File: Parser.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (2397 lines) | stat: -rw-r--r-- 103,619 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
/*
 *  Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
 *  Copyright (C) 2001 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2003-2024 Apple Inc. All rights reserved.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this library; see the file COPYING.LIB.  If not, write to
 *  the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA 02110-1301, USA.
 *
 */

#pragma once

#include "ExecutableInfo.h"
#include "Lexer.h"
#include "ModuleScopeData.h"
#include "Nodes.h"
#include "ParseHash.h"
#include "ParserArena.h"
#include "ParserError.h"
#include "ParserFunctionInfo.h"
#include "ParserTokens.h"
#include "SourceProvider.h"
#include "SourceProviderCache.h"
#include "SourceProviderCacheItem.h"
#include "VariableEnvironment.h"
#include <wtf/FixedVector.h>
#include <wtf/Forward.h>
#include <wtf/IterationStatus.h>
#include <wtf/Noncopyable.h>
#include <wtf/RefPtr.h>
#include <wtf/TZoneMalloc.h>
#include <wtf/text/MakeString.h>

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace JSC {

class FunctionMetadataNode;
class FunctionParameters;
class Identifier;
class VM;
class SourceCode;
class SyntaxChecker;
struct DebuggerParseData;

// Macros to make the more common TreeBuilder types a little less verbose
#define TreeStatement typename TreeBuilder::Statement
#define TreeExpression typename TreeBuilder::Expression
#define TreeFormalParameterList typename TreeBuilder::FormalParameterList
#define TreeSourceElements typename TreeBuilder::SourceElements
#define TreeClause typename TreeBuilder::Clause
#define TreeClauseList typename TreeBuilder::ClauseList
#define TreeArguments typename TreeBuilder::Arguments
#define TreeArgumentsList typename TreeBuilder::ArgumentsList
#define TreeFunctionBody typename TreeBuilder::FunctionBody
#define TreeClassExpression typename TreeBuilder::ClassExpression
#define TreeProperty typename TreeBuilder::Property
#define TreePropertyList typename TreeBuilder::PropertyList
#define TreeDestructuringPattern typename TreeBuilder::DestructuringPattern

static_assert(LastUntaggedToken < 64, "Less than 64 untagged tokens");

enum SourceElementsMode { CheckForStrictMode, DontCheckForStrictMode };
enum FunctionBodyType { ArrowFunctionBodyExpression, ArrowFunctionBodyBlock, StandardFunctionBodyBlock };
enum class FunctionNameRequirements { None, Named, Unnamed };

enum class DestructuringKind {
    DestructureToVariables,
    DestructureToLet,
    DestructureToConst,
    DestructureToCatchParameters,
    DestructureToParameters,
    DestructureToExpressions
};

enum class DeclarationType { 
    VarDeclaration, 
    LetDeclaration,
    ConstDeclaration
};

enum class DeclarationImportType {
    Imported,
    ImportedNamespace,
    NotImported
};

enum DeclarationResult {
    Valid = 0,
    InvalidStrictMode = 1 << 0,
    InvalidDuplicateDeclaration = 1 << 1,
    InvalidPrivateStaticNonStatic = 1 << 2
};

typedef uint8_t DeclarationResultMask;

enum class DeclarationDefaultContext {
    Standard,
    ExportDefault,
};

enum class InferName {
    Allowed,
    Disallowed,
};

template <typename T> inline bool isEvalNode() { return false; }
template <> inline bool isEvalNode<EvalNode>() { return true; }

struct ScopeLabelInfo {
    UniquedStringImpl* uid;
    bool isLoop;
};

ALWAYS_INLINE static bool isArguments(const VM& vm, const Identifier* ident)
{
    return vm.propertyNames->arguments == *ident;
}
ALWAYS_INLINE static bool isEval(const VM& vm, const Identifier* ident)
{
    return vm.propertyNames->eval == *ident;
}
ALWAYS_INLINE static bool isEvalOrArgumentsIdentifier(const VM& vm, const Identifier* ident)
{
    return isEval(vm, ident) || isArguments(vm, ident);
}
ALWAYS_INLINE static bool isIdentifierOrKeyword(const JSToken& token)
{
    return token.m_type == IDENT || token.m_type & KeywordTokenFlag;
}
// "let", "yield", and "await" may be keywords or identifiers depending on context.
ALWAYS_INLINE static bool isContextualKeyword(const JSToken& token)
{
    return token.m_type >= FirstContextualKeywordToken && token.m_type <= LastContextualKeywordToken;
}

JS_EXPORT_PRIVATE extern std::atomic<unsigned> globalParseCount;

struct Scope {
    WTF_MAKE_NONCOPYABLE(Scope);

public:
    Scope(const VM& vm, ImplementationVisibility implementationVisibility, LexicallyScopedFeatures lexicallyScopedFeatures, bool isFunction, bool isGeneratorFunction, bool isArrowFunction, bool isAsyncFunction, bool isStaticBlock)
        : m_vm(vm)
        , m_implementationVisibility(implementationVisibility)
        , m_lexicallyScopedFeatures(lexicallyScopedFeatures)
        , m_isFunction(isFunction)
        , m_isGeneratorFunction(isGeneratorFunction)
        , m_isArrowFunction(isArrowFunction)
        , m_isAsyncFunction(isAsyncFunction)
        , m_isStaticBlock(isStaticBlock)
    {
        m_usedVariables.append(UniquedStringImplPtrSet());
    }

    Scope(Scope&&) = default;

    ImplementationVisibility implementationVisibility() const { return m_implementationVisibility; }
    void resetImplementationVisibility()
    {
        m_implementationVisibility = ImplementationVisibility::Public;
    }

    void startSwitch() { m_switchDepth++; }
    void endSwitch() { m_switchDepth--; }
    void startLoop() { m_loopDepth++; }
    void endLoop() { ASSERT(m_loopDepth); m_loopDepth--; }
    bool inLoop() { return !!m_loopDepth; }
    bool breakIsValid() { return m_loopDepth || m_switchDepth; }
    bool continueIsValid() { return m_loopDepth; }

    void pushLabel(const Identifier* label, bool isLoop)
    {
        if (!m_labels)
            m_labels = makeUnique<LabelStack>();
        m_labels->append(ScopeLabelInfo { label->impl(), isLoop });
    }

    void popLabel()
    {
        ASSERT(m_labels);
        ASSERT(m_labels->size());
        m_labels->removeLast();
    }

    ScopeLabelInfo* getLabel(const Identifier* label)
    {
        if (!m_labels)
            return nullptr;
        for (int i = m_labels->size(); i > 0; i--) {
            if (m_labels->at(i - 1).uid == label->impl())
                return &m_labels->at(i - 1);
        }
        return nullptr;
    }

    void setSourceParseMode(SourceParseMode mode)
    {
        switch (mode) {
        case SourceParseMode::AsyncGeneratorBodyMode:
            setIsAsyncGeneratorFunctionBody();
            break;
        case SourceParseMode::AsyncArrowFunctionBodyMode:
            setIsAsyncArrowFunctionBody();
            break;

        case SourceParseMode::AsyncFunctionBodyMode:
            setIsAsyncFunctionBody();
            break;

        case SourceParseMode::GeneratorBodyMode:
            setIsGeneratorFunctionBody();
            break;

        case SourceParseMode::GeneratorWrapperFunctionMode:
        case SourceParseMode::GeneratorWrapperMethodMode:
            setIsGeneratorFunction();
            break;

        case SourceParseMode::AsyncGeneratorWrapperMethodMode:
        case SourceParseMode::AsyncGeneratorWrapperFunctionMode:
            setIsAsyncGeneratorFunction();
            break;
    
        case SourceParseMode::NormalFunctionMode:
        case SourceParseMode::GetterMode:
        case SourceParseMode::SetterMode:
        case SourceParseMode::MethodMode:
        case SourceParseMode::ClassFieldInitializerMode:
            setIsFunction();
            break;

        case SourceParseMode::ClassStaticBlockMode:
            setIsFunction();
            setIsStaticBlock();
            break;

        case SourceParseMode::ArrowFunctionMode:
            setIsArrowFunction();
            break;

        case SourceParseMode::AsyncFunctionMode:
        case SourceParseMode::AsyncMethodMode:
            setIsAsyncFunction();
            break;

        case SourceParseMode::AsyncArrowFunctionMode:
            setIsAsyncArrowFunction();
            break;

        case SourceParseMode::ProgramMode:
            setIsGlobalCode();
            break;

        case SourceParseMode::ModuleAnalyzeMode:
        case SourceParseMode::ModuleEvaluateMode:
            setIsModuleCode();
            break;
        }
    }

    bool isFunction() const { return m_isFunction; }
    bool isFunctionBoundary() const { return m_isFunctionBoundary; }
    bool isGeneratorFunction() const { return m_isGeneratorFunction; }
    bool isGeneratorFunctionBoundary() const { return m_isGeneratorFunctionBoundary; }
    bool isAsyncFunction() const { return m_isAsyncFunction; }
    bool isAsyncFunctionBoundary() const { return m_isAsyncFunctionBoundary; }
    bool isPrivateNameScope() const { return m_isClassScope; }
    bool isClassScope() const { return m_isClassScope; }
    bool isGlobalCode() const { return m_isGlobalCode; }
    bool isModuleCode() const { return m_isModuleCode; }

    bool hasArguments() const { return m_hasArguments; }

    void setIsSimpleCatchParameterScope() { m_isSimpleCatchParameterScope = true; }
    bool isSimpleCatchParameterScope() { return m_isSimpleCatchParameterScope; }

    void setIsCatchBlockScope() { m_isCatchBlockScope = true; }
    bool isCatchBlockScope() { return m_isCatchBlockScope; }

    void setIsStaticBlock()
    {
        m_isStaticBlock = true;
        m_isStaticBlockBoundary = true;
    }
    bool isStaticBlock() { return m_isStaticBlock; }
    bool isStaticBlockBoundary() { return m_isStaticBlockBoundary; }

    void setIsLexicalScope() 
    { 
        m_isLexicalScope = true;
        m_allowsLexicalDeclarations = true;
    }

    void setIsPrivateNameScope()
    {
        // FIXME: Currently, isPrivateNameScope is an alias for isClassScope --- This is potentially misleading,
        // particularly when parsing direct eval code which occurs within a class.
        setIsClassScope();
    }

    void setIsClassScope()
    {
        m_isClassScope = true;
    }

    bool isLexicalScope() const { return m_isLexicalScope; }
    bool usesEval() const { return m_usesEval; }
    bool usesImportMeta() const { return m_usesImportMeta; }

    const UncheckedKeyHashSet<UniquedStringImpl*>& closedVariableCandidates() const { return m_closedVariableCandidates; }
    VariableEnvironment& declaredVariables() { return m_declaredVariables; }
    VariableEnvironment& lexicalVariables() { return m_lexicalVariables; }
    void finalizeLexicalEnvironment()
    {
        if (m_usesEval || m_needsFullActivation)
            m_lexicalVariables.markAllVariablesAsCaptured();
        else
            computeLexicallyCapturedVariablesAndPurgeCandidates();
    }

    VariableEnvironment takeLexicalEnvironment() { return WTFMove(m_lexicalVariables); }
    VariableEnvironment takeDeclaredVariables() { return WTFMove(m_declaredVariables); }

    void computeLexicallyCapturedVariablesAndPurgeCandidates()
    {
        // Because variables may be defined at any time in the range of a lexical scope, we must
        // track lexical variables that might be captured. Then, when we're preparing to pop the top
        // lexical scope off the stack, we should find which variables are truly captured, and which
        // variable still may be captured in a parent scope.
        if (m_lexicalVariables.size() && m_closedVariableCandidates.size()) {
            for (UniquedStringImpl* impl : m_closedVariableCandidates)
                m_lexicalVariables.markVariableAsCapturedIfDefined(impl);
        }

        // We can now purge values from the captured candidates because they're captured in this scope.
        {
            for (const auto& entry : m_lexicalVariables) {
                if (entry.value.isCaptured())
                    m_closedVariableCandidates.remove(entry.key.get());
            }
        }
    }

    DeclarationResultMask declareCallee(const Identifier* ident)
    {
        auto addResult = m_declaredVariables.add(ident->impl());
        // We want to track if callee is captured, but we don't want to act like it's a 'var'
        // because that would cause the BytecodeGenerator to emit bad code.
        addResult.iterator->value.clearIsVar();

