult::Valid;
bool addResult = tag == ClassElementTag::Static ? m_lexicalVariables.declareStaticPrivateMethod(ident) : m_lexicalVariables.declarePrivateMethod(ident);
if (!addResult) {
result |= DeclarationResult::InvalidDuplicateDeclaration;
return result;
}
return result;
}
enum class PrivateAccessorType { Setter, Getter };
DeclarationResultMask declarePrivateAccessor(const Identifier& ident, ClassElementTag tag, PrivateAccessorType accessorType)
{
DeclarationResultMask result = DeclarationResult::Valid;
VariableEnvironment::PrivateDeclarationResult addResult;
if (accessorType == PrivateAccessorType::Setter)
addResult = tag == ClassElementTag::Static ? m_lexicalVariables.declareStaticPrivateSetter(ident) : m_lexicalVariables.declarePrivateSetter(ident);
else
addResult = tag == ClassElementTag::Static ? m_lexicalVariables.declareStaticPrivateGetter(ident) : m_lexicalVariables.declarePrivateGetter(ident);
if (addResult == VariableEnvironment::PrivateDeclarationResult::DuplicatedName)
result |= DeclarationResult::InvalidDuplicateDeclaration;
if (addResult == VariableEnvironment::PrivateDeclarationResult::InvalidStaticNonStatic)
result |= DeclarationResult::InvalidPrivateStaticNonStatic;
return result;
}
DeclarationResultMask declarePrivateSetter(const Identifier& ident, ClassElementTag tag)
{
ASSERT(m_allowsLexicalDeclarations);
return declarePrivateAccessor(ident, tag, PrivateAccessorType::Setter);
}
DeclarationResultMask declarePrivateGetter(const Identifier& ident, ClassElementTag tag)
{
ASSERT(m_allowsLexicalDeclarations);
return declarePrivateAccessor(ident, tag, PrivateAccessorType::Getter);
}
DeclarationResultMask declarePrivateField(const Identifier& ident)
{
ASSERT(m_allowsLexicalDeclarations);
DeclarationResultMask result = DeclarationResult::Valid;
auto addResult = m_lexicalVariables.declarePrivateField(ident);
if (!addResult.isNewEntry)
result |= DeclarationResult::InvalidDuplicateDeclaration;
return result;
}
ALWAYS_INLINE bool hasDeclaredParameter(const Identifier& ident)
{
return hasDeclaredParameter(ident.impl());
}
bool hasDeclaredParameter(const RefPtr<UniquedStringImpl>& ident)
{
return m_declaredParameters.contains(ident.get()) || hasDeclaredVariable(ident);
}
void preventAllVariableDeclarations()
{
m_allowsVarDeclarations = false;
m_allowsLexicalDeclarations = false;
}
void preventVarDeclarations() { m_allowsVarDeclarations = false; }
bool allowsVarDeclarations() const { return m_allowsVarDeclarations; }
bool allowsLexicalDeclarations() const { return m_allowsLexicalDeclarations; }
DeclarationResultMask declareParameter(const Identifier* ident)
{
ASSERT(m_allowsVarDeclarations);
DeclarationResultMask result = DeclarationResult::Valid;
bool isArgumentsIdent = isArguments(m_vm, ident);
auto addResult = m_declaredVariables.add(ident->impl());
bool isDuplicateParameter = !addResult.isNewEntry && addResult.iterator->value.isParameter();
bool isValidStrictMode = !isDuplicateParameter && m_vm.propertyNames->eval != *ident && !isArgumentsIdent;
addResult.iterator->value.clearIsVar();
addResult.iterator->value.setIsParameter();
m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
m_declaredParameters.add(ident->impl());
if (!isValidStrictMode)
result |= DeclarationResult::InvalidStrictMode;
if (isArgumentsIdent)
m_shadowsArguments = true;
if (isDuplicateParameter)
result |= DeclarationResult::InvalidDuplicateDeclaration;
return result;
}
bool usedVariablesContains(UniquedStringImpl* impl) const
{
for (const UniquedStringImplPtrSet& set : m_usedVariables) {
if (set.contains(impl))
return true;
}
return false;
}
template <typename Func>
void forEachUsedVariable(const Func& func)
{
for (const UniquedStringImplPtrSet& set : m_usedVariables) {
for (UniquedStringImpl* impl : set) {
if (func(impl) == IterationStatus::Done)
return;
}
}
}
void useVariable(const Identifier* ident, bool isEval)
{
useVariable(ident->impl(), isEval);
}
void useVariable(UniquedStringImpl* impl, bool isEval)
{
m_usesEval |= isEval;
m_usedVariables.last().add(impl);
}
void usePrivateName(const Identifier& ident)
{
ASSERT(m_allowsLexicalDeclarations);
useVariable(&ident, false);
}
void setUsesImportMeta() { m_usesImportMeta = true; }
void pushUsedVariableSet() { m_usedVariables.append(UniquedStringImplPtrSet()); }
size_t currentUsedVariablesSize() { return m_usedVariables.size(); }
void revertToPreviousUsedVariables(size_t size) { m_usedVariables.resize(size); }
void setNeedsFullActivation() { m_needsFullActivation = true; }
bool needsFullActivation() const { return m_needsFullActivation; }
bool isArrowFunctionBoundary() { return m_isArrowFunctionBoundary; }
bool isArrowFunction() { return m_isArrowFunction; }
bool hasDirectSuper() const { return m_hasDirectSuper; }
void setHasDirectSuper() { m_hasDirectSuper = true; }
bool needsSuperBinding() const { return m_needsSuperBinding; }
void setNeedsSuperBinding() { m_needsSuperBinding = true; }
void setEvalContextType(EvalContextType evalContextType) { m_evalContextType = evalContextType; }
EvalContextType evalContextType() { return m_evalContextType; }
void setDerivedContextType(DerivedContextType derivedContextType) { m_derivedContextType = derivedContextType; }
DerivedContextType derivedContextType() const { return m_derivedContextType; }
InnerArrowFunctionCodeFeatures innerArrowFunctionFeatures() { return m_innerArrowFunctionFeatures; }
void setExpectedSuperBinding(SuperBinding superBinding) { m_expectedSuperBinding = superBinding; }
SuperBinding expectedSuperBinding() const { return m_expectedSuperBinding; }
void setConstructorKind(ConstructorKind constructorKind) { m_constructorKind = constructorKind; }
ConstructorKind constructorKind() const { return m_constructorKind; }
void setInnerArrowFunctionUsesSuperCall() { m_innerArrowFunctionFeatures |= SuperCallInnerArrowFunctionFeature; }
void setInnerArrowFunctionUsesSuperProperty() { m_innerArrowFunctionFeatures |= SuperPropertyInnerArrowFunctionFeature; }
void setInnerArrowFunctionUsesEval() { m_innerArrowFunctionFeatures |= EvalInnerArrowFunctionFeature; }
void setInnerArrowFunctionUsesThis() { m_innerArrowFunctionFeatures |= ThisInnerArrowFunctionFeature; }
void setInnerArrowFunctionUsesNewTarget() { m_innerArrowFunctionFeatures |= NewTargetInnerArrowFunctionFeature; }
void setInnerArrowFunctionUsesArguments() { m_innerArrowFunctionFeatures |= ArgumentsInnerArrowFunctionFeature; }
bool isEvalContext() const { return m_isEvalContext; }
void setIsEvalContext(bool isEvalContext) { m_isEvalContext = isEvalContext; }
void setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded()
{
ASSERT(m_isArrowFunction);
if (m_usesEval)
setInnerArrowFunctionUsesEval();
if (usedVariablesContains(m_vm.propertyNames->arguments.impl()))
setInnerArrowFunctionUsesArguments();
}
void addClosedVariableCandidateUnconditionally(UniquedStringImpl* impl)
{
m_closedVariableCandidates.add(impl);
}
void markLastUsedVariablesSetAsCaptured(unsigned from)
{
for (unsigned index = from; index < m_usedVariables.size(); ++index) {
for (UniquedStringImpl* impl : m_usedVariables[index])
m_closedVariableCandidates.add(impl);
}
}
void collectFreeVariables(Scope* nestedScope, bool shouldTrackClosedVariables)
{
if (nestedScope->m_usesEval)
m_usesEval = true;
if (nestedScope->m_usesImportMeta)
m_usesImportMeta = true;
{
UniquedStringImplPtrSet& destinationSet = m_usedVariables.last();
for (const UniquedStringImplPtrSet& usedVariablesSet : nestedScope->m_usedVariables) {
for (UniquedStringImpl* impl : usedVariablesSet) {
if (nestedScope->m_declaredVariables.contains(impl) || nestedScope->m_lexicalVariables.contains(impl))
continue;
// "arguments" reference should be resolved at function boudary.
if (nestedScope->isFunctionBoundary() && nestedScope->hasArguments() && impl == m_vm.propertyNames->arguments.impl() && !nestedScope->isArrowFunctionBoundary())
continue;
destinationSet.add(impl);
// We don't want a declared variable that is used in an inner scope to be thought of as captured if
// that inner scope is both a lexical scope and not a function. Only inner functions and "catch"
// statements can cause variables to be captured.
if (shouldTrackClosedVariables && (nestedScope->m_isFunctionBoundary || !nestedScope->m_isLexicalScope))
m_closedVariableCandidates.add(impl);
}
}
}
// Propagate closed variable candidates downwards within the same function.
// Cross function captures will be realized via m_usedVariables propagation.
if (shouldTrackClosedVariables && !nestedScope->m_isFunctionBoundary && nestedScope->m_closedVariableCandidates.size()) {
auto end = nestedScope->m_closedVariableCandidates.end();
auto begin = nestedScope->m_closedVariableCandidates.begin();
m_closedVariableCandidates.add(begin, end);
}
}
void mergeInnerArrowFunctionFeatures(InnerArrowFunctionCodeFeatures arrowFunctionCodeFeatures)
{
m_innerArrowFunctionFeatures = m_innerArrowFunctionFeatures | arrowFunctionCodeFeatures;
}
void finalizeSloppyModeFunctionHoisting()
{
ASSERT(allowsVarDeclarations());
ASSERT(!isSimpleCatchParameterScope());
for (const auto& iter : m_sloppyModeFunctionHoistingCandidates) {
// ES6 Annex B.3.3. The only time we can't hoist a function is if a syntax error would
// be caused by declaring a var with that function's name or if we have a parameter with
// that function's name. Note that we would only cause a syntax error if we had a let/const/class
// variable with the same name.
FunctionMetadataNode* metadata = iter.key;
auto* function = metadata->ident().impl();
if (!m_lexicalVariables.contains(function)) {
auto addResult = m_declaredVariables.add(function);
if (addResult.isNewEntry)
addResult.iterator->value.setIsSloppyModeHoistedFunction();
else if (addResult.iterator->value.isParameter())
continue;
addResult.iterator->value.setIsVar();
metadata->setIsSloppyModeHoistedFunction();
}
}
}
NEVER_INLINE void bubbleSloppyModeFunctionHoistingCandidates(Scope* parentScope)
{
for (const auto& iter : m_sloppyModeFunctionHoistingCandidates) {
FunctionMetadataNode* metadata = iter.key;
bool needsCheck = iter.value == NeedsDuplicateDeclarationCheck::Yes;
if (!needsCheck || !m_lexicalVariables.contains(metadata->ident().impl()) || isSimpleCatchParameterScope())
parentScope->addSloppyModeFunctionHoistingCandidate<NeedsDuplicateDeclarationCheck::Yes>(metadata);
}
}
void getCapturedVars(IdentifierSet& capturedVariables)
{
if (m_needsFullActivation || m_usesEval) {
for (auto& entry : m_declaredVariables)
capturedVariables.add(entry.key);
return;
}
for (UniquedStringImpl* impl : m_closedVariableCandidates) {
// We refer to m_declaredVariables here directly instead of a hasDeclaredVariable because we want to mark the callee as captured.
if (!m_declaredVariables.contains(impl))
continue;
capturedVariables.add(impl);
}
}
LexicallyScopedFeatures lexicallyScopedFeatures() const { return m_lexicallyScopedFeatures; }
void setLexicallyScopedFeatures(LexicallyScopedFeatures features) { m_lexicallyScopedFeatures = features; }
void setStrictMode() { m_lexicallyScopedFeatures |= StrictModeLexicallyScopedFeature; }
void setTaintedByWithScope() { m_lexicallyScopedFeatures |= TaintedByWithScopeLexicallyScopedFeature; }
bool strictMode() const { return m_lexicallyScopedFeatures & StrictModeLexicallyScopedFeature; }
bool isValidStrictMode() const { return m_isValidStrictMode; }
bool shadowsArguments() const { return m_shadowsArguments; }
void setHasNonSimpleParameterList()
{
m_isValidStrictMode = false;
m_hasNonSimpleParameterList = true;
}
bool hasNonSimpleParameterList() const { return m_hasNonSimpleParameterList; }
bool hasSloppyModeFunctionHoistingCandidates() const { return !m_sloppyModeFunctionHoistingCandidates.isEmpty(); }
void copyCapturedVariablesToVector(const UniquedStringImplPtrSet& usedVariables, Vector<UniquedStringImpl*, 8>& vector)
{
for (UniquedStringImpl* impl : usedVariables) {
if (m_declaredVariables.contains(impl) || m_lexicalVariables.contains(impl))
continue;
vector.append(impl);
}
}
void fillParametersForSourceProviderCache(SourceProviderCacheItemCreationParameters& parameters, const UniquedStringImplPtrSet& capturesFromParameterExpressions)
{
ASSERT(m_isFunction);
parameters.usesEval = m_usesEval;
parameters.usesImportMeta = m_usesImportMeta;
parameters.lexicallyScopedFeatures = m_lexicallyScopedFeatures;
parameters.needsFullActivation = m_needsFullActivation;
parameters.innerArrowFunctionFeatures = m_innerArrowFunctionFeatures;
parameters.needsSuperBinding = m_needsSuperBinding;
for (const UniquedStringImplPtrSet& set : m_usedVariables)
copyCapturedVariablesToVector(set, parameters.usedVariables);
// FIXME: https://bugs.webkit.org/show_bug.cgi?id=156962
// We add these unconditionally because we currently don't keep a separate
// declaration scope for a function's parameters and its var/let/const declarations.
// This is somewhat unfortunate and we should refactor to do this at some point
// because parameters logically form a parent scope to var/let/const variables.
// But because we don't do this, we must grab capture candidates from a parameter
// list before we parse the body of a function because the body's declarations
// might make us believe something isn't actually a capture candidate when it really
// is.
for (UniquedStringImpl* impl : capturesFromParameterExpressions)
parameters.usedVariables.append(impl);
}
void restoreFromSourceProviderCache(const SourceProviderCacheItem* info)
{
ASSERT(m_isFunction);
m_usesEval = info->usesEval;
m_usesImportMeta = info->usesImportMeta;
m_lexicallyScopedFeatures = info->lexicallyScopedFeatures();
m_innerArrowFunctionFeatures = info->innerArrowFunctionFeatures;
m_needsFullActivation = info->needsFullActivation;
m_needsSuperBinding = info->needsSuperBinding;
UniquedStringImplPtrSet& destSet = m_usedVariables.last();
for (unsigned i = 0; i < info->usedVariablesCount; ++i)
destSet.add(info->usedVariables()[i].get());
}
class MaybeParseAsGeneratorFunctionForScope;
private:
void setIsFunction()
{
m_isFunction = true;
m_isFunctionBoundary = true;
m_hasArguments = true;
setIsLexicalScope();
m_isGeneratorFunction = false;
m_isGeneratorFunctionBoundary = false;
m_isArrowFunctionBoundary = false;
m_isArrowFunction = false;
m_isAsyncFunction = false;
m_isAsyncFunctionBoundary = false;
m_isStaticBlock = false;
m_isStaticBlockBoundary = false;
}
void setIsGeneratorFunction()
{
setIsFunction();
m_isGeneratorFunction = true;
}
void setIsGeneratorFunctionBody()
{
setIsFunction();
m_hasArguments = false;
m_isGeneratorFunction = true;
m_isGeneratorFunctionBoundary = true;
}
void setIsArrowFunction()
{
setIsFunction();
m_isArrowFunctionBoundary = true;
m_isArrowFunction = true;
}
void setIsAsyncArrowFunction()
{
setIsArrowFunction();
m_isAsyncFunction = true;
}
void setIsAsyncFunction()
{
setIsFunction();
m_isAsyncFunction = true;
}
void setIsAsyncGeneratorFunction()
{
setIsFunction();
m_isAsyncFunction = true;
m_isGeneratorFunction = true;
}
void setIsAsyncGeneratorFunctionBody()
{
setIsFunction();
m_hasArguments = false;
m_isGeneratorFunction = true;
m_isGeneratorFunctionBoundary = true;
m_isAsyncFunction = true;
m_isAsyncFunctionBoundary = true;
}
void setIsAsyncFunctionBody()
{
setIsFunction();
m_hasArguments = false;
m_isAsyncFunction = true;
m_isAsyncFunctionBoundary = true;
}
void setIsAsyncArrowFunctionBody()
{
setIsArrowFunction();
m_hasArguments = false;
m_isAsyncFunction = true;
m_isAsyncFunctionBoundary = true;
}
void setIsGlobalCode()
{
m_isGlobalCode = true;
}
void setIsModuleCode()
{
setIsGlobalCode();
m_isModuleCode = true;
}
const VM& m_vm;
ImplementationVisibility m_implementationVisibility;
LexicallyScopedFeatures m_lexicallyScopedFeatures;
bool m_shadowsArguments : 1 { false };
bool m_usesEval : 1 { false };
bool m_usesImportMeta : 1 { false };
bool m_needsFullActivation : 1 { false };
bool m_hasDirectSuper : 1 { false };
bool m_needsSuperBinding : 1 { false };
bool m_allowsVarDeclarations : 1 { true };
bool m_allowsLexicalDeclarations : 1 { true };
bool m_isFunction : 1;
bool m_isGeneratorFunction : 1;
bool m_isGeneratorFunctionBoundary : 1 { false };
bool m_isArrowFunction : 1;
bool m_isArrowFunctionBoundary : 1 { false };
bool m_isAsyncFunction : 1;
bool m_isAsyncFunctionBoundary : 1 { false };
bool m_isLexicalScope : 1 { false };
bool m_isGlobalCode : 1 { false };
bool m_isModuleCode : 1 { false };
bool m_isSimpleCatchParameterScope : 1 { false };
bool m_isCatchBlockScope : 1 { false };
bool m_isStaticBlock : 1 { false };
bool m_isStaticBlockBoundary : 1 { false };
bool m_isFunctionBoundary : 1 { false };
bool m_isValidStrictMode : 1 { true };
bool m_hasArguments : 1 { false };
bool m_isEvalContext : 1 { false };
bool m_hasNonSimpleParameterList : 1 { false };
bool m_isClassScope : 1 { false };
EvalContextType m_evalContextType { EvalContextType::None };
ConstructorKind m_constructorKind { ConstructorKind::None };
DerivedContextType m_derivedContextType { DerivedContextType::None };
SuperBinding m_expectedSuperBinding { SuperBinding::NotNeeded };
int m_loopDepth { 0 };
int m_switchDepth { 0 };
InnerArrowFunctionCodeFeatures m_innerArrowFunctionFeatures { 0 };
typedef Vector<ScopeLabelInfo, 2> LabelStack;