        DeclarationResultMask result = DeclarationResult::Valid;
        if (isEvalOrArgumentsIdentifier(m_vm, ident))
            result |= DeclarationResult::InvalidStrictMode;
        return result;
    }

    DeclarationResultMask declareVariable(const Identifier* ident)
    {
        ASSERT(m_allowsVarDeclarations);
        DeclarationResultMask result = DeclarationResult::Valid;
        bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
        m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
        auto addResult = m_declaredVariables.add(ident->impl());
        addResult.iterator->value.setIsVar();
        if (!isValidStrictMode)
            result |= DeclarationResult::InvalidStrictMode;
        return result;
    }

    DeclarationResultMask declareFunctionAsVar(const Identifier* ident)
    {
        ASSERT(m_allowsVarDeclarations);
        DeclarationResultMask result = DeclarationResult::Valid;
        bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
        if (!isValidStrictMode)
            result |= DeclarationResult::InvalidStrictMode;
        m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;

        auto addResult = m_declaredVariables.add(ident->impl());
        addResult.iterator->value.setIsVar();
        addResult.iterator->value.setIsFunction();

        if (m_lexicalVariables.contains(ident->impl()))
            result |= DeclarationResult::InvalidDuplicateDeclaration;
        return result;
    }

    DeclarationResultMask declareFunctionAsLet(const Identifier* ident, bool isFunctionDeclaration)
    {
        ASSERT(m_allowsLexicalDeclarations);
        DeclarationResultMask result = DeclarationResult::Valid;
        bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
        if (!isValidStrictMode)
            result |= DeclarationResult::InvalidStrictMode;
        m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;

        auto addResult = m_lexicalVariables.add(ident->impl());
        if (!addResult.isNewEntry) {
            if (strictMode() || !addResult.iterator->value.isFunctionDeclaration() || !isFunctionDeclaration)
                result |= DeclarationResult::InvalidDuplicateDeclaration;
        }
        if (m_declaredVariables.contains(ident->impl()) || m_variablesBeingHoisted.contains(ident->impl()))
            result |= DeclarationResult::InvalidDuplicateDeclaration;

        addResult.iterator->value.setIsLet();
        addResult.iterator->value.setIsFunction();
        if (isFunctionDeclaration)
            addResult.iterator->value.setIsFunctionDeclaration();

        return result;
    }

    void addVariableBeingHoisted(const Identifier* ident)
    {
        ASSERT(!m_allowsVarDeclarations);
        m_variablesBeingHoisted.add(ident->impl());
    }

    enum class NeedsDuplicateDeclarationCheck : bool { No, Yes };
    template<NeedsDuplicateDeclarationCheck needsCheck>
    void addSloppyModeFunctionHoistingCandidate(FunctionMetadataNode* node)
    {
        ASSERT(node);
        ASSERT(!strictMode());
        m_sloppyModeFunctionHoistingCandidates.set(node, needsCheck);
    }

    void appendFunction(FunctionMetadataNode* node)
    { 
        ASSERT(node);
        m_functionDeclarations.append(node);
    }
    DeclarationStacks::FunctionStack takeFunctionDeclarations() { return WTFMove(m_functionDeclarations); }
    

    DeclarationResultMask declareLexicalVariable(const Identifier* ident, bool isConstant, DeclarationImportType importType = DeclarationImportType::NotImported)
    {
        ASSERT(m_allowsLexicalDeclarations);
        DeclarationResultMask result = DeclarationResult::Valid;
        bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident);
        m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
        auto addResult = m_lexicalVariables.add(ident->impl());
        if (isConstant)
            addResult.iterator->value.setIsConst();
        else
            addResult.iterator->value.setIsLet();

        if (importType == DeclarationImportType::Imported)
            addResult.iterator->value.setIsImported();
        else if (importType == DeclarationImportType::ImportedNamespace) {
            addResult.iterator->value.setIsImported();
            addResult.iterator->value.setIsImportedNamespace();
        }

        if (!addResult.isNewEntry || m_variablesBeingHoisted.contains(ident->impl()))
            result |= DeclarationResult::InvalidDuplicateDeclaration;
        if (!isValidStrictMode)
            result |= DeclarationResult::InvalidStrictMode;

        return result;
    }

    ALWAYS_INLINE bool hasDeclaredGlobalArguments()
    {
        const Identifier& ident = m_vm.propertyNames->arguments;
        return hasLexicallyDeclaredVariable(ident) || hasDeclaredVariable(ident) || shadowsArguments();
    }

    ALWAYS_INLINE bool hasDeclaredVariable(const Identifier& ident)
    {
        return hasDeclaredVariable(ident.impl());
    }

    bool hasDeclaredVariable(const RefPtr<UniquedStringImpl>& ident)
    {
        auto iter = m_declaredVariables.find(ident.get());
        if (iter == m_declaredVariables.end())
            return false;
        VariableEnvironmentEntry entry = iter->value;
        return entry.isVar(); // The callee isn't a "var".
    }

    ALWAYS_INLINE bool hasLexicallyDeclaredVariable(const Identifier& ident)
    {
        return hasLexicallyDeclaredVariable(ident.impl());
    }

    bool hasLexicallyDeclaredVariable(const RefPtr<UniquedStringImpl>& ident) const
    {
        return m_lexicalVariables.contains(ident.get());
    }

    bool hasPrivateName(const Identifier& ident)
    {
        return m_lexicalVariables.hasPrivateName(ident);
    }

    DeclarationResultMask declarePrivateMethod(const Identifier& ident, ClassElementTag tag)
    {
        ASSERT(m_allowsLexicalDeclarations);
        DeclarationResultMask result = DeclarationResult::Valid;
        bool addResult = tag == ClassElementTag::Static ? m_lexicalVariables.declareStaticPrivateMethod(ident) : m_lexicalVariables.declarePrivateMethod(ident);

        if (!addResult) {
            result |= DeclarationResult::InvalidDuplicateDeclaration;
            return result;
        }

        return result;
    }

    enum class PrivateAccessorType { Setter, Getter };

    DeclarationResultMask declarePrivateAccessor(const Identifier& ident, ClassElementTag tag, PrivateAccessorType accessorType)
    {
        DeclarationResultMask result = DeclarationResult::Valid;
        VariableEnvironment::PrivateDeclarationResult addResult;
        if (accessorType == PrivateAccessorType::Setter)
            addResult = tag == ClassElementTag::Static ? m_lexicalVariables.declareStaticPrivateSetter(ident) : m_lexicalVariables.declarePrivateSetter(ident);
        else
            addResult = tag == ClassElementTag::Static ? m_lexicalVariables.declareStaticPrivateGetter(ident) : m_lexicalVariables.declarePrivateGetter(ident);

        if (addResult == VariableEnvironment::PrivateDeclarationResult::DuplicatedName)
            result |= DeclarationResult::InvalidDuplicateDeclaration;

        if (addResult == VariableEnvironment::PrivateDeclarationResult::InvalidStaticNonStatic)
            result |= DeclarationResult::InvalidPrivateStaticNonStatic;

        return result;
    }

    DeclarationResultMask declarePrivateSetter(const Identifier& ident, ClassElementTag tag)
    {
        ASSERT(m_allowsLexicalDeclarations);
        return declarePrivateAccessor(ident, tag, PrivateAccessorType::Setter);
    }

    DeclarationResultMask declarePrivateGetter(const Identifier& ident, ClassElementTag tag)
    {
        ASSERT(m_allowsLexicalDeclarations);
        return declarePrivateAccessor(ident, tag, PrivateAccessorType::Getter);
    }

    DeclarationResultMask declarePrivateField(const Identifier& ident)
    {
        ASSERT(m_allowsLexicalDeclarations);
        DeclarationResultMask result = DeclarationResult::Valid;
        auto addResult = m_lexicalVariables.declarePrivateField(ident);
        if (!addResult.isNewEntry)
            result |= DeclarationResult::InvalidDuplicateDeclaration;
        return result;
    }

    ALWAYS_INLINE bool hasDeclaredParameter(const Identifier& ident)
    {
        return hasDeclaredParameter(ident.impl());
    }

    bool hasDeclaredParameter(const RefPtr<UniquedStringImpl>& ident)
    {
        return m_declaredParameters.contains(ident.get()) || hasDeclaredVariable(ident);
    }
    
    void preventAllVariableDeclarations()
    {
        m_allowsVarDeclarations = false; 
        m_allowsLexicalDeclarations = false;
    }
    void preventVarDeclarations() { m_allowsVarDeclarations = false; }
    bool allowsVarDeclarations() const { return m_allowsVarDeclarations; }
    bool allowsLexicalDeclarations() const { return m_allowsLexicalDeclarations; }

    DeclarationResultMask declareParameter(const Identifier* ident)
    {
        ASSERT(m_allowsVarDeclarations);
        DeclarationResultMask result = DeclarationResult::Valid;
        bool isArgumentsIdent = isArguments(m_vm, ident);
        auto addResult = m_declaredVariables.add(ident->impl());
        bool isDuplicateParameter = !addResult.isNewEntry && addResult.iterator->value.isParameter();
        bool isValidStrictMode = !isDuplicateParameter && m_vm.propertyNames->eval != *ident && !isArgumentsIdent;
        addResult.iterator->value.clearIsVar();
        addResult.iterator->value.setIsParameter();
        m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode;
        m_declaredParameters.add(ident->impl());
        if (!isValidStrictMode)
            result |= DeclarationResult::InvalidStrictMode;
        if (isArgumentsIdent)
            m_shadowsArguments = true;
        if (isDuplicateParameter)
            result |= DeclarationResult::InvalidDuplicateDeclaration;

        return result;
    }
    
    bool usedVariablesContains(UniquedStringImpl* impl) const
    { 
        for (const UniquedStringImplPtrSet& set : m_usedVariables) {
            if (set.contains(impl))
                return true;
        }
        return false;
    }
    template <typename Func>
    void forEachUsedVariable(const Func& func)
    {
        for (const UniquedStringImplPtrSet& set : m_usedVariables) {
            for (UniquedStringImpl* impl : set) {
                if (func(impl) == IterationStatus::Done)
                    return;
            }
        }
    }
    void useVariable(const Identifier* ident, bool isEval)
    {
        useVariable(ident->impl(), isEval);
    }
    void useVariable(UniquedStringImpl* impl, bool isEval)
    {
        m_usesEval |= isEval;
        m_usedVariables.last().add(impl);
    }
    void usePrivateName(const Identifier& ident)
    {
        ASSERT(m_allowsLexicalDeclarations);
        useVariable(&ident, false);
    }

    void setUsesImportMeta() { m_usesImportMeta = true; }

    void pushUsedVariableSet() { m_usedVariables.append(UniquedStringImplPtrSet()); }
    size_t currentUsedVariablesSize() { return m_usedVariables.size(); }
    void revertToPreviousUsedVariables(size_t size) { m_usedVariables.resize(size); }

    void setNeedsFullActivation() { m_needsFullActivation = true; }
    bool needsFullActivation() const { return m_needsFullActivation; }
    bool isArrowFunctionBoundary() { return m_isArrowFunctionBoundary; }
    bool isArrowFunction() { return m_isArrowFunction; }

    bool hasDirectSuper() const { return m_hasDirectSuper; }
    void setHasDirectSuper() { m_hasDirectSuper = true; }

    bool needsSuperBinding() const { return m_needsSuperBinding; }
    void setNeedsSuperBinding() { m_needsSuperBinding = true; }
    
    void setEvalContextType(EvalContextType evalContextType) { m_evalContextType = evalContextType; }
    EvalContextType evalContextType() { return m_evalContextType; }

    void setDerivedContextType(DerivedContextType derivedContextType) { m_derivedContextType = derivedContextType; }
    DerivedContextType derivedContextType() const { return m_derivedContextType; }
    