std::unique_ptr<LabelStack> m_labels;
UniquedStringImplPtrSet m_declaredParameters;
VariableEnvironment m_declaredVariables;
VariableEnvironment m_lexicalVariables;
Vector<UniquedStringImplPtrSet, 6> m_usedVariables;
UniquedStringImplPtrSet m_variablesBeingHoisted;
UncheckedKeyHashMap<FunctionMetadataNode*, NeedsDuplicateDeclarationCheck> m_sloppyModeFunctionHoistingCandidates;
UncheckedKeyHashSet<UniquedStringImpl*> m_closedVariableCandidates;
DeclarationStacks::FunctionStack m_functionDeclarations;
};
typedef Vector<Scope, 10> ScopeStack;
struct ScopeRef {
ScopeRef(ScopeStack* scopeStack, unsigned index)
: m_scopeStack(scopeStack)
, m_index(index)
{
}
Scope* operator->() { return &m_scopeStack->at(m_index); }
unsigned index() const { return m_index; }
bool hasContainingScope()
{
return m_index && !m_scopeStack->at(m_index).isFunctionBoundary();
}
ScopeRef containingScope()
{
ASSERT(hasContainingScope());
return ScopeRef(m_scopeStack, m_index - 1);
}
bool operator==(const ScopeRef& other) const
{
ASSERT(other.m_scopeStack == m_scopeStack);
return m_index == other.m_index;
}
private:
ScopeStack* m_scopeStack;
unsigned m_index;
};
enum class ArgumentType { Normal, Spread };
enum class ParsingContext { Normal, FunctionConstructor };
template <typename LexerType>
class Parser {
WTF_MAKE_NONCOPYABLE(Parser);
WTF_MAKE_TZONE_NON_HEAP_ALLOCATABLE(Parser);
public:
Parser(VM&, const SourceCode&, ImplementationVisibility, JSParserBuiltinMode, LexicallyScopedFeatures, JSParserScriptMode, SourceParseMode, FunctionMode, SuperBinding, ConstructorKind = ConstructorKind::None, DerivedContextType = DerivedContextType::None, bool isEvalContext = false, EvalContextType = EvalContextType::None, DebuggerParseData* = nullptr, bool isInsideOrdinaryFunction = false);
~Parser();
template <class ParsedNode>
std::unique_ptr<ParsedNode> parse(ParserError&, const Identifier&, ParsingContext, std::optional<int> functionConstructorParametersEndPosition = std::nullopt, const PrivateNameEnvironment* = nullptr, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>* = nullptr);
void overrideConstructorKindForTopLevelFunctionExpressions(ConstructorKind constructorKind) { m_constructorKindForTopLevelFunctionExpressions = constructorKind; }
JSTextPosition positionBeforeLastNewline() const { return m_lexer->positionBeforeLastNewline(); }
JSTokenLocation locationBeforeLastToken() const { return m_lexer->lastTokenLocation(); }
struct CallOrApplyDepthScope {
CallOrApplyDepthScope(Parser* parser)
: m_parser(parser)
, m_parent(parser->m_callOrApplyDepthScope)
, m_depth(m_parent ? m_parent->m_depth + 1 : 0)
, m_depthOfInnermostChild(m_depth)
{
parser->m_callOrApplyDepthScope = this;
}
size_t distanceToInnermostChild() const
{
ASSERT(m_depthOfInnermostChild >= m_depth);
return m_depthOfInnermostChild - m_depth;
}
~CallOrApplyDepthScope()
{
if (m_parent)
m_parent->m_depthOfInnermostChild = std::max(m_depthOfInnermostChild, m_parent->m_depthOfInnermostChild);
m_parser->m_callOrApplyDepthScope = m_parent;
}
private:
Parser* m_parser;
CallOrApplyDepthScope* m_parent;
size_t m_depth;
size_t m_depthOfInnermostChild;
};
private:
struct AllowInOverride {
AllowInOverride(Parser* parser)
: m_parser(parser)
, m_oldAllowsIn(parser->m_allowsIn)
{
parser->m_allowsIn = true;
}
~AllowInOverride()
{
m_parser->m_allowsIn = m_oldAllowsIn;
}
Parser* m_parser;
bool m_oldAllowsIn;
};
struct AutoPopScopeRef : public ScopeRef {
AutoPopScopeRef(Parser* parser, ScopeRef scope)
: ScopeRef(scope)
, m_parser(parser)
{
}
~AutoPopScopeRef()
{
if (m_parser)
m_parser->popScope(*this, false);
}
void setPopped()
{
m_parser = nullptr;
}
private:
Parser* m_parser;
};
struct AutoCleanupLexicalScope {
// We can allocate this object on the stack without actually knowing beforehand if we're
// going to create a new lexical scope. If we decide to create a new lexical scope, we
// can pass the scope into this obejct and it will take care of the cleanup for us if the parse fails.
// This is helpful if we may fail from syntax errors after creating a lexical scope conditionally.
AutoCleanupLexicalScope()
: m_scope(nullptr, UINT_MAX)
, m_parser(nullptr)
{
}
~AutoCleanupLexicalScope()
{
// This should only ever be called if we fail from a syntax error. Otherwise
// it's the intention that a user of this class pops this scope manually on a
// successful parse.
if (isValid())
m_parser->popScope(*this, false);
}
void setIsValid(ScopeRef& scope, Parser* parser)
{
RELEASE_ASSERT(scope->isLexicalScope());
m_scope = scope;
m_parser = parser;
}
bool isValid() const { return !!m_parser; }
void setPopped()
{
m_parser = nullptr;
}
ScopeRef& scope() { return m_scope; }
private:
ScopeRef m_scope;
Parser* m_parser;
};
enum ExpressionErrorClass {
ErrorIndicatesNothing = 0,
ErrorIndicatesPattern,
ErrorIndicatesAsyncArrowFunction
};
struct ExpressionErrorClassifier {
ExpressionErrorClassifier(Parser* parser)
: m_class(ErrorIndicatesNothing)
, m_previous(parser->m_expressionErrorClassifier)
, m_parser(parser)
{
m_parser->m_expressionErrorClassifier = this;
}
~ExpressionErrorClassifier()
{
m_parser->m_expressionErrorClassifier = m_previous;
}
void classifyExpressionError(ExpressionErrorClass classification)
{
if (m_class != ErrorIndicatesNothing)
return;
m_class = classification;
}
void forceClassifyExpressionError(ExpressionErrorClass classification)
{
m_class = classification;
}
void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification)
{
if (m_class != oldClassification)
return;
m_class = classification;
}
void propagateExpressionErrorClass()
{
if (m_previous)
m_previous->m_class = m_class;
}
bool indicatesPossiblePattern() const { return m_class == ErrorIndicatesPattern; }
bool indicatesPossibleAsyncArrowFunction() const { return m_class == ErrorIndicatesAsyncArrowFunction; }
private:
ExpressionErrorClass m_class;
ExpressionErrorClassifier* m_previous;
Parser* m_parser;
};
ALWAYS_INLINE void classifyExpressionError(ExpressionErrorClass classification)
{
if (m_expressionErrorClassifier)
m_expressionErrorClassifier->classifyExpressionError(classification);
}
ALWAYS_INLINE void forceClassifyExpressionError(ExpressionErrorClass classification)
{
if (m_expressionErrorClassifier)
m_expressionErrorClassifier->forceClassifyExpressionError(classification);
}
ALWAYS_INLINE void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification)
{
if (m_expressionErrorClassifier)
m_expressionErrorClassifier->reclassifyExpressionError(oldClassification, classification);
}
ALWAYS_INLINE DestructuringKind destructuringKindFromDeclarationType(DeclarationType type)
{
switch (type) {
case DeclarationType::VarDeclaration:
return DestructuringKind::DestructureToVariables;
case DeclarationType::LetDeclaration:
return DestructuringKind::DestructureToLet;
case DeclarationType::ConstDeclaration:
return DestructuringKind::DestructureToConst;
}
RELEASE_ASSERT_NOT_REACHED();
return DestructuringKind::DestructureToVariables;
}
ALWAYS_INLINE const char* declarationTypeToVariableKind(DeclarationType type)
{
switch (type) {
case DeclarationType::VarDeclaration:
return "variable name";
case DeclarationType::LetDeclaration:
case DeclarationType::ConstDeclaration:
return "lexical variable name";
}
RELEASE_ASSERT_NOT_REACHED();
return "invalid";
}
ALWAYS_INLINE AssignmentContext assignmentContextFromDeclarationType(DeclarationType type)
{
switch (type) {
case DeclarationType::ConstDeclaration:
return AssignmentContext::ConstDeclarationStatement;
default:
return AssignmentContext::DeclarationStatement;
}
}
ALWAYS_INLINE SourceParseMode sourceParseMode() const { return m_parseMode; }
ALWAYS_INLINE FunctionMode functionMode() const { return m_functionMode; }
ALWAYS_INLINE bool isEvalOrArguments(const Identifier* ident) { return isEvalOrArgumentsIdentifier(m_vm, ident); }
ScopeRef upperScope(int n)
{
ASSERT(m_scopeStack.size() >= size_t(1 + n));
return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1 - n);
}
ScopeRef currentScope()
{
return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1);
}
ScopeRef currentVariableScope()
{
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size());
while (!m_scopeStack[i].allowsVarDeclarations()) {
i--;
ASSERT(i < m_scopeStack.size());
}
return ScopeRef(&m_scopeStack, i);
}
ScopeRef currentLexicalDeclarationScope()
{
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size());
while (!m_scopeStack[i].allowsLexicalDeclarations()) {
i--;
ASSERT(i < m_scopeStack.size());
}
return ScopeRef(&m_scopeStack, i);
}
ScopeRef currentFunctionScope()
{
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size());
while (i && !m_scopeStack[i].isFunctionBoundary()) {
i--;
ASSERT(i < m_scopeStack.size());
}
// When reaching the top level scope (it can be non function scope), we return it.
return ScopeRef(&m_scopeStack, i);
}
std::optional<ScopeRef> findPrivateNameScope()
{
ASSERT(m_scopeStack.size());
unsigned i = m_scopeStack.size() - 1;
while (i && !m_scopeStack[i].isPrivateNameScope())
i--;
if (m_scopeStack[i].isPrivateNameScope())
return ScopeRef(&m_scopeStack, i);
return std::nullopt;
}
ScopeRef closestParentOrdinaryFunctionNonLexicalScope()
{
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size() && m_scopeStack.size());
while (i && (!m_scopeStack[i].isFunctionBoundary() || m_scopeStack[i].isGeneratorFunctionBoundary() || m_scopeStack[i].isAsyncFunctionBoundary() || m_scopeStack[i].isArrowFunctionBoundary()))
i--;
// When reaching the top level scope (it can be non ordinary function scope), we return it.
return ScopeRef(&m_scopeStack, i);
}
ScopeRef closestClassScopeOrTopLevelScope()
{
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size());
while (i && !m_scopeStack[i].isClassScope())
i--;
return ScopeRef(&m_scopeStack, i);
}
ScopeRef pushScope()
{
ImplementationVisibility implementationVisibility = m_implementationVisibility;
LexicallyScopedFeatures lexicallyScopedFeatures = NoLexicallyScopedFeatures;
bool isFunction = false;
bool isGeneratorFunction = false;
bool isArrowFunction = false;
bool isAsyncFunction = false;
bool isStaticBlock = false;
if (!m_scopeStack.isEmpty()) {
implementationVisibility = m_scopeStack.last().implementationVisibility();
lexicallyScopedFeatures = m_scopeStack.last().lexicallyScopedFeatures();
isFunction = m_scopeStack.last().isFunction();
isGeneratorFunction = m_scopeStack.last().isGeneratorFunction();
isArrowFunction = m_scopeStack.last().isArrowFunction();
isAsyncFunction = m_scopeStack.last().isAsyncFunction();
isStaticBlock = m_scopeStack.last().isStaticBlock();
}
m_scopeStack.constructAndAppend(m_vm, implementationVisibility, lexicallyScopedFeatures, isFunction, isGeneratorFunction, isArrowFunction, isAsyncFunction, isStaticBlock);
return currentScope();
}
void resetImplementationVisibilityIfNeeded()
{
// Find the closest function boundary that is not the current scope (if the current scope
// is also a function boundary). If the implementation visibility of that scope is not
// recursive, reset the implementation visibility of the current scope.
auto& currentScope = m_scopeStack[m_scopeStack.size() - 1];
if (!currentScope.isFunctionBoundary())
return;
for (auto i = m_scopeStack.size() - 1; i > 0; --i) {
const auto& scope = m_scopeStack[i - 1];
if (!scope.isFunctionBoundary())
continue;
if (scope.implementationVisibility() != ImplementationVisibility::PrivateRecursive)
currentScope.resetImplementationVisibility();
break;
}
}
std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScopeInternal(ScopeRef& scope, bool shouldTrackClosedVariables)
{
EXCEPTION_ASSERT_UNUSED(scope, scope.index() == m_scopeStack.size() - 1);
ASSERT(m_scopeStack.size() > 1);
Scope& lastScope = m_scopeStack.last();
// Finalize lexical variables.
lastScope.finalizeLexicalEnvironment();
Scope& parentScope = m_scopeStack[m_scopeStack.size() - 2];
parentScope.collectFreeVariables(&lastScope, shouldTrackClosedVariables);
if (lastScope.hasSloppyModeFunctionHoistingCandidates())
lastScope.bubbleSloppyModeFunctionHoistingCandidates(&parentScope);
if (lastScope.isArrowFunction())
lastScope.setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded();
if (!(lastScope.isFunctionBoundary() && !lastScope.isArrowFunctionBoundary()))
parentScope.mergeInnerArrowFunctionFeatures(lastScope.innerArrowFunctionFeatures());
if (!lastScope.isFunctionBoundary() && lastScope.needsFullActivation())
parentScope.setNeedsFullActivation();
std::tuple result { lastScope.takeLexicalEnvironment(), lastScope.takeFunctionDeclarations() };
m_scopeStack.removeLast();
return result;
}
ALWAYS_INLINE std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScope(ScopeRef& scope, bool shouldTrackClosedVariables)
{
return popScopeInternal(scope, shouldTrackClosedVariables);
}
ALWAYS_INLINE std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScope(AutoPopScopeRef& scope, bool shouldTrackClosedVariables)
{
scope.setPopped();
return popScopeInternal(scope, shouldTrackClosedVariables);
}
ALWAYS_INLINE std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScope(AutoCleanupLexicalScope& cleanupScope, bool shouldTrackClosedVariables)
{
RELEASE_ASSERT(cleanupScope.isValid());
ScopeRef& scope = cleanupScope.scope();
cleanupScope.setPopped();
return popScopeInternal(scope, shouldTrackClosedVariables);
}
NEVER_INLINE DeclarationResultMask declareHoistedVariable(const Identifier* ident)
{
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size());
while (true) {
// Annex B.3.5 exempts `try {} catch (e) { var e; }` from being a syntax error.
if (m_scopeStack[i].hasLexicallyDeclaredVariable(*ident) && !m_scopeStack[i].isSimpleCatchParameterScope())
return DeclarationResult::InvalidDuplicateDeclaration;
if (m_scopeStack[i].allowsVarDeclarations())
return m_scopeStack[i].declareVariable(ident);
m_scopeStack[i].addVariableBeingHoisted(ident);
i--;
ASSERT(i < m_scopeStack.size());
}
}
DeclarationResultMask declareVariable(const Identifier* ident, DeclarationType type = DeclarationType::VarDeclaration, DeclarationImportType importType = DeclarationImportType::NotImported)
{
if (type == DeclarationType::VarDeclaration)
return declareHoistedVariable(ident);
ASSERT(type == DeclarationType::LetDeclaration || type == DeclarationType::ConstDeclaration);
// Lexical variables declared at a top level scope that shadow arguments or vars are not allowed.
if (!m_lexer->isReparsingFunction() && m_statementDepth == 1 && (hasDeclaredParameter(*ident) || hasDeclaredVariable(*ident)))
return DeclarationResult::InvalidDuplicateDeclaration;
ScopeRef scope = currentLexicalDeclarationScope();
if (scope->isCatchBlockScope() && scope.containingScope()->hasLexicallyDeclaredVariable(*ident))
return DeclarationResult::InvalidDuplicateDeclaration;
return scope->declareLexicalVariable(ident, type == DeclarationType::ConstDeclaration, importType);
}
std::pair<DeclarationResultMask, ScopeRef> declareFunction(const Identifier* ident)
{
if (m_statementDepth == 1 && !currentScope()->isModuleCode()) {
// Functions declared at the top-most scope (both in sloppy and strict mode) are declared as vars
// for backwards compatibility, allowing us to declare functions with the same name more than once, except
// Module code. Please see https://webkit.org/b/263269 for detailed explanation and ECMA-262 references.
ScopeRef variableScope = currentVariableScope();
return std::make_pair(variableScope->declareFunctionAsVar(ident), variableScope);
}
ScopeRef lexicalVariableScope = currentLexicalDeclarationScope();
if (lexicalVariableScope->isCatchBlockScope() && lexicalVariableScope.containingScope()->hasLexicallyDeclaredVariable(*ident))
return std::make_pair(DeclarationResult::InvalidDuplicateDeclaration, lexicalVariableScope);
bool isFunctionDeclaration = m_parseMode == SourceParseMode::NormalFunctionMode;
return std::make_pair(lexicalVariableScope->declareFunctionAsLet(ident, isFunctionDeclaration), lexicalVariableScope);
}
NEVER_INLINE bool hasDeclaredVariable(const Identifier& ident)
{
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size());
while (!m_scopeStack[i].allowsVarDeclarations()) {
i--;
ASSERT(i < m_scopeStack.size());
}
return m_scopeStack[i].hasDeclaredVariable(ident);
}
NEVER_INLINE bool hasDeclaredParameter(const Identifier& ident)
{
// FIXME: hasDeclaredParameter() is not valid during reparsing of generator or async function bodies, because their formal
// parameters are declared in a scope unavailable during reparsing. Note that it is redundant to call this function during
// reparsing anyways, as the function is already guaranteed to be valid by the original parsing.