    InnerArrowFunctionCodeFeatures innerArrowFunctionFeatures() { return m_innerArrowFunctionFeatures; }
    
    void setExpectedSuperBinding(SuperBinding superBinding) { m_expectedSuperBinding = superBinding; }
    SuperBinding expectedSuperBinding() const { return m_expectedSuperBinding; }
    void setConstructorKind(ConstructorKind constructorKind) { m_constructorKind = constructorKind; }
    ConstructorKind constructorKind() const { return m_constructorKind; }

    void setInnerArrowFunctionUsesSuperCall() { m_innerArrowFunctionFeatures |= SuperCallInnerArrowFunctionFeature; }
    void setInnerArrowFunctionUsesSuperProperty() { m_innerArrowFunctionFeatures |= SuperPropertyInnerArrowFunctionFeature; }
    void setInnerArrowFunctionUsesEval() { m_innerArrowFunctionFeatures |= EvalInnerArrowFunctionFeature; }
    void setInnerArrowFunctionUsesThis() { m_innerArrowFunctionFeatures |= ThisInnerArrowFunctionFeature; }
    void setInnerArrowFunctionUsesNewTarget() { m_innerArrowFunctionFeatures |= NewTargetInnerArrowFunctionFeature; }
    void setInnerArrowFunctionUsesArguments() { m_innerArrowFunctionFeatures |= ArgumentsInnerArrowFunctionFeature; }
    
    bool isEvalContext() const { return m_isEvalContext; }
    void setIsEvalContext(bool isEvalContext) { m_isEvalContext = isEvalContext; }

    void setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded()
    {
        ASSERT(m_isArrowFunction);

        if (m_usesEval)
            setInnerArrowFunctionUsesEval();
        
        if (usedVariablesContains(m_vm.propertyNames->arguments.impl()))
            setInnerArrowFunctionUsesArguments();
    }

    void addClosedVariableCandidateUnconditionally(UniquedStringImpl* impl)
    {
        m_closedVariableCandidates.add(impl);
    }

    void markLastUsedVariablesSetAsCaptured(unsigned from)
    {
        for (unsigned index = from; index < m_usedVariables.size(); ++index) {
            for (UniquedStringImpl* impl : m_usedVariables[index])
                m_closedVariableCandidates.add(impl);
        }
    }
    
    void collectFreeVariables(Scope* nestedScope, bool shouldTrackClosedVariables)
    {
        if (nestedScope->m_usesEval)
            m_usesEval = true;
        if (nestedScope->m_usesImportMeta)
            m_usesImportMeta = true;

        {
            UniquedStringImplPtrSet& destinationSet = m_usedVariables.last();
            for (const UniquedStringImplPtrSet& usedVariablesSet : nestedScope->m_usedVariables) {
                for (UniquedStringImpl* impl : usedVariablesSet) {
                    if (nestedScope->m_declaredVariables.contains(impl) || nestedScope->m_lexicalVariables.contains(impl))
                        continue;

                    // "arguments" reference should be resolved at function boudary.
                    if (nestedScope->isFunctionBoundary() && nestedScope->hasArguments() && impl == m_vm.propertyNames->arguments.impl() && !nestedScope->isArrowFunctionBoundary())
                        continue;

                    destinationSet.add(impl);
                    // We don't want a declared variable that is used in an inner scope to be thought of as captured if
                    // that inner scope is both a lexical scope and not a function. Only inner functions and "catch" 
                    // statements can cause variables to be captured.
                    if (shouldTrackClosedVariables && (nestedScope->m_isFunctionBoundary || !nestedScope->m_isLexicalScope))
                        m_closedVariableCandidates.add(impl);
                }
            }
        }
        // Propagate closed variable candidates downwards within the same function.
        // Cross function captures will be realized via m_usedVariables propagation.
        if (shouldTrackClosedVariables && !nestedScope->m_isFunctionBoundary && nestedScope->m_closedVariableCandidates.size()) {
            auto end = nestedScope->m_closedVariableCandidates.end();
            auto begin = nestedScope->m_closedVariableCandidates.begin();
            m_closedVariableCandidates.add(begin, end);
        }
    }
    
    void mergeInnerArrowFunctionFeatures(InnerArrowFunctionCodeFeatures arrowFunctionCodeFeatures)
    {
        m_innerArrowFunctionFeatures = m_innerArrowFunctionFeatures | arrowFunctionCodeFeatures;
    }
    
    void finalizeSloppyModeFunctionHoisting()
    {
        ASSERT(allowsVarDeclarations());
        ASSERT(!isSimpleCatchParameterScope());

        for (const auto& iter : m_sloppyModeFunctionHoistingCandidates) {
            // ES6 Annex B.3.3. The only time we can't hoist a function is if a syntax error would
            // be caused by declaring a var with that function's name or if we have a parameter with
            // that function's name. Note that we would only cause a syntax error if we had a let/const/class
            // variable with the same name.
            FunctionMetadataNode* metadata = iter.key;
            auto* function = metadata->ident().impl();
            if (!m_lexicalVariables.contains(function)) {
                auto addResult = m_declaredVariables.add(function);
                if (addResult.isNewEntry)
                    addResult.iterator->value.setIsSloppyModeHoistedFunction();
                else if (addResult.iterator->value.isParameter())
                    continue;

                addResult.iterator->value.setIsVar();
                metadata->setIsSloppyModeHoistedFunction();
            }
        }
    }

    NEVER_INLINE void bubbleSloppyModeFunctionHoistingCandidates(Scope* parentScope)
    {
        for (const auto& iter : m_sloppyModeFunctionHoistingCandidates) {
            FunctionMetadataNode* metadata = iter.key;
            bool needsCheck = iter.value == NeedsDuplicateDeclarationCheck::Yes;
            if (!needsCheck || !m_lexicalVariables.contains(metadata->ident().impl()) || isSimpleCatchParameterScope())
                parentScope->addSloppyModeFunctionHoistingCandidate<NeedsDuplicateDeclarationCheck::Yes>(metadata);
        }
    }

    void getCapturedVars(IdentifierSet& capturedVariables)
    {
        if (m_needsFullActivation || m_usesEval) {
            for (auto& entry : m_declaredVariables)
                capturedVariables.add(entry.key);
            return;
        }
        for (UniquedStringImpl* impl : m_closedVariableCandidates) {
            // We refer to m_declaredVariables here directly instead of a hasDeclaredVariable because we want to mark the callee as captured.
            if (!m_declaredVariables.contains(impl)) 
                continue;
            capturedVariables.add(impl);
        }
    }
    LexicallyScopedFeatures lexicallyScopedFeatures() const { return m_lexicallyScopedFeatures; }
    void setLexicallyScopedFeatures(LexicallyScopedFeatures features) { m_lexicallyScopedFeatures = features; }
    void setStrictMode() { m_lexicallyScopedFeatures |= StrictModeLexicallyScopedFeature; }
    void setTaintedByWithScope() { m_lexicallyScopedFeatures |= TaintedByWithScopeLexicallyScopedFeature; }
    bool strictMode() const { return m_lexicallyScopedFeatures & StrictModeLexicallyScopedFeature; }
    bool isValidStrictMode() const { return m_isValidStrictMode; }
    bool shadowsArguments() const { return m_shadowsArguments; }
    void setHasNonSimpleParameterList()
    {
        m_isValidStrictMode = false;
        m_hasNonSimpleParameterList = true;
    }
    bool hasNonSimpleParameterList() const { return m_hasNonSimpleParameterList; }

    bool hasSloppyModeFunctionHoistingCandidates() const { return !m_sloppyModeFunctionHoistingCandidates.isEmpty(); }

    void copyCapturedVariablesToVector(const UniquedStringImplPtrSet& usedVariables, Vector<UniquedStringImpl*, 8>& vector)
    {
        for (UniquedStringImpl* impl : usedVariables) {
            if (m_declaredVariables.contains(impl) || m_lexicalVariables.contains(impl))
                continue;
            vector.append(impl);
        }
    }

    void fillParametersForSourceProviderCache(SourceProviderCacheItemCreationParameters& parameters, const UniquedStringImplPtrSet& capturesFromParameterExpressions)
    {
        ASSERT(m_isFunction);
        parameters.usesEval = m_usesEval;
        parameters.usesImportMeta = m_usesImportMeta;
        parameters.lexicallyScopedFeatures = m_lexicallyScopedFeatures;
        parameters.needsFullActivation = m_needsFullActivation;
        parameters.innerArrowFunctionFeatures = m_innerArrowFunctionFeatures;
        parameters.needsSuperBinding = m_needsSuperBinding;
        for (const UniquedStringImplPtrSet& set : m_usedVariables)
            copyCapturedVariablesToVector(set, parameters.usedVariables);

        // FIXME: https://bugs.webkit.org/show_bug.cgi?id=156962
        // We add these unconditionally because we currently don't keep a separate
        // declaration scope for a function's parameters and its var/let/const declarations.
        // This is somewhat unfortunate and we should refactor to do this at some point
        // because parameters logically form a parent scope to var/let/const variables.
        // But because we don't do this, we must grab capture candidates from a parameter
        // list before we parse the body of a function because the body's declarations
        // might make us believe something isn't actually a capture candidate when it really
        // is.
        for (UniquedStringImpl* impl : capturesFromParameterExpressions)
            parameters.usedVariables.append(impl);
    }

    void restoreFromSourceProviderCache(const SourceProviderCacheItem* info)
    {
        ASSERT(m_isFunction);
        m_usesEval = info->usesEval;
        m_usesImportMeta = info->usesImportMeta;
        m_lexicallyScopedFeatures = info->lexicallyScopedFeatures();
        m_innerArrowFunctionFeatures = info->innerArrowFunctionFeatures;
        m_needsFullActivation = info->needsFullActivation;
        m_needsSuperBinding = info->needsSuperBinding;
        UniquedStringImplPtrSet& destSet = m_usedVariables.last();
        for (unsigned i = 0; i < info->usedVariablesCount; ++i)
            destSet.add(info->usedVariables()[i].get());
    }

    class MaybeParseAsGeneratorFunctionForScope;

private:
    void setIsFunction()
    {
        m_isFunction = true;
        m_isFunctionBoundary = true;
        m_hasArguments = true;
        setIsLexicalScope();
        m_isGeneratorFunction = false;
        m_isGeneratorFunctionBoundary = false;
        m_isArrowFunctionBoundary = false;
        m_isArrowFunction = false;
        m_isAsyncFunction = false;
        m_isAsyncFunctionBoundary = false;
        m_isStaticBlock = false;
        m_isStaticBlockBoundary = false;
    }

    void setIsGeneratorFunction()
    {
        setIsFunction();
        m_isGeneratorFunction = true;
    }

    void setIsGeneratorFunctionBody()
    {
        setIsFunction();
        m_hasArguments = false;
        m_isGeneratorFunction = true;
        m_isGeneratorFunctionBoundary = true;
    }
    
    void setIsArrowFunction()
    {
        setIsFunction();
        m_isArrowFunctionBoundary = true;
        m_isArrowFunction = true;
    }

    void setIsAsyncArrowFunction()
    {
        setIsArrowFunction();
        m_isAsyncFunction = true;
    }

    void setIsAsyncFunction()
    {
        setIsFunction();
        m_isAsyncFunction = true;
    }

    void setIsAsyncGeneratorFunction()
    {
        setIsFunction();
        m_isAsyncFunction = true;
        m_isGeneratorFunction = true;
    }

    void setIsAsyncGeneratorFunctionBody()
    {
        setIsFunction();
        m_hasArguments = false;
        m_isGeneratorFunction = true;
        m_isGeneratorFunctionBoundary = true;
        m_isAsyncFunction = true;
        m_isAsyncFunctionBoundary = true;
    }

    void setIsAsyncFunctionBody()
    {
        setIsFunction();
        m_hasArguments = false;
        m_isAsyncFunction = true;
        m_isAsyncFunctionBoundary = true;
    }

    void setIsAsyncArrowFunctionBody()
    {
        setIsArrowFunction();
        m_hasArguments = false;
        m_isAsyncFunction = true;
        m_isAsyncFunctionBoundary = true;
    }

    void setIsGlobalCode()
    {
        m_isGlobalCode = true;
    }

    void setIsModuleCode()
    {
        setIsGlobalCode();
        m_isModuleCode = true;
    }