// https://bugs.webkit.org/show_bug.cgi?id=164087
ASSERT(!m_lexer->isReparsingFunction());
unsigned i = m_scopeStack.size() - 1;
ASSERT(i < m_scopeStack.size());
while (!m_scopeStack[i].allowsVarDeclarations()) {
i--;
ASSERT(i < m_scopeStack.size());
}
if (m_scopeStack[i].isGeneratorFunctionBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) {
// The formal parameters which need to be verified for Generators and Async Function bodies occur
// in the outer wrapper function, so pick the outer scope here.
i--;
ASSERT(i < m_scopeStack.size());
}
return m_scopeStack[i].hasDeclaredParameter(ident);
}
bool exportName(const Identifier& ident)
{
ASSERT(currentScope().index() == 0);
ASSERT(m_moduleScopeData);
return m_moduleScopeData->exportName(ident);
}
ScopeStack m_scopeStack;
const SourceProviderCacheItem* findCachedFunctionInfo(int openBracePos)
{
return m_functionCache ? m_functionCache->get(openBracePos) : nullptr;
}
Parser();
struct ParseInnerResult {
FunctionParameters* parameters;
SourceElements* sourceElements;
DeclarationStacks::FunctionStack functionDeclarations;
VariableEnvironment varDeclarations;
VariableEnvironment lexicalVariables;
CodeFeatures features;
int numConstants;
};
Expected<ParseInnerResult, String> parseInner(const Identifier&, ParsingContext, std::optional<int> functionConstructorParametersEndPosition, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>*, const PrivateNameEnvironment* parentScopePrivateNames);
// Used to determine type of error to report.
bool isFunctionMetadataNode(ScopeNode*) { return false; }
bool isFunctionMetadataNode(FunctionMetadataNode*) { return true; }
ALWAYS_INLINE void next(OptionSet<LexerFlags> lexerFlags = { })
{
int lastLine = m_token.m_location.line;
int lastTokenEnd = m_token.m_location.endOffset;
int lastTokenLineStart = m_token.m_location.lineStartOffset;
m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart);
m_lexer->setLastLineNumber(lastLine);
m_token.m_type = m_lexer->lex(&m_token, lexerFlags, strictMode());
}
ALWAYS_INLINE void nextWithoutClearingLineTerminator(OptionSet<LexerFlags> lexerFlags = { })
{
int lastLine = m_token.m_location.line;
int lastTokenEnd = m_token.m_location.endOffset;
int lastTokenLineStart = m_token.m_location.lineStartOffset;
m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart);
m_lexer->setLastLineNumber(lastLine);
m_token.m_type = m_lexer->lexWithoutClearingLineTerminator(&m_token, lexerFlags, strictMode());
}
ALWAYS_INLINE void nextExpectIdentifier(OptionSet<LexerFlags> lexerFlags = { })
{
int lastLine = m_token.m_location.line;
int lastTokenEnd = m_token.m_location.endOffset;
int lastTokenLineStart = m_token.m_location.lineStartOffset;
m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart);
m_lexer->setLastLineNumber(lastLine);
m_token.m_type = m_lexer->lexExpectIdentifier(&m_token, lexerFlags, strictMode());
}
template <class TreeBuilder>
ALWAYS_INLINE void lexCurrentTokenAgainUnderCurrentContext(TreeBuilder& context)
{
auto savePoint = createSavePoint(context);
restoreSavePoint(context, savePoint);
}
ALWAYS_INLINE bool nextTokenIsColon()
{
return m_lexer->nextTokenIsColon();
}
ALWAYS_INLINE bool consume(JSTokenType expected, OptionSet<LexerFlags> flags = { })
{
bool result = m_token.m_type == expected;
if (result)
next(flags);
return result;
}
void printUnexpectedTokenText(WTF::PrintStream&);
ALWAYS_INLINE StringView getToken()
{
return m_lexer->getToken(m_token);
}
ALWAYS_INLINE StringView getToken(const JSToken& token)
{
return m_lexer->getToken(token);
}
ALWAYS_INLINE bool match(JSTokenType expected)
{
return m_token.m_type == expected;
}
ALWAYS_INLINE bool matchAndUpdate(JSTokenType expected, const JSToken& token)
{
if (match(expected)) {
m_token = token;
return true;
}
return false;
}
ALWAYS_INLINE bool matchContextualKeyword(const Identifier& identifier)
{
return m_token.m_type == IDENT && *m_token.m_data.ident == identifier && !m_token.m_data.escaped;
}
ALWAYS_INLINE bool matchIdentifierOrKeyword()
{
return isIdentifierOrKeyword(m_token);
}
ALWAYS_INLINE unsigned tokenStart()
{
return m_token.m_location.startOffset;
}
ALWAYS_INLINE const JSTextPosition& tokenStartPosition()
{
return m_token.m_startPosition;
}
ALWAYS_INLINE int tokenLine()
{
return m_token.m_location.line;
}
ALWAYS_INLINE int tokenColumn()
{
return tokenStart() - tokenLineStart();
}
ALWAYS_INLINE const JSTextPosition& tokenEndPosition()
{
return m_token.m_endPosition;
}
ALWAYS_INLINE unsigned tokenLineStart()
{
return m_token.m_location.lineStartOffset;
}
ALWAYS_INLINE const JSTokenLocation& tokenLocation()
{
return m_token.m_location;
}
void setErrorMessage(const String& message)
{
ASSERT_WITH_MESSAGE(!message.isEmpty(), "Attempted to set the empty string as an error message. Likely caused by invalid UTF8 used when creating the message.");
m_errorMessage = message;
if (m_errorMessage.isEmpty())
m_errorMessage = "Unparseable script"_s;
}
NEVER_INLINE void logError(bool);
template <typename... Args>
NEVER_INLINE void logError(bool, Args&&...);
NEVER_INLINE void updateErrorWithNameAndMessage(ASCIILiteral beforeMessage, const String& name, ASCIILiteral afterMessage)
{
m_errorMessage = makeString(beforeMessage, " '"_s, name, "' "_s, afterMessage);
}
NEVER_INLINE void updateErrorMessage(const char* msg)
{
ASSERT(msg);
m_errorMessage = String::fromLatin1(msg);
ASSERT(!m_errorMessage.isNull());
}
ALWAYS_INLINE void recordPauseLocation(const JSTextPosition&);
ALWAYS_INLINE void recordFunctionEntryLocation(const JSTextPosition&);
ALWAYS_INLINE void recordFunctionLeaveLocation(const JSTextPosition&);
void startLoop() { currentScope()->startLoop(); }
void endLoop() { currentScope()->endLoop(); }
void startSwitch() { currentScope()->startSwitch(); }
void endSwitch() { currentScope()->endSwitch(); }
ImplementationVisibility implementationVisibility() { return currentScope()->implementationVisibility(); }
LexicallyScopedFeatures lexicallyScopedFeatures() { return currentScope()->lexicallyScopedFeatures(); }
void setStrictMode() { currentScope()->setStrictMode(); }
bool strictMode() { return currentScope()->strictMode(); }
bool isValidStrictMode()
{
int i = m_scopeStack.size() - 1;
if (!m_scopeStack[i].isValidStrictMode())
return false;
// In the case of Generator or Async function bodies, also check the wrapper function, whose name or
// arguments may be invalid.
if (UNLIKELY((m_scopeStack[i].isGeneratorFunctionBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) && i))
return m_scopeStack[i - 1].isValidStrictMode();
return true;
}
DeclarationResultMask declareParameter(const Identifier* ident) { return currentScope()->declareParameter(ident); }
bool declareRestOrNormalParameter(const Identifier&, const Identifier**);
bool breakIsValid()
{
ScopeRef current = currentScope();
while (!current->breakIsValid()) {
if (!current.hasContainingScope() || current->isStaticBlockBoundary())
return false;
current = current.containingScope();
}
return true;
}
bool continueIsValid()
{
ScopeRef current = currentScope();
while (!current->continueIsValid()) {
if (!current.hasContainingScope() || current->isStaticBlockBoundary())
return false;
current = current.containingScope();
}
return true;
}
void pushLabel(const Identifier* label, bool isLoop) { currentScope()->pushLabel(label, isLoop); }
void popLabel(ScopeRef scope) { scope->popLabel(); }
ScopeLabelInfo* getLabel(const Identifier* label)
{
ScopeRef current = currentScope();
ScopeLabelInfo* result = nullptr;
while (!(result = current->getLabel(label))) {
if (!current.hasContainingScope())
return nullptr;
current = current.containingScope();
}
return result;
}
ALWAYS_INLINE bool matchSpecIdentifier()
{
return match(IDENT) || isAllowedIdentifierLet(m_token) || isAllowedIdentifierYield(m_token) || isPossiblyEscapedAwait(m_token);
}
// Special case where some information is already known.