    const VM& m_vm;
    ImplementationVisibility m_implementationVisibility;
    LexicallyScopedFeatures m_lexicallyScopedFeatures;
    bool m_shadowsArguments : 1 { false };
    bool m_usesEval : 1 { false };
    bool m_usesImportMeta : 1 { false };
    bool m_needsFullActivation : 1 { false };
    bool m_hasDirectSuper : 1 { false };
    bool m_needsSuperBinding : 1 { false };
    bool m_allowsVarDeclarations : 1 { true };
    bool m_allowsLexicalDeclarations : 1 { true };
    bool m_isFunction : 1;
    bool m_isGeneratorFunction : 1;
    bool m_isGeneratorFunctionBoundary : 1 { false };
    bool m_isArrowFunction : 1;
    bool m_isArrowFunctionBoundary : 1 { false };
    bool m_isAsyncFunction : 1;
    bool m_isAsyncFunctionBoundary : 1 { false };
    bool m_isLexicalScope : 1 { false };
    bool m_isGlobalCode : 1 { false };
    bool m_isModuleCode : 1 { false };
    bool m_isSimpleCatchParameterScope : 1 { false };
    bool m_isCatchBlockScope : 1 { false };
    bool m_isStaticBlock : 1 { false };
    bool m_isStaticBlockBoundary : 1 { false };
    bool m_isFunctionBoundary : 1 { false };
    bool m_isValidStrictMode : 1 { true };
    bool m_hasArguments : 1 { false };
    bool m_isEvalContext : 1 { false };
    bool m_hasNonSimpleParameterList : 1 { false };
    bool m_isClassScope : 1 { false };
    EvalContextType m_evalContextType { EvalContextType::None };
    ConstructorKind m_constructorKind { ConstructorKind::None };
    DerivedContextType m_derivedContextType { DerivedContextType::None };
    SuperBinding m_expectedSuperBinding { SuperBinding::NotNeeded };
    int m_loopDepth { 0 };
    int m_switchDepth { 0 };
    InnerArrowFunctionCodeFeatures m_innerArrowFunctionFeatures { 0 };

    typedef Vector<ScopeLabelInfo, 2> LabelStack;
    std::unique_ptr<LabelStack> m_labels;
    UniquedStringImplPtrSet m_declaredParameters;
    VariableEnvironment m_declaredVariables;
    VariableEnvironment m_lexicalVariables;
    Vector<UniquedStringImplPtrSet, 6> m_usedVariables;
    UniquedStringImplPtrSet m_variablesBeingHoisted;
    UncheckedKeyHashMap<FunctionMetadataNode*, NeedsDuplicateDeclarationCheck> m_sloppyModeFunctionHoistingCandidates;
    UncheckedKeyHashSet<UniquedStringImpl*> m_closedVariableCandidates;
    DeclarationStacks::FunctionStack m_functionDeclarations;
};

typedef Vector<Scope, 10> ScopeStack;

struct ScopeRef {
    ScopeRef(ScopeStack* scopeStack, unsigned index)
        : m_scopeStack(scopeStack)
        , m_index(index)
    {
    }
    Scope* operator->() { return &m_scopeStack->at(m_index); }
    unsigned index() const { return m_index; }

    bool hasContainingScope()
    {
        return m_index && !m_scopeStack->at(m_index).isFunctionBoundary();
    }

    ScopeRef containingScope()
    {
        ASSERT(hasContainingScope());
        return ScopeRef(m_scopeStack, m_index - 1);
    }

    bool operator==(const ScopeRef& other) const
    {
        ASSERT(other.m_scopeStack == m_scopeStack);
        return m_index == other.m_index;
    }

private:
    ScopeStack* m_scopeStack;
    unsigned m_index;
};

enum class ArgumentType { Normal, Spread };
enum class ParsingContext { Normal, FunctionConstructor };

template <typename LexerType>
class Parser {
    WTF_MAKE_NONCOPYABLE(Parser);
    WTF_MAKE_TZONE_NON_HEAP_ALLOCATABLE(Parser);

public:
    Parser(VM&, const SourceCode&, ImplementationVisibility, JSParserBuiltinMode, LexicallyScopedFeatures, JSParserScriptMode, SourceParseMode, FunctionMode, SuperBinding, ConstructorKind = ConstructorKind::None, DerivedContextType = DerivedContextType::None, bool isEvalContext = false, EvalContextType = EvalContextType::None, DebuggerParseData* = nullptr, bool isInsideOrdinaryFunction = false);
    ~Parser();

    template <class ParsedNode>
    std::unique_ptr<ParsedNode> parse(ParserError&, const Identifier&, ParsingContext, std::optional<int> functionConstructorParametersEndPosition = std::nullopt, const PrivateNameEnvironment* = nullptr, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>* = nullptr);

    void overrideConstructorKindForTopLevelFunctionExpressions(ConstructorKind constructorKind) { m_constructorKindForTopLevelFunctionExpressions = constructorKind; }

    JSTextPosition positionBeforeLastNewline() const { return m_lexer->positionBeforeLastNewline(); }
    JSTokenLocation locationBeforeLastToken() const { return m_lexer->lastTokenLocation(); }

    struct CallOrApplyDepthScope {
        CallOrApplyDepthScope(Parser* parser)
            : m_parser(parser)
            , m_parent(parser->m_callOrApplyDepthScope)
            , m_depth(m_parent ? m_parent->m_depth + 1 : 0)
            , m_depthOfInnermostChild(m_depth)
        {
            parser->m_callOrApplyDepthScope = this;
        }

        size_t distanceToInnermostChild() const
        {
            ASSERT(m_depthOfInnermostChild >= m_depth);
            return m_depthOfInnermostChild - m_depth;
        }

        ~CallOrApplyDepthScope()
        {
            if (m_parent)
                m_parent->m_depthOfInnermostChild = std::max(m_depthOfInnermostChild, m_parent->m_depthOfInnermostChild);
            m_parser->m_callOrApplyDepthScope = m_parent;
        }

    private:

        Parser* m_parser;
        CallOrApplyDepthScope* m_parent;
        size_t m_depth;
        size_t m_depthOfInnermostChild;
    };

private:
    struct AllowInOverride {
        AllowInOverride(Parser* parser)
            : m_parser(parser)
            , m_oldAllowsIn(parser->m_allowsIn)
        {
            parser->m_allowsIn = true;
        }
        ~AllowInOverride()
        {
            m_parser->m_allowsIn = m_oldAllowsIn;
        }
        Parser* m_parser;
        bool m_oldAllowsIn;
    };

    struct AutoPopScopeRef : public ScopeRef {
        AutoPopScopeRef(Parser* parser, ScopeRef scope)
        : ScopeRef(scope)
        , m_parser(parser)
        {
        }
        
        ~AutoPopScopeRef()
        {
            if (m_parser)
                m_parser->popScope(*this, false);
        }
        
        void setPopped()
        {
            m_parser = nullptr;
        }
        
    private:
        Parser* m_parser;
    };

    struct AutoCleanupLexicalScope {
        // We can allocate this object on the stack without actually knowing beforehand if we're 
        // going to create a new lexical scope. If we decide to create a new lexical scope, we
        // can pass the scope into this obejct and it will take care of the cleanup for us if the parse fails.
        // This is helpful if we may fail from syntax errors after creating a lexical scope conditionally.
        AutoCleanupLexicalScope()
            : m_scope(nullptr, UINT_MAX)
            , m_parser(nullptr)
        {
        }

        ~AutoCleanupLexicalScope()
        {
            // This should only ever be called if we fail from a syntax error. Otherwise
            // it's the intention that a user of this class pops this scope manually on a 
            // successful parse. 
            if (isValid())
                m_parser->popScope(*this, false);
        }

        void setIsValid(ScopeRef& scope, Parser* parser)
        {
            RELEASE_ASSERT(scope->isLexicalScope());
            m_scope = scope;
            m_parser = parser;
        }

        bool isValid() const { return !!m_parser; }

        void setPopped()
        {
            m_parser = nullptr;
        }

        ScopeRef& scope() { return m_scope; }

    private:
        ScopeRef m_scope;
        Parser* m_parser;
    };

    enum ExpressionErrorClass {
        ErrorIndicatesNothing = 0,
        ErrorIndicatesPattern,
        ErrorIndicatesAsyncArrowFunction
    };

    struct ExpressionErrorClassifier {
        ExpressionErrorClassifier(Parser* parser)
            : m_class(ErrorIndicatesNothing)
            , m_previous(parser->m_expressionErrorClassifier)
            , m_parser(parser)
        {
            m_parser->m_expressionErrorClassifier = this;
        }

        ~ExpressionErrorClassifier()
        {
            m_parser->m_expressionErrorClassifier = m_previous;
        }

        void classifyExpressionError(ExpressionErrorClass classification)
        {
            if (m_class != ErrorIndicatesNothing)
                return;
            m_class = classification;
        }

        void forceClassifyExpressionError(ExpressionErrorClass classification)
        {
            m_class = classification;
        }

        void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification)
        {
            if (m_class != oldClassification)
                return;
            m_class = classification;
        }

        void propagateExpressionErrorClass()
        {
            if (m_previous)
                m_previous->m_class = m_class;
        }

        bool indicatesPossiblePattern() const { return m_class == ErrorIndicatesPattern; }
        bool indicatesPossibleAsyncArrowFunction() const { return m_class == ErrorIndicatesAsyncArrowFunction; }

    private:
        ExpressionErrorClass m_class;
        ExpressionErrorClassifier* m_previous;
        Parser* m_parser;
    };

    ALWAYS_INLINE void classifyExpressionError(ExpressionErrorClass classification)
    {
        if (m_expressionErrorClassifier)
            m_expressionErrorClassifier->classifyExpressionError(classification);
    }

    ALWAYS_INLINE void forceClassifyExpressionError(ExpressionErrorClass classification)
    {
        if (m_expressionErrorClassifier)
            m_expressionErrorClassifier->forceClassifyExpressionError(classification);
    }

    ALWAYS_INLINE void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification)
    {
        if (m_expressionErrorClassifier)
            m_expressionErrorClassifier->reclassifyExpressionError(oldClassification, classification);
    }

    ALWAYS_INLINE DestructuringKind destructuringKindFromDeclarationType(DeclarationType type)
    {
        switch (type) {
        case DeclarationType::VarDeclaration:
            return DestructuringKind::DestructureToVariables;
        case DeclarationType::LetDeclaration:
            return DestructuringKind::DestructureToLet;
        case DeclarationType::ConstDeclaration:
            return DestructuringKind::DestructureToConst;
        }

        RELEASE_ASSERT_NOT_REACHED();
        return DestructuringKind::DestructureToVariables;
    }

    ALWAYS_INLINE const char* declarationTypeToVariableKind(DeclarationType type)
    {
        switch (type) {
        case DeclarationType::VarDeclaration:
            return "variable name";
        case DeclarationType::LetDeclaration:
        case DeclarationType::ConstDeclaration:
            return "lexical variable name";
        }
        RELEASE_ASSERT_NOT_REACHED();
        return "invalid";
    }

    ALWAYS_INLINE AssignmentContext assignmentContextFromDeclarationType(DeclarationType type)
    {
        switch (type) {
        case DeclarationType::ConstDeclaration:
            return AssignmentContext::ConstDeclarationStatement;
        default:
            return AssignmentContext::DeclarationStatement;
        }
    }

    ALWAYS_INLINE SourceParseMode sourceParseMode() const { return m_parseMode; }
    ALWAYS_INLINE FunctionMode functionMode() const { return m_functionMode; }
    ALWAYS_INLINE bool isEvalOrArguments(const Identifier* ident) { return isEvalOrArgumentsIdentifier(m_vm, ident); }

    ScopeRef upperScope(int n)
    {
        ASSERT(m_scopeStack.size() >= size_t(1 + n));
        return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1 - n);
    }

    ScopeRef currentScope()
    {
        return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1);
    }

    ScopeRef currentVariableScope()
    {
        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size());
        while (!m_scopeStack[i].allowsVarDeclarations()) {
            i--;
            ASSERT(i < m_scopeStack.size());
        }
        return ScopeRef(&m_scopeStack, i);
    }

    ScopeRef currentLexicalDeclarationScope()
    {
        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size());
        while (!m_scopeStack[i].allowsLexicalDeclarations()) {
            i--;
            ASSERT(i < m_scopeStack.size());
        }

        return ScopeRef(&m_scopeStack, i);
    }

    ScopeRef currentFunctionScope()
    {
        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size());
        while (i && !m_scopeStack[i].isFunctionBoundary()) {
            i--;
            ASSERT(i < m_scopeStack.size());
        }
        // When reaching the top level scope (it can be non function scope), we return it.
        return ScopeRef(&m_scopeStack, i);
    }

    std::optional<ScopeRef> findPrivateNameScope()
    {
        ASSERT(m_scopeStack.size());
        unsigned i = m_scopeStack.size() - 1;
        while (i && !m_scopeStack[i].isPrivateNameScope())
            i--;

        if (m_scopeStack[i].isPrivateNameScope())
            return ScopeRef(&m_scopeStack, i);

        return std::nullopt;
    }

    ScopeRef closestParentOrdinaryFunctionNonLexicalScope()
    {
        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size() && m_scopeStack.size());
        while (i && (!m_scopeStack[i].isFunctionBoundary() || m_scopeStack[i].isGeneratorFunctionBoundary() || m_scopeStack[i].isAsyncFunctionBoundary() || m_scopeStack[i].isArrowFunctionBoundary()))
            i--;
        // When reaching the top level scope (it can be non ordinary function scope), we return it.
        return ScopeRef(&m_scopeStack, i);
    }