ALWAYS_INLINE bool matchSpecIdentifier(bool canUseYield, bool isAwait)
{
return isAwait || match(IDENT) || isAllowedIdentifierLet(m_token) || (canUseYield && isPossiblyEscapedYield(m_token));
}
ALWAYS_INLINE bool matchIdentifierOrPossiblyEscapedContextualKeyword()
{
return match(IDENT) || isPossiblyEscapedLet(m_token) || isPossiblyEscapedYield(m_token) || isPossiblyEscapedAwait(m_token);
}
template <class TreeBuilder> TreeSourceElements parseSourceElements(TreeBuilder&, SourceElementsMode);
template <class TreeBuilder> TreeSourceElements parseGeneratorFunctionSourceElements(TreeBuilder&, const Identifier& name, SourceElementsMode);
template <class TreeBuilder> TreeSourceElements parseAsyncFunctionSourceElements(TreeBuilder&, bool isArrowFunctionBodyExpression, SourceElementsMode);
template <class TreeBuilder> TreeSourceElements parseAsyncGeneratorFunctionSourceElements(TreeBuilder&, bool isArrowFunctionBodyExpression, SourceElementsMode);
template <class TreeBuilder> TreeSourceElements parseSingleFunction(TreeBuilder&, std::optional<int> functionConstructorParametersEndPosition);
template <class TreeBuilder> TreeSourceElements parseClassFieldInitializerSourceElements(TreeBuilder&, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>&);
template <class TreeBuilder> TreeStatement parseStatementListItem(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength);
template <class TreeBuilder> TreeStatement parseStatement(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength = nullptr);
enum class ExportType { Exported, NotExported };
template <class TreeBuilder> TreeStatement parseClassDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard);
enum class FunctionDeclarationType { Declaration, Statement };
template <class TreeBuilder> TreeStatement parseFunctionDeclaration(TreeBuilder&, FunctionDeclarationType = FunctionDeclarationType::Declaration, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard, std::optional<int> functionConstructorParametersEndPosition = std::nullopt);
template <class TreeBuilder> TreeStatement parseFunctionDeclarationStatement(TreeBuilder&, bool parentAllowsFunctionDeclarationAsStatement);
template <class TreeBuilder> TreeStatement parseAsyncFunctionDeclaration(TreeBuilder&, unsigned functionStart, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard, std::optional<int> functionConstructorParametersEndPosition = std::nullopt);
template <class TreeBuilder> TreeStatement parseVariableDeclaration(TreeBuilder&, DeclarationType, ExportType = ExportType::NotExported);
template <class TreeBuilder> TreeStatement parseDoWhileStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseWhileStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseForStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseBreakStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseContinueStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseReturnStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseThrowStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseWithStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseSwitchStatement(TreeBuilder&);
template <class TreeBuilder> TreeClauseList parseSwitchClauses(TreeBuilder&);
template <class TreeBuilder> TreeClause parseSwitchDefaultClause(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseTryStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseDebuggerStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseExpressionStatement(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseExpressionOrLabelStatement(TreeBuilder&, bool allowFunctionDeclarationAsStatement);
template <class TreeBuilder> TreeStatement parseIfStatement(TreeBuilder&);
enum class BlockType : uint8_t { Normal, CatchBlock, StaticBlock };
template <class TreeBuilder> TreeStatement parseBlockStatement(TreeBuilder&, BlockType = BlockType::Normal);
template <class TreeBuilder> TreeExpression parseExpression(TreeBuilder&);
template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&, ExpressionErrorClassifier&);
template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&);
template <class TreeBuilder> TreeExpression parseAssignmentExpressionOrPropagateErrorClass(TreeBuilder&);
template <class TreeBuilder> TreeExpression parseYieldExpression(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseConditionalExpression(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseBinaryExpression(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseUnaryExpression(TreeBuilder&);
template <class TreeBuilder> NEVER_INLINE TreeExpression parseAwaitExpression(TreeBuilder&);
template <class TreeBuilder> TreeExpression parseMemberExpression(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression tryParseArgumentsDotLengthForFastPath(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parsePrimaryExpression(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArrayLiteral(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseObjectLiteral(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeClassExpression parseClassExpression(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseFunctionExpression(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseAsyncFunctionExpression(TreeBuilder&, const JSTokenLocation&);
template <class TreeBuilder> ALWAYS_INLINE TreeArguments parseArguments(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArgument(TreeBuilder&, ArgumentType&);
template <class TreeBuilder> TreeProperty parseProperty(TreeBuilder&);
template <class TreeBuilder> TreeExpression parsePropertyMethod(TreeBuilder& context, const Identifier* methodName, unsigned functionStart);
template <class TreeBuilder> TreeProperty parseGetterSetter(TreeBuilder&, PropertyNode::Type, unsigned getterOrSetterStartOffset, ConstructorKind, ClassElementTag);
template <class TreeBuilder> ALWAYS_INLINE TreeFunctionBody parseFunctionBody(TreeBuilder&, SyntaxChecker&, const JSTokenLocation&, int, unsigned functionStart, int functionNameStart, int parametersStart, ConstructorKind, SuperBinding, FunctionBodyType, unsigned);
template <class TreeBuilder> ALWAYS_INLINE bool parseFormalParameters(TreeBuilder&, TreeFormalParameterList, bool isArrowFunction, bool isMethod, unsigned&);
enum VarDeclarationListContext { ForLoopContext, VarDeclarationContext };
template <class TreeBuilder> TreeExpression parseVariableDeclarationList(TreeBuilder&, int& declarations, TreeDestructuringPattern& lastPattern, TreeExpression& lastInitializer, JSTextPosition& identStart, JSTextPosition& initStart, JSTextPosition& initEnd, VarDeclarationListContext, DeclarationType, ExportType, bool& forLoopConstDoesNotHaveInitializer);
template <class TreeBuilder> TreeSourceElements parseArrowFunctionSingleExpressionBodySourceElements(TreeBuilder&);
template <class TreeBuilder> TreeExpression parseArrowFunctionExpression(TreeBuilder&, bool isAsync, const JSTokenLocation&);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createBindingPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier&, const JSToken&, AssignmentContext, const Identifier** duplicateIdentifier);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createAssignmentElement(TreeBuilder&, TreeExpression&, const JSTextPosition&, const JSTextPosition&);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, AssignmentContext bindingContext);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestAssignmentElement(TreeBuilder& context);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestElement(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseDestructuringPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, bool* hasDestructuringPattern = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement, int depth = 0);
template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern tryParseDestructuringPatternExpression(TreeBuilder&, AssignmentContext);
template <class TreeBuilder> NEVER_INLINE TreeExpression parseDefaultValueForDestructuringPattern(TreeBuilder&);
template <class TreeBuilder> TreeSourceElements parseModuleSourceElements(TreeBuilder&);
enum class ImportSpecifierType { NamespaceImport, NamedImport, DefaultImport };
template <class TreeBuilder> typename TreeBuilder::ImportSpecifier parseImportClauseItem(TreeBuilder&, ImportSpecifierType);
template <class TreeBuilder> typename TreeBuilder::ModuleName parseModuleName(TreeBuilder&);
template <class TreeBuilder> typename TreeBuilder::ImportAttributesList parseImportAttributes(TreeBuilder&);
template <class TreeBuilder> TreeStatement parseImportDeclaration(TreeBuilder&);
template <class TreeBuilder> typename TreeBuilder::ExportSpecifier parseExportSpecifier(TreeBuilder& context, Vector<std::pair<const Identifier*, const Identifier*>>& maybeExportedLocalNames, bool& hasKeywordForLocalBindings, bool& hasReferencedModuleExportNames);
template <class TreeBuilder> TreeStatement parseExportDeclaration(TreeBuilder&);
template <class TreeBuilder> ALWAYS_INLINE TreeExpression createResolveAndUseVariable(TreeBuilder&, const Identifier*, bool isEval, const JSTextPosition&, const JSTokenLocation&);
enum class FunctionDefinitionType { Expression, Declaration, Method };
template <class TreeBuilder> NEVER_INLINE bool parseFunctionInfo(TreeBuilder&, FunctionNameRequirements, bool nameIsInContainingScope, ConstructorKind, SuperBinding, unsigned functionStart, ParserFunctionInfo<TreeBuilder>&, FunctionDefinitionType, std::optional<int> functionConstructorParametersEndPosition = std::nullopt);
template <class TreeBuilder> ALWAYS_INLINE bool isArrowFunctionParameters(TreeBuilder&);
template <class TreeBuilder, class FunctionInfoType> NEVER_INLINE typename TreeBuilder::FormalParameterList parseFunctionParameters(TreeBuilder&, FunctionInfoType&);
template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::FormalParameterList createGeneratorParameters(TreeBuilder&, unsigned& parameterCount);
template <class TreeBuilder> NEVER_INLINE TreeClassExpression parseClass(TreeBuilder&, FunctionNameRequirements, ParserClassInfo<TreeBuilder>&);
template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateString parseTemplateString(TreeBuilder& context, bool isTemplateHead, typename LexerType::RawStringsBuildMode, bool& elementIsTail);
template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateLiteral parseTemplateLiteral(TreeBuilder&, typename LexerType::RawStringsBuildMode);
template <class TreeBuilder> NEVER_INLINE const char* metaPropertyName(TreeBuilder&, TreeExpression);
template <class TreeBuilder> ALWAYS_INLINE bool isSimpleAssignmentTarget(TreeBuilder&, TreeExpression, bool ignoreStrictCheck = false);
ALWAYS_INLINE int isBinaryOperator(JSTokenType);
bool allowAutomaticSemicolon();
bool autoSemiColon()
{
if (m_token.m_type == SEMICOLON) {
next();
return true;
}
return allowAutomaticSemicolon();
}
bool canRecurse()
{
return m_vm.isSafeToRecurse();
}
const JSTextPosition& lastTokenEndPosition() const
{
return m_lastTokenEndPosition;
}
bool hasError() const
{
return !m_errorMessage.isNull();