    ScopeRef closestClassScopeOrTopLevelScope()
    {
        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size());
        while (i && !m_scopeStack[i].isClassScope())
            i--;
        return ScopeRef(&m_scopeStack, i);
    }

    ScopeRef pushScope()
    {
        ImplementationVisibility implementationVisibility = m_implementationVisibility;
        LexicallyScopedFeatures lexicallyScopedFeatures = NoLexicallyScopedFeatures;
        bool isFunction = false;
        bool isGeneratorFunction = false;
        bool isArrowFunction = false;
        bool isAsyncFunction = false;
        bool isStaticBlock = false;
        if (!m_scopeStack.isEmpty()) {
            implementationVisibility = m_scopeStack.last().implementationVisibility();
            lexicallyScopedFeatures = m_scopeStack.last().lexicallyScopedFeatures();
            isFunction = m_scopeStack.last().isFunction();
            isGeneratorFunction = m_scopeStack.last().isGeneratorFunction();
            isArrowFunction = m_scopeStack.last().isArrowFunction();
            isAsyncFunction = m_scopeStack.last().isAsyncFunction();
            isStaticBlock = m_scopeStack.last().isStaticBlock();
        }
        m_scopeStack.constructAndAppend(m_vm, implementationVisibility, lexicallyScopedFeatures, isFunction, isGeneratorFunction, isArrowFunction, isAsyncFunction, isStaticBlock);
        return currentScope();
    }

    void resetImplementationVisibilityIfNeeded()
    {
        // Find the closest function boundary that is not the current scope (if the current scope
        // is also a function boundary). If the implementation visibility of that scope is not
        // recursive, reset the implementation visibility of the current scope.

        auto& currentScope = m_scopeStack[m_scopeStack.size() - 1];
        if (!currentScope.isFunctionBoundary())
            return;

        for (auto i = m_scopeStack.size() - 1; i > 0; --i) {
            const auto& scope = m_scopeStack[i - 1];
            if (!scope.isFunctionBoundary())
                continue;

            if (scope.implementationVisibility() != ImplementationVisibility::PrivateRecursive)
                currentScope.resetImplementationVisibility();
            break;
        }
    }

    std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScopeInternal(ScopeRef& scope, bool shouldTrackClosedVariables)
    {
        EXCEPTION_ASSERT_UNUSED(scope, scope.index() == m_scopeStack.size() - 1);
        ASSERT(m_scopeStack.size() > 1);
        Scope& lastScope = m_scopeStack.last();

        // Finalize lexical variables.
        lastScope.finalizeLexicalEnvironment();
        
        Scope& parentScope = m_scopeStack[m_scopeStack.size() - 2];
        parentScope.collectFreeVariables(&lastScope, shouldTrackClosedVariables);

        if (lastScope.hasSloppyModeFunctionHoistingCandidates())
            lastScope.bubbleSloppyModeFunctionHoistingCandidates(&parentScope);

        if (lastScope.isArrowFunction())
            lastScope.setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded();
        
        if (!(lastScope.isFunctionBoundary() && !lastScope.isArrowFunctionBoundary()))
            parentScope.mergeInnerArrowFunctionFeatures(lastScope.innerArrowFunctionFeatures());

        if (!lastScope.isFunctionBoundary() && lastScope.needsFullActivation())
            parentScope.setNeedsFullActivation();
        std::tuple result { lastScope.takeLexicalEnvironment(), lastScope.takeFunctionDeclarations() };
        m_scopeStack.removeLast();
        return result;
    }
    
    ALWAYS_INLINE std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScope(ScopeRef& scope, bool shouldTrackClosedVariables)
    {
        return popScopeInternal(scope, shouldTrackClosedVariables);
    }
    
    ALWAYS_INLINE std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScope(AutoPopScopeRef& scope, bool shouldTrackClosedVariables)
    {
        scope.setPopped();
        return popScopeInternal(scope, shouldTrackClosedVariables);
    }

    ALWAYS_INLINE std::tuple<VariableEnvironment, DeclarationStacks::FunctionStack> popScope(AutoCleanupLexicalScope& cleanupScope, bool shouldTrackClosedVariables)
    {
        RELEASE_ASSERT(cleanupScope.isValid());
        ScopeRef& scope = cleanupScope.scope();
        cleanupScope.setPopped();
        return popScopeInternal(scope, shouldTrackClosedVariables);
    }

    NEVER_INLINE DeclarationResultMask declareHoistedVariable(const Identifier* ident)
    {
        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size());
        while (true) {
            // Annex B.3.5 exempts `try {} catch (e) { var e; }` from being a syntax error.
            if (m_scopeStack[i].hasLexicallyDeclaredVariable(*ident) && !m_scopeStack[i].isSimpleCatchParameterScope())
                return DeclarationResult::InvalidDuplicateDeclaration;

            if (m_scopeStack[i].allowsVarDeclarations())
                return m_scopeStack[i].declareVariable(ident);

            m_scopeStack[i].addVariableBeingHoisted(ident);

            i--;
            ASSERT(i < m_scopeStack.size());
        }
    }
    
    DeclarationResultMask declareVariable(const Identifier* ident, DeclarationType type = DeclarationType::VarDeclaration, DeclarationImportType importType = DeclarationImportType::NotImported)
    {
        if (type == DeclarationType::VarDeclaration)
            return declareHoistedVariable(ident);

        ASSERT(type == DeclarationType::LetDeclaration || type == DeclarationType::ConstDeclaration);
        // Lexical variables declared at a top level scope that shadow arguments or vars are not allowed.
        if (!m_lexer->isReparsingFunction() && m_statementDepth == 1 && (hasDeclaredParameter(*ident) || hasDeclaredVariable(*ident)))
            return DeclarationResult::InvalidDuplicateDeclaration;

        ScopeRef scope = currentLexicalDeclarationScope();
        if (scope->isCatchBlockScope() && scope.containingScope()->hasLexicallyDeclaredVariable(*ident))
            return DeclarationResult::InvalidDuplicateDeclaration;

        return scope->declareLexicalVariable(ident, type == DeclarationType::ConstDeclaration, importType);
    }

    std::pair<DeclarationResultMask, ScopeRef> declareFunction(const Identifier* ident)
    {
        if (m_statementDepth == 1 && !currentScope()->isModuleCode()) {
            // Functions declared at the top-most scope (both in sloppy and strict mode) are declared as vars
            // for backwards compatibility, allowing us to declare functions with the same name more than once, except
            // Module code. Please see https://webkit.org/b/263269 for detailed explanation and ECMA-262 references.
            ScopeRef variableScope = currentVariableScope();
            return std::make_pair(variableScope->declareFunctionAsVar(ident), variableScope);
        }

        ScopeRef lexicalVariableScope = currentLexicalDeclarationScope();
        if (lexicalVariableScope->isCatchBlockScope() && lexicalVariableScope.containingScope()->hasLexicallyDeclaredVariable(*ident))
            return std::make_pair(DeclarationResult::InvalidDuplicateDeclaration, lexicalVariableScope);

        bool isFunctionDeclaration = m_parseMode == SourceParseMode::NormalFunctionMode;
        return std::make_pair(lexicalVariableScope->declareFunctionAsLet(ident, isFunctionDeclaration), lexicalVariableScope);
    }

    NEVER_INLINE bool hasDeclaredVariable(const Identifier& ident)
    {
        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size());
        while (!m_scopeStack[i].allowsVarDeclarations()) {
            i--;
            ASSERT(i < m_scopeStack.size());
        }
        return m_scopeStack[i].hasDeclaredVariable(ident);
    }

    NEVER_INLINE bool hasDeclaredParameter(const Identifier& ident)
    {
        // FIXME: hasDeclaredParameter() is not valid during reparsing of generator or async function bodies, because their formal
        // parameters are declared in a scope unavailable during reparsing. Note that it is redundant to call this function during
        // reparsing anyways, as the function is already guaranteed to be valid by the original parsing.
        // https://bugs.webkit.org/show_bug.cgi?id=164087
        ASSERT(!m_lexer->isReparsingFunction());

        unsigned i = m_scopeStack.size() - 1;
        ASSERT(i < m_scopeStack.size());
        while (!m_scopeStack[i].allowsVarDeclarations()) {
            i--;
            ASSERT(i < m_scopeStack.size());
        }

        if (m_scopeStack[i].isGeneratorFunctionBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) {
            // The formal parameters which need to be verified for Generators and Async Function bodies occur
            // in the outer wrapper function, so pick the outer scope here.
            i--;
            ASSERT(i < m_scopeStack.size());
        }
        return m_scopeStack[i].hasDeclaredParameter(ident);
    }
    
    bool exportName(const Identifier& ident)
    {
        ASSERT(currentScope().index() == 0);
        ASSERT(m_moduleScopeData);
        return m_moduleScopeData->exportName(ident);
    }

    ScopeStack m_scopeStack;
    
    const SourceProviderCacheItem* findCachedFunctionInfo(int openBracePos) 
    {
        return m_functionCache ? m_functionCache->get(openBracePos) : nullptr;
    }

    Parser();

    struct ParseInnerResult {
        FunctionParameters* parameters;
        SourceElements* sourceElements;
        DeclarationStacks::FunctionStack functionDeclarations;
        VariableEnvironment varDeclarations;
        VariableEnvironment lexicalVariables;
        CodeFeatures features;
        int numConstants;
    };
    Expected<ParseInnerResult, String> parseInner(const Identifier&, ParsingContext, std::optional<int> functionConstructorParametersEndPosition, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>*, const PrivateNameEnvironment* parentScopePrivateNames);

    // Used to determine type of error to report.
    bool isFunctionMetadataNode(ScopeNode*) { return false; }
    bool isFunctionMetadataNode(FunctionMetadataNode*) { return true; }

    ALWAYS_INLINE void next(OptionSet<LexerFlags> lexerFlags = { })
    {
        int lastLine = m_token.m_location.line;
        int lastTokenEnd = m_token.m_location.endOffset;
        int lastTokenLineStart = m_token.m_location.lineStartOffset;
        m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart);
        m_lexer->setLastLineNumber(lastLine);
        m_token.m_type = m_lexer->lex(&m_token, lexerFlags, strictMode());
    }

    ALWAYS_INLINE void nextWithoutClearingLineTerminator(OptionSet<LexerFlags> lexerFlags = { })
    {
        int lastLine = m_token.m_location.line;
        int lastTokenEnd = m_token.m_location.endOffset;
        int lastTokenLineStart = m_token.m_location.lineStartOffset;
        m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart);
        m_lexer->setLastLineNumber(lastLine);
        m_token.m_type = m_lexer->lexWithoutClearingLineTerminator(&m_token, lexerFlags, strictMode());
    }

    ALWAYS_INLINE void nextExpectIdentifier(OptionSet<LexerFlags> lexerFlags = { })
    {
        int lastLine = m_token.m_location.line;
        int lastTokenEnd = m_token.m_location.endOffset;
        int lastTokenLineStart = m_token.m_location.lineStartOffset;
        m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart);
        m_lexer->setLastLineNumber(lastLine);
        m_token.m_type = m_lexer->lexExpectIdentifier(&m_token, lexerFlags, strictMode());
    }

    template <class TreeBuilder>
    ALWAYS_INLINE void lexCurrentTokenAgainUnderCurrentContext(TreeBuilder& context)
    {
        auto savePoint = createSavePoint(context);
        restoreSavePoint(context, savePoint);
    }

    ALWAYS_INLINE bool nextTokenIsColon()
    {
        return m_lexer->nextTokenIsColon();
    }

    ALWAYS_INLINE bool consume(JSTokenType expected, OptionSet<LexerFlags> flags = { })
    {
        bool result = m_token.m_type == expected;
        if (result)
            next(flags);
        return result;
    }

    void printUnexpectedTokenText(WTF::PrintStream&);
    ALWAYS_INLINE StringView getToken()
    {
        return m_lexer->getToken(m_token);
    }