}
bool isAllowedIdentifierLet(const JSToken& token)
{
return isPossiblyEscapedLet(token) && !strictMode();
}
ALWAYS_INLINE bool isPossiblyEscapedLet(const JSToken& token)
{
return token.m_type == LET || UNLIKELY(token.m_type == ESCAPED_KEYWORD && *token.m_data.ident == m_vm.propertyNames->letKeyword);
}
bool isDisallowedIdentifierAwait(const JSToken& token)
{
return isPossiblyEscapedAwait(token) && !canUseIdentifierAwait();
}
bool isAllowedIdentifierAwait(const JSToken& token)
{
return isPossiblyEscapedAwait(token) && canUseIdentifierAwait();
}
ALWAYS_INLINE bool isPossiblyEscapedAwait(const JSToken& token)
{
return token.m_type == AWAIT || UNLIKELY(token.m_type == ESCAPED_KEYWORD && *token.m_data.ident == m_vm.propertyNames->awaitKeyword);
}
ALWAYS_INLINE bool canUseIdentifierAwait()
{
return m_parserState.allowAwait && !currentScope()->isAsyncFunction() && !currentScope()->isStaticBlock() && m_scriptMode != JSParserScriptMode::Module;
}
bool isDisallowedIdentifierYield(const JSToken& token)
{
return isPossiblyEscapedYield(token) && !canUseIdentifierYield();
}
bool isAllowedIdentifierYield(const JSToken& token)
{
return isPossiblyEscapedYield(token) && canUseIdentifierYield();
}
ALWAYS_INLINE bool isPossiblyEscapedYield(const JSToken& token)
{
return token.m_type == YIELD || UNLIKELY(token.m_type == ESCAPED_KEYWORD && *token.m_data.ident == m_vm.propertyNames->yieldKeyword);
}
ALWAYS_INLINE bool canUseIdentifierYield()
{
return !strictMode() && !currentScope()->isGeneratorFunction();
}
bool matchAllowedEscapedContextualKeyword()
{
ASSERT(m_token.m_type == ESCAPED_KEYWORD);
return (*m_token.m_data.ident == m_vm.propertyNames->letKeyword && !strictMode())
|| (*m_token.m_data.ident == m_vm.propertyNames->awaitKeyword && canUseIdentifierAwait())
|| (*m_token.m_data.ident == m_vm.propertyNames->yieldKeyword && canUseIdentifierYield());
}
const char* disallowedIdentifierLetReason()
{
ASSERT(strictMode());
return "in strict mode";
}
const char* disallowedIdentifierAwaitReason()
{
if (!m_parserState.allowAwait || currentScope()->isAsyncFunction())
return "in an async function";
if (currentScope()->isStaticBlock())
return "in a static block";
if (m_scriptMode == JSParserScriptMode::Module)
return "in a module";
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
const char* disallowedIdentifierYieldReason()
{
if (strictMode())
return "in strict mode";
if (currentScope()->isGeneratorFunction())
return "in a generator function";
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
ALWAYS_INLINE bool isArgumentsIdentifier()
{
return *m_token.m_data.ident == m_vm.propertyNames->arguments;
}
enum class FunctionParsePhase { Parameters, Body };
struct ParserState {
int assignmentCount { 0 };
int nonLHSCount { 0 };
int nonTrivialExpressionCount { 0 };
int returnStatementCount { 0 };
int unaryTokenStackDepth { 0 };
FunctionParsePhase functionParsePhase { FunctionParsePhase::Body };
const Identifier* lastIdentifier { nullptr };
const Identifier* lastFunctionName { nullptr };
const Identifier* lastPrivateName { nullptr };
bool allowAwait { true };
bool isParsingClassFieldInitializer { false };
bool classFieldInitMasksAsync { false };
};
// If you're using this directly, you probably should be using
// createSavePoint() instead.
template <class TreeBuilder>
ALWAYS_INLINE ParserState internalSaveParserState(TreeBuilder& context)
{
auto parserState = m_parserState;
parserState.unaryTokenStackDepth = context.unaryTokenStackDepth();
return parserState;
}
template <class TreeBuilder>
ALWAYS_INLINE void restoreParserState(TreeBuilder& context, const ParserState& state)
{
m_parserState = state;
context.setUnaryTokenStackDepth(m_parserState.unaryTokenStackDepth);
}
struct LexerState {
int startOffset;
unsigned oldLineStartOffset;
unsigned oldLastLineNumber;
unsigned oldLineNumber;
bool hasLineTerminatorBeforeToken;
};
// If you're using this directly, you probably should be using
// createSavePoint() instead.
// i.e, if you parse any kind of AssignmentExpression between
// saving/restoring, you should definitely not be using this directly.
ALWAYS_INLINE LexerState internalSaveLexerState()
{
LexerState result;
result.startOffset = m_token.m_location.startOffset;
result.oldLineStartOffset = m_token.m_location.lineStartOffset;
result.oldLastLineNumber = m_lexer->lastLineNumber();
result.oldLineNumber = m_lexer->lineNumber();
result.hasLineTerminatorBeforeToken = m_lexer->hasLineTerminatorBeforeToken();
ASSERT(static_cast<unsigned>(result.startOffset) >= result.oldLineStartOffset);
return result;
}
ALWAYS_INLINE void restoreLexerState(const LexerState& lexerState)
{
// setOffset clears lexer errors.
m_lexer->setOffset(lexerState.startOffset, lexerState.oldLineStartOffset);
m_lexer->setLineNumber(lexerState.oldLineNumber);
m_lexer->setHasLineTerminatorBeforeToken(lexerState.hasLineTerminatorBeforeToken);
nextWithoutClearingLineTerminator();
m_lexer->setLastLineNumber(lexerState.oldLastLineNumber);
}
struct SavePoint {
ParserState parserState;
LexerState lexerState;
};
struct SavePointWithError : public SavePoint {
bool lexerError;
String lexerErrorMessage;
String parserErrorMessage;
};
template <class TreeBuilder>
ALWAYS_INLINE void internalSaveState(TreeBuilder& context, SavePoint& savePoint)
{
savePoint.parserState = internalSaveParserState(context);
savePoint.lexerState = internalSaveLexerState();
}
template <class TreeBuilder>
ALWAYS_INLINE SavePointWithError swapSavePointForError(TreeBuilder& context, SavePoint& oldSavePoint)
{
SavePointWithError savePoint;
internalSaveState(context, savePoint);
savePoint.lexerError = m_lexer->sawError();
savePoint.lexerErrorMessage = m_lexer->getErrorMessage();
savePoint.parserErrorMessage = m_errorMessage;
// Make sure we set our new savepoints unary stack to what oldSavePoint had as it currently may contain stale info.
savePoint.parserState.unaryTokenStackDepth = oldSavePoint.parserState.unaryTokenStackDepth;
restoreSavePoint(context, oldSavePoint);
return savePoint;
}
template <class TreeBuilder>
ALWAYS_INLINE SavePoint createSavePoint(TreeBuilder& context)
{
ASSERT(!hasError());
SavePoint savePoint;
internalSaveState(context, savePoint);
return savePoint;
}
template <class TreeBuilder>
ALWAYS_INLINE void internalRestoreState(TreeBuilder& context, const SavePoint& savePoint)
{
restoreLexerState(savePoint.lexerState);
restoreParserState(context, savePoint.parserState);
}
template <class TreeBuilder>
ALWAYS_INLINE void restoreSavePointWithError(TreeBuilder& context, const SavePointWithError& savePoint)
{
internalRestoreState(context, savePoint);
m_lexer->setSawError(savePoint.lexerError);
m_lexer->setErrorMessage(savePoint.lexerErrorMessage);
m_errorMessage = savePoint.parserErrorMessage;
}
template <class TreeBuilder>
ALWAYS_INLINE void restoreSavePoint(TreeBuilder& context, const SavePoint& savePoint)
{
internalRestoreState(context, savePoint);
m_errorMessage = String();
}
VM& m_vm;
const SourceCode* m_source;
ParserArena m_parserArena;
std::unique_ptr<LexerType> m_lexer;
ParserState m_parserState;
bool m_hasStackOverflow;
String m_errorMessage;
JSToken m_token;
bool m_allowsIn;
JSTextPosition m_lastTokenEndPosition;
int m_statementDepth;
RefPtr<SourceProviderCache> m_functionCache;
ImplementationVisibility m_implementationVisibility;
bool m_parsingBuiltin;
SourceParseMode m_parseMode;
FunctionMode m_functionMode;
JSParserScriptMode m_scriptMode;
SuperBinding m_superBinding;
ConstructorKind m_constructorKindForTopLevelFunctionExpressions { ConstructorKind::None };
ExpressionErrorClassifier* m_expressionErrorClassifier;
bool m_isEvalContext;
bool m_immediateParentAllowsFunctionDeclarationInStatement;
RefPtr<ModuleScopeData> m_moduleScopeData;
DebuggerParseData* m_debuggerParseData;
CallOrApplyDepthScope* m_callOrApplyDepthScope { nullptr };
bool m_isInsideOrdinaryFunction;
bool m_seenTaggedTemplateInNonReparsingFunctionMode { false };
bool m_seenPrivateNameUseInNonReparsingFunctionMode { false };
bool m_seenArgumentsDotLength { false };
};
template <typename LexerType>
template <class ParsedNode>
std::unique_ptr<ParsedNode> Parser<LexerType>::parse(ParserError& error, const Identifier& calleeName, ParsingContext parsingContext, std::optional<int> functionConstructorParametersEndPosition, const PrivateNameEnvironment* parentScopePrivateNames, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>* classElementDefinitions)
{
int errLine;
String errMsg;
SourceParseMode parseMode = sourceParseMode();
if (ParsedNode::scopeIsFunction)
m_lexer->setIsReparsingFunction();
errLine = -1;
errMsg = String();
JSTokenLocation startLocation(tokenLocation());
ASSERT(m_source->startColumn() > OrdinalNumber::beforeFirst());
unsigned startColumn = m_source->startColumn().zeroBasedInt();
auto parseResult = parseInner(calleeName, parsingContext, functionConstructorParametersEndPosition, classElementDefinitions, parentScopePrivateNames);
int lineNumber = m_lexer->lineNumber();
bool lexError = m_lexer->sawError();
String lexErrorMessage = lexError ? m_lexer->getErrorMessage() : String();
ASSERT(lexErrorMessage.isNull() != lexError);
m_lexer->clear();
if (!parseResult || lexError) {
errLine = lineNumber;
errMsg = !lexErrorMessage.isNull() ? lexErrorMessage : parseResult.error();
}
std::unique_ptr<ParsedNode> result;
if (parseResult) {
JSTokenLocation endLocation;
endLocation.line = m_lexer->lineNumber();
endLocation.lineStartOffset = m_lexer->currentLineStartOffset();
endLocation.startOffset = m_lexer->currentOffset();
unsigned endColumn = endLocation.startOffset - endLocation.lineStartOffset;
result = makeUnique<ParsedNode>(m_parserArena,
startLocation,
endLocation,
startColumn,
endColumn,
parseResult.value().sourceElements,
WTFMove(parseResult.value().varDeclarations),
WTFMove(parseResult.value().functionDeclarations),
WTFMove(parseResult.value().lexicalVariables),
parseResult.value().parameters,
*m_source,
parseResult.value().features,
currentScope()->lexicallyScopedFeatures(),
currentScope()->innerArrowFunctionFeatures(),
parseResult.value().numConstants,
WTFMove(m_moduleScopeData));
result->setLoc(m_source->firstLine().oneBasedInt(), m_lexer->lineNumber(), m_lexer->currentOffset(), m_lexer->currentLineStartOffset());
result->setEndOffset(m_lexer->currentOffset());
if (!isFunctionParseMode(parseMode)) {
m_source->provider()->setSourceURLDirective(m_lexer->sourceURLDirective());
m_source->provider()->setSourceMappingURLDirective(m_lexer->sourceMappingURLDirective());
}
} else {
// We can never see a syntax error when reparsing a function, since we should have
// reported the error when parsing the containing program or eval code. So if we're
// parsing a function body node, we assume that what actually happened here is that
// we ran out of stack while parsing. If we see an error while parsing eval or program
// code we assume that it was a syntax error since running out of stack is much less
// likely, and we are currently unable to distinguish between the two cases.