    ALWAYS_INLINE StringView getToken(const JSToken& token)
    {
        return m_lexer->getToken(token);
    }

    ALWAYS_INLINE bool match(JSTokenType expected)
    {
        return m_token.m_type == expected;
    }

    ALWAYS_INLINE bool matchAndUpdate(JSTokenType expected, const JSToken& token)
    {
        if (match(expected)) {
            m_token = token;
            return true;
        }

        return false;
    }
    
    ALWAYS_INLINE bool matchContextualKeyword(const Identifier& identifier)
    {
        return m_token.m_type == IDENT && *m_token.m_data.ident == identifier && !m_token.m_data.escaped;
    }

    ALWAYS_INLINE bool matchIdentifierOrKeyword()
    {
        return isIdentifierOrKeyword(m_token);
    }
    
    ALWAYS_INLINE unsigned tokenStart()
    {
        return m_token.m_location.startOffset;
    }
    
    ALWAYS_INLINE const JSTextPosition& tokenStartPosition()
    {
        return m_token.m_startPosition;
    }

    ALWAYS_INLINE int tokenLine()
    {
        return m_token.m_location.line;
    }
    
    ALWAYS_INLINE int tokenColumn()
    {
        return tokenStart() - tokenLineStart();
    }

    ALWAYS_INLINE const JSTextPosition& tokenEndPosition()
    {
        return m_token.m_endPosition;
    }
    
    ALWAYS_INLINE unsigned tokenLineStart()
    {
        return m_token.m_location.lineStartOffset;
    }
    
    ALWAYS_INLINE const JSTokenLocation& tokenLocation()
    {
        return m_token.m_location;
    }

    void setErrorMessage(const String& message)
    {
        ASSERT_WITH_MESSAGE(!message.isEmpty(), "Attempted to set the empty string as an error message. Likely caused by invalid UTF8 used when creating the message.");
        m_errorMessage = message;
        if (m_errorMessage.isEmpty())
            m_errorMessage = "Unparseable script"_s;
    }
    
    NEVER_INLINE void logError(bool);
    template <typename... Args>
    NEVER_INLINE void logError(bool, Args&&...);
    
    NEVER_INLINE void updateErrorWithNameAndMessage(ASCIILiteral beforeMessage, const String& name, ASCIILiteral afterMessage)
    {
        m_errorMessage = makeString(beforeMessage, " '"_s, name, "' "_s, afterMessage);
    }
    
    NEVER_INLINE void updateErrorMessage(const char* msg)
    {
        ASSERT(msg);
        m_errorMessage = String::fromLatin1(msg);
        ASSERT(!m_errorMessage.isNull());
    }

    ALWAYS_INLINE void recordPauseLocation(const JSTextPosition&);
    ALWAYS_INLINE void recordFunctionEntryLocation(const JSTextPosition&);
    ALWAYS_INLINE void recordFunctionLeaveLocation(const JSTextPosition&);

    void startLoop() { currentScope()->startLoop(); }
    void endLoop() { currentScope()->endLoop(); }
    void startSwitch() { currentScope()->startSwitch(); }
    void endSwitch() { currentScope()->endSwitch(); }
    ImplementationVisibility implementationVisibility() { return currentScope()->implementationVisibility(); }
    LexicallyScopedFeatures lexicallyScopedFeatures() { return currentScope()->lexicallyScopedFeatures(); }
    void setStrictMode() { currentScope()->setStrictMode(); }
    bool strictMode() { return currentScope()->strictMode(); }
    bool isValidStrictMode()
    {
        int i = m_scopeStack.size() - 1;
        if (!m_scopeStack[i].isValidStrictMode())
            return false;

        // In the case of Generator or Async function bodies, also check the wrapper function, whose name or
        // arguments may be invalid.
        if (UNLIKELY((m_scopeStack[i].isGeneratorFunctionBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) && i))
            return m_scopeStack[i - 1].isValidStrictMode();
        return true;
    }
    DeclarationResultMask declareParameter(const Identifier* ident) { return currentScope()->declareParameter(ident); }
    bool declareRestOrNormalParameter(const Identifier&, const Identifier**);

    bool breakIsValid()
    {
        ScopeRef current = currentScope();
        while (!current->breakIsValid()) {
            if (!current.hasContainingScope() || current->isStaticBlockBoundary())
                return false;
            current = current.containingScope();
        }
        return true;
    }
    bool continueIsValid()
    {
        ScopeRef current = currentScope();
        while (!current->continueIsValid()) {
            if (!current.hasContainingScope() || current->isStaticBlockBoundary())
                return false;
            current = current.containingScope();
        }
        return true;
    }
    void pushLabel(const Identifier* label, bool isLoop) { currentScope()->pushLabel(label, isLoop); }
    void popLabel(ScopeRef scope) { scope->popLabel(); }
    ScopeLabelInfo* getLabel(const Identifier* label)
    {
        ScopeRef current = currentScope();
        ScopeLabelInfo* result = nullptr;
        while (!(result = current->getLabel(label))) {
            if (!current.hasContainingScope())
                return nullptr;
            current = current.containingScope();
        }
        return result;
    }

    ALWAYS_INLINE bool matchSpecIdentifier()
    {
        return match(IDENT) || isAllowedIdentifierLet(m_token) || isAllowedIdentifierYield(m_token) || isPossiblyEscapedAwait(m_token);
    }

    // Special case where some information is already known.
    ALWAYS_INLINE bool matchSpecIdentifier(bool canUseYield, bool isAwait)
    {
        return isAwait || match(IDENT) || isAllowedIdentifierLet(m_token) || (canUseYield && isPossiblyEscapedYield(m_token));
    }

    ALWAYS_INLINE bool matchIdentifierOrPossiblyEscapedContextualKeyword()
    {
        return match(IDENT) || isPossiblyEscapedLet(m_token) || isPossiblyEscapedYield(m_token) || isPossiblyEscapedAwait(m_token);
    }

    template <class TreeBuilder> TreeSourceElements parseSourceElements(TreeBuilder&, SourceElementsMode);
    template <class TreeBuilder> TreeSourceElements parseGeneratorFunctionSourceElements(TreeBuilder&, const Identifier& name, SourceElementsMode);
    template <class TreeBuilder> TreeSourceElements parseAsyncFunctionSourceElements(TreeBuilder&, bool isArrowFunctionBodyExpression, SourceElementsMode);
    template <class TreeBuilder> TreeSourceElements parseAsyncGeneratorFunctionSourceElements(TreeBuilder&, bool isArrowFunctionBodyExpression, SourceElementsMode);
    template <class TreeBuilder> TreeSourceElements parseSingleFunction(TreeBuilder&, std::optional<int> functionConstructorParametersEndPosition);
    template <class TreeBuilder> TreeSourceElements parseClassFieldInitializerSourceElements(TreeBuilder&, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>&);
    template <class TreeBuilder> TreeStatement parseStatementListItem(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength);
    template <class TreeBuilder> TreeStatement parseStatement(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength = nullptr);
    enum class ExportType { Exported, NotExported };
    template <class TreeBuilder> TreeStatement parseClassDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard);
    enum class FunctionDeclarationType { Declaration, Statement };
    template <class TreeBuilder> TreeStatement parseFunctionDeclaration(TreeBuilder&, FunctionDeclarationType = FunctionDeclarationType::Declaration, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard, std::optional<int> functionConstructorParametersEndPosition = std::nullopt);
    template <class TreeBuilder> TreeStatement parseFunctionDeclarationStatement(TreeBuilder&, bool parentAllowsFunctionDeclarationAsStatement);
    template <class TreeBuilder> TreeStatement parseAsyncFunctionDeclaration(TreeBuilder&, unsigned functionStart, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard, std::optional<int> functionConstructorParametersEndPosition = std::nullopt);
    template <class TreeBuilder> TreeStatement parseVariableDeclaration(TreeBuilder&, DeclarationType, ExportType = ExportType::NotExported);
    template <class TreeBuilder> TreeStatement parseDoWhileStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseWhileStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseForStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseBreakStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseContinueStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseReturnStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseThrowStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseWithStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseSwitchStatement(TreeBuilder&);
    template <class TreeBuilder> TreeClauseList parseSwitchClauses(TreeBuilder&);
    template <class TreeBuilder> TreeClause parseSwitchDefaultClause(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseTryStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseDebuggerStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseExpressionStatement(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseExpressionOrLabelStatement(TreeBuilder&, bool allowFunctionDeclarationAsStatement);
    template <class TreeBuilder> TreeStatement parseIfStatement(TreeBuilder&);
    enum class BlockType : uint8_t { Normal, CatchBlock, StaticBlock };
    template <class TreeBuilder> TreeStatement parseBlockStatement(TreeBuilder&, BlockType = BlockType::Normal);
    template <class TreeBuilder> TreeExpression parseExpression(TreeBuilder&);
    template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&, ExpressionErrorClassifier&);
    template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&);
    template <class TreeBuilder> TreeExpression parseAssignmentExpressionOrPropagateErrorClass(TreeBuilder&);
    template <class TreeBuilder> TreeExpression parseYieldExpression(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseConditionalExpression(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseBinaryExpression(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseUnaryExpression(TreeBuilder&);
    template <class TreeBuilder> NEVER_INLINE TreeExpression parseAwaitExpression(TreeBuilder&);
    template <class TreeBuilder> TreeExpression parseMemberExpression(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression tryParseArgumentsDotLengthForFastPath(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parsePrimaryExpression(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArrayLiteral(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseObjectLiteral(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeClassExpression parseClassExpression(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseFunctionExpression(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseAsyncFunctionExpression(TreeBuilder&, const JSTokenLocation&);
    template <class TreeBuilder> ALWAYS_INLINE TreeArguments parseArguments(TreeBuilder&);
    template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArgument(TreeBuilder&, ArgumentType&);
    template <class TreeBuilder> TreeProperty parseProperty(TreeBuilder&);
    template <class TreeBuilder> TreeExpression parsePropertyMethod(TreeBuilder& context, const Identifier* methodName, unsigned functionStart);
    template <class TreeBuilder> TreeProperty parseGetterSetter(TreeBuilder&, PropertyNode::Type, unsigned getterOrSetterStartOffset, ConstructorKind, ClassElementTag);
    template <class TreeBuilder> ALWAYS_INLINE TreeFunctionBody parseFunctionBody(TreeBuilder&, SyntaxChecker&, const JSTokenLocation&, int, unsigned functionStart, int functionNameStart, int parametersStart, ConstructorKind, SuperBinding, FunctionBodyType, unsigned);
    template <class TreeBuilder> ALWAYS_INLINE bool parseFormalParameters(TreeBuilder&, TreeFormalParameterList, bool isArrowFunction, bool isMethod, unsigned&);
    enum VarDeclarationListContext { ForLoopContext, VarDeclarationContext };
    template <class TreeBuilder> TreeExpression parseVariableDeclarationList(TreeBuilder&, int& declarations, TreeDestructuringPattern& lastPattern, TreeExpression& lastInitializer, JSTextPosition& identStart, JSTextPosition& initStart, JSTextPosition& initEnd, VarDeclarationListContext, DeclarationType, ExportType, bool& forLoopConstDoesNotHaveInitializer);
    template <class TreeBuilder> TreeSourceElements parseArrowFunctionSingleExpressionBodySourceElements(TreeBuilder&);
    template <class TreeBuilder> TreeExpression parseArrowFunctionExpression(TreeBuilder&, bool isAsync, const JSTokenLocation&);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createBindingPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier&, const JSToken&, AssignmentContext, const Identifier** duplicateIdentifier);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createAssignmentElement(TreeBuilder&, TreeExpression&, const JSTextPosition&, const JSTextPosition&);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, AssignmentContext bindingContext);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestAssignmentElement(TreeBuilder& context);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestElement(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseDestructuringPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, bool* hasDestructuringPattern = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement, int depth = 0);
    template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern tryParseDestructuringPatternExpression(TreeBuilder&, AssignmentContext);
    template <class TreeBuilder> NEVER_INLINE TreeExpression parseDefaultValueForDestructuringPattern(TreeBuilder&);
    template <class TreeBuilder> TreeSourceElements parseModuleSourceElements(TreeBuilder&);
    enum class ImportSpecifierType { NamespaceImport, NamedImport, DefaultImport };
    template <class TreeBuilder> typename TreeBuilder::ImportSpecifier parseImportClauseItem(TreeBuilder&, ImportSpecifierType);
    template <class TreeBuilder> typename TreeBuilder::ModuleName parseModuleName(TreeBuilder&);
    template <class TreeBuilder> typename TreeBuilder::ImportAttributesList parseImportAttributes(TreeBuilder&);
    template <class TreeBuilder> TreeStatement parseImportDeclaration(TreeBuilder&);
    template <class TreeBuilder> typename TreeBuilder::ExportSpecifier parseExportSpecifier(TreeBuilder& context, Vector<std::pair<const Identifier*, const Identifier*>>& maybeExportedLocalNames, bool& hasKeywordForLocalBindings, bool& hasReferencedModuleExportNames);
    template <class TreeBuilder> TreeStatement parseExportDeclaration(TreeBuilder&);