if (isFunctionMetadataNode(static_cast<ParsedNode*>(nullptr)) || m_hasStackOverflow)
error = ParserError(ParserError::StackOverflow, ParserError::SyntaxErrorNone, m_token);
else {
ParserError::SyntaxErrorType errorType = ParserError::SyntaxErrorIrrecoverable;
if (m_token.m_type == EOFTOK)
errorType = ParserError::SyntaxErrorRecoverable;
else if (m_token.m_type & UnterminatedCanBeErrorTokenFlag) {
// Treat multiline capable unterminated literals as recoverable.
if (m_token.m_type == UNTERMINATED_MULTILINE_COMMENT_ERRORTOK || m_token.m_type == UNTERMINATED_TEMPLATE_LITERAL_ERRORTOK)
errorType = ParserError::SyntaxErrorRecoverable;
else
errorType = ParserError::SyntaxErrorUnterminatedLiteral;
}
if (isEvalNode<ParsedNode>())
error = ParserError(ParserError::EvalError, errorType, m_token, errMsg, errLine);
else
error = ParserError(ParserError::SyntaxError, errorType, m_token, errMsg, errLine);
}
}
return result;
}
template <class ParsedNode>
std::unique_ptr<ParsedNode> parse(
VM& vm, const SourceCode& source,
const Identifier& name, ImplementationVisibility implementationVisibility, JSParserBuiltinMode builtinMode,
LexicallyScopedFeatures lexicallyScopedFeatures, JSParserScriptMode scriptMode, SourceParseMode parseMode, FunctionMode functionMode, SuperBinding superBinding,
ParserError& error,
ConstructorKind constructorKind = ConstructorKind::None,
DerivedContextType derivedContextType = DerivedContextType::None,
EvalContextType evalContextType = EvalContextType::None,
const PrivateNameEnvironment* parentScopePrivateNames = nullptr,
const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>* classElementDefinitions = nullptr,
bool isInsideOrdinaryFunction = false)
{
ASSERT(!source.provider()->source().isNull());
MonotonicTime before;
if (UNLIKELY(Options::reportParseTimes()))
before = MonotonicTime::now();
std::unique_ptr<ParsedNode> result;
if (source.provider()->source().is8Bit()) {
Parser<Lexer<LChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, functionMode, superBinding, constructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, nullptr, isInsideOrdinaryFunction);
result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal, std::nullopt, parentScopePrivateNames, classElementDefinitions);
if (builtinMode == JSParserBuiltinMode::Builtin) {
if (!result) {
ASSERT(error.isValid());
if (error.type() != ParserError::StackOverflow)
dataLogLn("Unexpected error compiling builtin: ", error.message(), " on line ", error.line(), " for function ", name.impl(), ".");
}
}
} else {
Parser<Lexer<UChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, functionMode, superBinding, constructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, nullptr, isInsideOrdinaryFunction);
result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal, std::nullopt, parentScopePrivateNames, classElementDefinitions);
}
if (UNLIKELY(Options::countParseTimes()))
globalParseCount++;
if (UNLIKELY(Options::reportParseTimes())) {
MonotonicTime after = MonotonicTime::now();
ParseHash hash(source);
dataLogLn(result ? "Parsed #" : "Failed to parse #", hash.hashForCall(), "/#", hash.hashForConstruct(), " in ", (after - before).milliseconds(), " ms.");
}
return result;
}
template <class ParsedNode>
std::unique_ptr<ParsedNode> parseRootNode(
VM& vm, const SourceCode& source,
ImplementationVisibility implementationVisibility, JSParserBuiltinMode builtinMode,
LexicallyScopedFeatures lexicallyScopedFeatures, JSParserScriptMode scriptMode, SourceParseMode parseMode,
ParserError& error,
ConstructorKind constructorKindForTopLevelFunctionExpressions = ConstructorKind::None,
JSTextPosition* positionBeforeLastNewline = nullptr,
DebuggerParseData* debuggerParseData = nullptr)
{
static_assert(std::is_same_v<ParsedNode, ProgramNode> || std::is_same_v<ParsedNode, ModuleProgramNode>);
ASSERT(!source.provider()->source().isNull());
MonotonicTime before;
if (UNLIKELY(Options::reportParseTimes()))
before = MonotonicTime::now();
Identifier name;
bool isEvalNode = false;
bool isInsideOrdinaryFunction = false;
std::unique_ptr<ParsedNode> result;
if (source.provider()->source().is8Bit()) {
Parser<Lexer<LChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, debuggerParseData, isInsideOrdinaryFunction);
parser.overrideConstructorKindForTopLevelFunctionExpressions(constructorKindForTopLevelFunctionExpressions);
result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal);
if (positionBeforeLastNewline)
*positionBeforeLastNewline = parser.positionBeforeLastNewline();
} else {
ASSERT_WITH_MESSAGE(!positionBeforeLastNewline, "BuiltinExecutables should always use a 8-bit string");
ASSERT_WITH_MESSAGE(constructorKindForTopLevelFunctionExpressions == ConstructorKind::None, "BuiltinExecutables' special constructors should always use a 8-bit string");
Parser<Lexer<UChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, debuggerParseData, isInsideOrdinaryFunction);
result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal);
}
if (UNLIKELY(Options::countParseTimes()))
globalParseCount++;
if (UNLIKELY(Options::reportParseTimes())) {
MonotonicTime after = MonotonicTime::now();
ParseHash hash(source);
dataLogLn(result ? "Parsed #" : "Failed to parse #", hash.hashForCall(), "/#", hash.hashForConstruct(), " in ", (after - before).milliseconds(), " ms.");
}
return result;
}
inline std::unique_ptr<ProgramNode> parseFunctionForFunctionConstructor(VM& vm, const SourceCode& source, LexicallyScopedFeatures lexicallyScopedFeatures, ParserError& error, JSTextPosition* positionBeforeLastNewline, std::optional<int> functionConstructorParametersEndPosition)
{
ASSERT(!source.provider()->source().isNull());
MonotonicTime before;
if (UNLIKELY(Options::reportParseTimes()))
before = MonotonicTime::now();
Identifier name;
bool isEvalNode = false;
std::unique_ptr<ProgramNode> result;
if (source.provider()->source().is8Bit()) {
Parser<Lexer<LChar>> parser(vm, source, ImplementationVisibility::Public, JSParserBuiltinMode::NotBuiltin, lexicallyScopedFeatures, JSParserScriptMode::Classic, SourceParseMode::ProgramMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, nullptr);
result = parser.parse<ProgramNode>(error, name, ParsingContext::FunctionConstructor, functionConstructorParametersEndPosition);
if (positionBeforeLastNewline)
*positionBeforeLastNewline = parser.positionBeforeLastNewline();
} else {
Parser<Lexer<UChar>> parser(vm, source, ImplementationVisibility::Public, JSParserBuiltinMode::NotBuiltin, lexicallyScopedFeatures, JSParserScriptMode::Classic, SourceParseMode::ProgramMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, nullptr);
result = parser.parse<ProgramNode>(error, name, ParsingContext::FunctionConstructor, functionConstructorParametersEndPosition);
if (positionBeforeLastNewline)
*positionBeforeLastNewline = parser.positionBeforeLastNewline();
}
if (UNLIKELY(Options::countParseTimes()))
globalParseCount++;
if (UNLIKELY(Options::reportParseTimes())) {
MonotonicTime after = MonotonicTime::now();
ParseHash hash(source);
dataLogLn(result ? "Parsed #" : "Failed to parse #", hash.hashForCall(), "/#", hash.hashForConstruct(), " in ", (after - before).milliseconds(), " ms.");
}
return result;
}
} // namespace
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|