    template <class TreeBuilder> ALWAYS_INLINE TreeExpression createResolveAndUseVariable(TreeBuilder&, const Identifier*, bool isEval, const JSTextPosition&, const JSTokenLocation&);

    enum class FunctionDefinitionType { Expression, Declaration, Method };
    template <class TreeBuilder> NEVER_INLINE bool parseFunctionInfo(TreeBuilder&, FunctionNameRequirements, bool nameIsInContainingScope, ConstructorKind, SuperBinding, unsigned functionStart, ParserFunctionInfo<TreeBuilder>&, FunctionDefinitionType, std::optional<int> functionConstructorParametersEndPosition = std::nullopt);
    
    template <class TreeBuilder> ALWAYS_INLINE bool isArrowFunctionParameters(TreeBuilder&);
    
    template <class TreeBuilder, class FunctionInfoType> NEVER_INLINE typename TreeBuilder::FormalParameterList parseFunctionParameters(TreeBuilder&, FunctionInfoType&);
    template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::FormalParameterList createGeneratorParameters(TreeBuilder&, unsigned& parameterCount);

    template <class TreeBuilder> NEVER_INLINE TreeClassExpression parseClass(TreeBuilder&, FunctionNameRequirements, ParserClassInfo<TreeBuilder>&);

    template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateString parseTemplateString(TreeBuilder& context, bool isTemplateHead, typename LexerType::RawStringsBuildMode, bool& elementIsTail);
    template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateLiteral parseTemplateLiteral(TreeBuilder&, typename LexerType::RawStringsBuildMode);

    template <class TreeBuilder> NEVER_INLINE const char* metaPropertyName(TreeBuilder&, TreeExpression);

    template <class TreeBuilder> ALWAYS_INLINE bool isSimpleAssignmentTarget(TreeBuilder&, TreeExpression, bool ignoreStrictCheck = false);

    ALWAYS_INLINE int isBinaryOperator(JSTokenType);
    bool allowAutomaticSemicolon();
    
    bool autoSemiColon()
    {
        if (m_token.m_type == SEMICOLON) {
            next();
            return true;
        }
        return allowAutomaticSemicolon();
    }
    
    bool canRecurse()
    {
        return m_vm.isSafeToRecurse();
    }
    
    const JSTextPosition& lastTokenEndPosition() const
    {
        return m_lastTokenEndPosition;
    }

    bool hasError() const
    {
        return !m_errorMessage.isNull();
    }

    bool isAllowedIdentifierLet(const JSToken& token)
    {
        return isPossiblyEscapedLet(token) && !strictMode();
    }

    ALWAYS_INLINE bool isPossiblyEscapedLet(const JSToken& token)
    {
        return token.m_type == LET || UNLIKELY(token.m_type == ESCAPED_KEYWORD && *token.m_data.ident == m_vm.propertyNames->letKeyword);
    }

    bool isDisallowedIdentifierAwait(const JSToken& token)
    {
        return isPossiblyEscapedAwait(token) && !canUseIdentifierAwait();
    }

    bool isAllowedIdentifierAwait(const JSToken& token)
    {
        return isPossiblyEscapedAwait(token) && canUseIdentifierAwait();
    }

    ALWAYS_INLINE bool isPossiblyEscapedAwait(const JSToken& token)
    {
        return token.m_type == AWAIT || UNLIKELY(token.m_type == ESCAPED_KEYWORD && *token.m_data.ident == m_vm.propertyNames->awaitKeyword);
    }

    ALWAYS_INLINE bool canUseIdentifierAwait()
    {
        return m_parserState.allowAwait && !currentScope()->isAsyncFunction() && !currentScope()->isStaticBlock() && m_scriptMode != JSParserScriptMode::Module;
    }

    bool isDisallowedIdentifierYield(const JSToken& token)
    {
        return isPossiblyEscapedYield(token) && !canUseIdentifierYield();
    }

    bool isAllowedIdentifierYield(const JSToken& token)
    {
        return isPossiblyEscapedYield(token) && canUseIdentifierYield();
    }

    ALWAYS_INLINE bool isPossiblyEscapedYield(const JSToken& token)
    {
        return token.m_type == YIELD || UNLIKELY(token.m_type == ESCAPED_KEYWORD && *token.m_data.ident == m_vm.propertyNames->yieldKeyword);
    }

    ALWAYS_INLINE bool canUseIdentifierYield()
    {
        return !strictMode() && !currentScope()->isGeneratorFunction();
    }

    bool matchAllowedEscapedContextualKeyword()
    {
        ASSERT(m_token.m_type == ESCAPED_KEYWORD);
        return (*m_token.m_data.ident == m_vm.propertyNames->letKeyword && !strictMode())
            || (*m_token.m_data.ident == m_vm.propertyNames->awaitKeyword && canUseIdentifierAwait())
            || (*m_token.m_data.ident == m_vm.propertyNames->yieldKeyword && canUseIdentifierYield());
    }

    const char* disallowedIdentifierLetReason()
    {
        ASSERT(strictMode());
        return "in strict mode";
    }

    const char* disallowedIdentifierAwaitReason()
    {
        if (!m_parserState.allowAwait || currentScope()->isAsyncFunction())
            return "in an async function";
        if (currentScope()->isStaticBlock())
            return "in a static block";
        if (m_scriptMode == JSParserScriptMode::Module)
            return "in a module";
        RELEASE_ASSERT_NOT_REACHED();
        return nullptr;
    }

    const char* disallowedIdentifierYieldReason()
    {
        if (strictMode())
            return "in strict mode";
        if (currentScope()->isGeneratorFunction())
            return "in a generator function";
        RELEASE_ASSERT_NOT_REACHED();
        return nullptr;
    }

    ALWAYS_INLINE bool isArgumentsIdentifier()
    {
        return *m_token.m_data.ident == m_vm.propertyNames->arguments;
    }

    enum class FunctionParsePhase { Parameters, Body };
    struct ParserState {
        int assignmentCount { 0 };
        int nonLHSCount { 0 };
        int nonTrivialExpressionCount { 0 };
        int returnStatementCount { 0 };
        int unaryTokenStackDepth { 0 };
        FunctionParsePhase functionParsePhase { FunctionParsePhase::Body };
        const Identifier* lastIdentifier { nullptr };
        const Identifier* lastFunctionName { nullptr };
        const Identifier* lastPrivateName { nullptr };
        bool allowAwait { true };
        bool isParsingClassFieldInitializer { false };
        bool classFieldInitMasksAsync { false };
    };

    // If you're using this directly, you probably should be using
    // createSavePoint() instead.
    template <class TreeBuilder>
    ALWAYS_INLINE ParserState internalSaveParserState(TreeBuilder& context)
    {
        auto parserState = m_parserState;
        parserState.unaryTokenStackDepth = context.unaryTokenStackDepth();
        return parserState;
    }

    template <class TreeBuilder>
    ALWAYS_INLINE void restoreParserState(TreeBuilder& context, const ParserState& state)
    {
        m_parserState = state;
        context.setUnaryTokenStackDepth(m_parserState.unaryTokenStackDepth);
    }

    struct LexerState {
        int startOffset;
        unsigned oldLineStartOffset;
        unsigned oldLastLineNumber;
        unsigned oldLineNumber;
        bool hasLineTerminatorBeforeToken;
    };

    // If you're using this directly, you probably should be using
    // createSavePoint() instead.
    // i.e, if you parse any kind of AssignmentExpression between
    // saving/restoring, you should definitely not be using this directly.
    ALWAYS_INLINE LexerState internalSaveLexerState()
    {
        LexerState result;
        result.startOffset = m_token.m_location.startOffset;
        result.oldLineStartOffset = m_token.m_location.lineStartOffset;
        result.oldLastLineNumber = m_lexer->lastLineNumber();
        result.oldLineNumber = m_lexer->lineNumber();
        result.hasLineTerminatorBeforeToken = m_lexer->hasLineTerminatorBeforeToken();
        ASSERT(static_cast<unsigned>(result.startOffset) >= result.oldLineStartOffset);
        return result;
    }

    ALWAYS_INLINE void restoreLexerState(const LexerState& lexerState)
    {
        // setOffset clears lexer errors.
        m_lexer->setOffset(lexerState.startOffset, lexerState.oldLineStartOffset);
        m_lexer->setLineNumber(lexerState.oldLineNumber);
        m_lexer->setHasLineTerminatorBeforeToken(lexerState.hasLineTerminatorBeforeToken);
        nextWithoutClearingLineTerminator();
        m_lexer->setLastLineNumber(lexerState.oldLastLineNumber);
    }

    struct SavePoint {
        ParserState parserState;
        LexerState lexerState;
    };

    struct SavePointWithError : public SavePoint {
        bool lexerError;
        String lexerErrorMessage;
        String parserErrorMessage;
    };

    template <class TreeBuilder>
    ALWAYS_INLINE void internalSaveState(TreeBuilder& context, SavePoint& savePoint)
    {
        savePoint.parserState = internalSaveParserState(context);
        savePoint.lexerState = internalSaveLexerState();
    }
    
    template <class TreeBuilder>
    ALWAYS_INLINE SavePointWithError swapSavePointForError(TreeBuilder& context, SavePoint& oldSavePoint)
    {
        SavePointWithError savePoint;
        internalSaveState(context, savePoint);
        savePoint.lexerError = m_lexer->sawError();
        savePoint.lexerErrorMessage = m_lexer->getErrorMessage();
        savePoint.parserErrorMessage = m_errorMessage;
        // Make sure we set our new savepoints unary stack to what oldSavePoint had as it currently may contain stale info.
        savePoint.parserState.unaryTokenStackDepth = oldSavePoint.parserState.unaryTokenStackDepth;
        restoreSavePoint(context, oldSavePoint);
        return savePoint;
    }
    
    template <class TreeBuilder>
    ALWAYS_INLINE SavePoint createSavePoint(TreeBuilder& context)
    {
        ASSERT(!hasError());
        SavePoint savePoint;
        internalSaveState(context, savePoint);
        return savePoint;
    }

    template <class TreeBuilder>
    ALWAYS_INLINE void internalRestoreState(TreeBuilder& context, const SavePoint& savePoint)
    {
        restoreLexerState(savePoint.lexerState);
        restoreParserState(context, savePoint.parserState);
    }

    template <class TreeBuilder>
    ALWAYS_INLINE void restoreSavePointWithError(TreeBuilder& context, const SavePointWithError& savePoint)
    {
        internalRestoreState(context, savePoint);
        m_lexer->setSawError(savePoint.lexerError);
        m_lexer->setErrorMessage(savePoint.lexerErrorMessage);
        m_errorMessage = savePoint.parserErrorMessage;
    }

    template <class TreeBuilder>
    ALWAYS_INLINE void restoreSavePoint(TreeBuilder& context, const SavePoint& savePoint)
    {
        internalRestoreState(context, savePoint);
        m_errorMessage = String();
    }

    VM& m_vm;
    const SourceCode* m_source;
    ParserArena m_parserArena;
    std::unique_ptr<LexerType> m_lexer;

    ParserState m_parserState;
    
    bool m_hasStackOverflow;
    String m_errorMessage;
    JSToken m_token;
    bool m_allowsIn;
    JSTextPosition m_lastTokenEndPosition;
    int m_statementDepth;
    RefPtr<SourceProviderCache> m_functionCache;
    ImplementationVisibility m_implementationVisibility;
    bool m_parsingBuiltin;
    SourceParseMode m_parseMode;
    FunctionMode m_functionMode;
    JSParserScriptMode m_scriptMode;
    SuperBinding m_superBinding;
    ConstructorKind m_constructorKindForTopLevelFunctionExpressions { ConstructorKind::None };
    ExpressionErrorClassifier* m_expressionErrorClassifier;
    bool m_isEvalContext;
    bool m_immediateParentAllowsFunctionDeclarationInStatement;
    RefPtr<ModuleScopeData> m_moduleScopeData;
    DebuggerParseData* m_debuggerParseData;
    CallOrApplyDepthScope* m_callOrApplyDepthScope { nullptr };
    bool m_isInsideOrdinaryFunction;
    bool m_seenTaggedTemplateInNonReparsingFunctionMode { false };
    bool m_seenPrivateNameUseInNonReparsingFunctionMode { false };
    bool m_seenArgumentsDotLength { false };
};

template <typename LexerType>
template <class ParsedNode>
std::unique_ptr<ParsedNode> Parser<LexerType>::parse(ParserError& error, const Identifier& calleeName, ParsingContext parsingContext, std::optional<int> functionConstructorParametersEndPosition, const PrivateNameEnvironment* parentScopePrivateNames, const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>* classElementDefinitions)
{
    int errLine;
    String errMsg;
    SourceParseMode parseMode = sourceParseMode();

    if (ParsedNode::scopeIsFunction)
        m_lexer->setIsReparsingFunction();

    errLine = -1;
    errMsg = String();

    JSTokenLocation startLocation(tokenLocation());
    ASSERT(m_source->startColumn() > OrdinalNumber::beforeFirst());
    unsigned startColumn = m_source->startColumn().zeroBasedInt();

    auto parseResult = parseInner(calleeName, parsingContext, functionConstructorParametersEndPosition, classElementDefinitions, parentScopePrivateNames);

    int lineNumber = m_lexer->lineNumber();
    bool lexError = m_lexer->sawError();
    String lexErrorMessage = lexError ? m_lexer->getErrorMessage() : String();
    ASSERT(lexErrorMessage.isNull() != lexError);
    m_lexer->clear();

    if (!parseResult || lexError) {
        errLine = lineNumber;
        errMsg = !lexErrorMessage.isNull() ? lexErrorMessage : parseResult.error();
    }

    std::unique_ptr<ParsedNode> result;
    if (parseResult) {
        JSTokenLocation endLocation;
        endLocation.line = m_lexer->lineNumber();
        endLocation.lineStartOffset = m_lexer->currentLineStartOffset();
        endLocation.startOffset = m_lexer->currentOffset();
        unsigned endColumn = endLocation.startOffset - endLocation.lineStartOffset;
        result = makeUnique<ParsedNode>(m_parserArena,
                                    startLocation,
                                    endLocation,
                                    startColumn,
                                    endColumn,
                                    parseResult.value().sourceElements,
                                    WTFMove(parseResult.value().varDeclarations),
                                    WTFMove(parseResult.value().functionDeclarations),
                                    WTFMove(parseResult.value().lexicalVariables),
                                    parseResult.value().parameters,
                                    *m_source,
                                    parseResult.value().features,
                                    currentScope()->lexicallyScopedFeatures(),
                                    currentScope()->innerArrowFunctionFeatures(),
                                    parseResult.value().numConstants,
                                    WTFMove(m_moduleScopeData));
        result->setLoc(m_source->firstLine().oneBasedInt(), m_lexer->lineNumber(), m_lexer->currentOffset(), m_lexer->currentLineStartOffset());
        result->setEndOffset(m_lexer->currentOffset());

        if (!isFunctionParseMode(parseMode)) {
            m_source->provider()->setSourceURLDirective(m_lexer->sourceURLDirective());
            m_source->provider()->setSourceMappingURLDirective(m_lexer->sourceMappingURLDirective());
        }
    } else {
        // We can never see a syntax error when reparsing a function, since we should have
        // reported the error when parsing the containing program or eval code. So if we're
        // parsing a function body node, we assume that what actually happened here is that
        // we ran out of stack while parsing. If we see an error while parsing eval or program
        // code we assume that it was a syntax error since running out of stack is much less
        // likely, and we are currently unable to distinguish between the two cases.
        if (isFunctionMetadataNode(static_cast<ParsedNode*>(nullptr)) || m_hasStackOverflow)
            error = ParserError(ParserError::StackOverflow, ParserError::SyntaxErrorNone, m_token);
        else {
            ParserError::SyntaxErrorType errorType = ParserError::SyntaxErrorIrrecoverable;
            if (m_token.m_type == EOFTOK)
                errorType = ParserError::SyntaxErrorRecoverable;
            else if (m_token.m_type & UnterminatedCanBeErrorTokenFlag) {
                // Treat multiline capable unterminated literals as recoverable.
                if (m_token.m_type == UNTERMINATED_MULTILINE_COMMENT_ERRORTOK || m_token.m_type == UNTERMINATED_TEMPLATE_LITERAL_ERRORTOK)
                    errorType = ParserError::SyntaxErrorRecoverable;
                else
                    errorType = ParserError::SyntaxErrorUnterminatedLiteral;
            }
            
            if (isEvalNode<ParsedNode>())
                error = ParserError(ParserError::EvalError, errorType, m_token, errMsg, errLine);
            else
                error = ParserError(ParserError::SyntaxError, errorType, m_token, errMsg, errLine);
        }
    }

    return result;
}

template <class ParsedNode>
std::unique_ptr<ParsedNode> parse(
    VM& vm, const SourceCode& source,
    const Identifier& name, ImplementationVisibility implementationVisibility, JSParserBuiltinMode builtinMode,
    LexicallyScopedFeatures lexicallyScopedFeatures, JSParserScriptMode scriptMode, SourceParseMode parseMode, FunctionMode functionMode, SuperBinding superBinding,
    ParserError& error,
    ConstructorKind constructorKind = ConstructorKind::None,
    DerivedContextType derivedContextType = DerivedContextType::None,
    EvalContextType evalContextType = EvalContextType::None,
    const PrivateNameEnvironment* parentScopePrivateNames = nullptr,
    const FixedVector<UnlinkedFunctionExecutable::ClassElementDefinition>* classElementDefinitions = nullptr,
    bool isInsideOrdinaryFunction = false)
{
    ASSERT(!source.provider()->source().isNull());

    MonotonicTime before;
    if (UNLIKELY(Options::reportParseTimes()))
        before = MonotonicTime::now();

    std::unique_ptr<ParsedNode> result;
    if (source.provider()->source().is8Bit()) {
        Parser<Lexer<LChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, functionMode, superBinding, constructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, nullptr, isInsideOrdinaryFunction);
        result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal, std::nullopt, parentScopePrivateNames, classElementDefinitions);
        if (builtinMode == JSParserBuiltinMode::Builtin) {
            if (!result) {
                ASSERT(error.isValid());
                if (error.type() != ParserError::StackOverflow)
                    dataLogLn("Unexpected error compiling builtin: ", error.message(), " on line ", error.line(), " for function ", name.impl(), ".");
            }
        }
    } else {
        Parser<Lexer<UChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, functionMode, superBinding, constructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, nullptr, isInsideOrdinaryFunction);
        result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal, std::nullopt, parentScopePrivateNames, classElementDefinitions);
    }

    if (UNLIKELY(Options::countParseTimes()))
        globalParseCount++;

    if (UNLIKELY(Options::reportParseTimes())) {
        MonotonicTime after = MonotonicTime::now();
        ParseHash hash(source);
        dataLogLn(result ? "Parsed #" : "Failed to parse #", hash.hashForCall(), "/#", hash.hashForConstruct(), " in ", (after - before).milliseconds(), " ms.");
    }

    return result;
}

template <class ParsedNode>
std::unique_ptr<ParsedNode> parseRootNode(
    VM& vm, const SourceCode& source,
    ImplementationVisibility implementationVisibility, JSParserBuiltinMode builtinMode,
    LexicallyScopedFeatures lexicallyScopedFeatures, JSParserScriptMode scriptMode, SourceParseMode parseMode,
    ParserError& error,
    ConstructorKind constructorKindForTopLevelFunctionExpressions = ConstructorKind::None,
    JSTextPosition* positionBeforeLastNewline = nullptr,
    DebuggerParseData* debuggerParseData = nullptr)
{
    static_assert(std::is_same_v<ParsedNode, ProgramNode> || std::is_same_v<ParsedNode, ModuleProgramNode>);
    ASSERT(!source.provider()->source().isNull());

    MonotonicTime before;
    if (UNLIKELY(Options::reportParseTimes()))
        before = MonotonicTime::now();

    Identifier name;
    bool isEvalNode = false;
    bool isInsideOrdinaryFunction = false;
    std::unique_ptr<ParsedNode> result;
    if (source.provider()->source().is8Bit()) {
        Parser<Lexer<LChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, debuggerParseData, isInsideOrdinaryFunction);
        parser.overrideConstructorKindForTopLevelFunctionExpressions(constructorKindForTopLevelFunctionExpressions);
        result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal);
        if (positionBeforeLastNewline)
            *positionBeforeLastNewline = parser.positionBeforeLastNewline();
    } else {
        ASSERT_WITH_MESSAGE(!positionBeforeLastNewline, "BuiltinExecutables should always use a 8-bit string");
        ASSERT_WITH_MESSAGE(constructorKindForTopLevelFunctionExpressions == ConstructorKind::None, "BuiltinExecutables' special constructors should always use a 8-bit string");
        Parser<Lexer<UChar>> parser(vm, source, implementationVisibility, builtinMode, lexicallyScopedFeatures, scriptMode, parseMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, debuggerParseData, isInsideOrdinaryFunction);
        result = parser.parse<ParsedNode>(error, name, ParsingContext::Normal);
    }

    if (UNLIKELY(Options::countParseTimes()))
        globalParseCount++;

    if (UNLIKELY(Options::reportParseTimes())) {
        MonotonicTime after = MonotonicTime::now();
        ParseHash hash(source);
        dataLogLn(result ? "Parsed #" : "Failed to parse #", hash.hashForCall(), "/#", hash.hashForConstruct(), " in ", (after - before).milliseconds(), " ms.");
    }

    return result;
}

inline std::unique_ptr<ProgramNode> parseFunctionForFunctionConstructor(VM& vm, const SourceCode& source, LexicallyScopedFeatures lexicallyScopedFeatures, ParserError& error, JSTextPosition* positionBeforeLastNewline, std::optional<int> functionConstructorParametersEndPosition)
{
    ASSERT(!source.provider()->source().isNull());

    MonotonicTime before;
    if (UNLIKELY(Options::reportParseTimes()))
        before = MonotonicTime::now();

    Identifier name;
    bool isEvalNode = false;
    std::unique_ptr<ProgramNode> result;
    if (source.provider()->source().is8Bit()) {
        Parser<Lexer<LChar>> parser(vm, source, ImplementationVisibility::Public, JSParserBuiltinMode::NotBuiltin, lexicallyScopedFeatures, JSParserScriptMode::Classic, SourceParseMode::ProgramMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, nullptr);
        result = parser.parse<ProgramNode>(error, name, ParsingContext::FunctionConstructor, functionConstructorParametersEndPosition);
        if (positionBeforeLastNewline)
            *positionBeforeLastNewline = parser.positionBeforeLastNewline();
    } else {
        Parser<Lexer<UChar>> parser(vm, source, ImplementationVisibility::Public, JSParserBuiltinMode::NotBuiltin, lexicallyScopedFeatures, JSParserScriptMode::Classic, SourceParseMode::ProgramMode, FunctionMode::None, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, nullptr);
        result = parser.parse<ProgramNode>(error, name, ParsingContext::FunctionConstructor, functionConstructorParametersEndPosition);
        if (positionBeforeLastNewline)
            *positionBeforeLastNewline = parser.positionBeforeLastNewline();
    }

    if (UNLIKELY(Options::countParseTimes()))
        globalParseCount++;

    if (UNLIKELY(Options::reportParseTimes())) {
        MonotonicTime after = MonotonicTime::now();
        ParseHash hash(source);
        dataLogLn(result ? "Parsed #" : "Failed to parse #", hash.hashForCall(), "/#", hash.hashForConstruct(), " in ", (after - before).milliseconds(), " ms.");
    }

    return result;
}


} // namespace

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END