File: HashMapHelper.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (181 lines) | stat: -rw-r--r-- 6,623 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 * Copyright (C) 2021 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#include "ExceptionExpectation.h"
#include "ExceptionHelpers.h"
#include "JSCJSValueInlines.h"
#include "JSObject.h"
#include "VMTrapsInlines.h"

namespace JSC {

ALWAYS_INLINE bool areKeysEqual(JSGlobalObject* globalObject, JSValue a, JSValue b)
{
    // We want +0 and -0 to be compared to true here. sameValue() itself doesn't
    // guarantee that, however, we normalize all keys before comparing and storing
    // them in the map. The normalization will convert -0.0 and 0.0 to the integer
    // representation for 0.
    return sameValue(globalObject, a, b);
}

// Note that normalization is inlined in DFG's NormalizeMapKey.
// Keep in sync with the implementation of DFG and FTL normalization.
ALWAYS_INLINE JSValue normalizeMapKey(JSValue key)
{
    if (!key.isNumber()) {
        if (key.isHeapBigInt())
            return tryConvertToBigInt32(key.asHeapBigInt());
        return key;
    }

    if (key.isInt32())
        return key;

    double d = key.asDouble();
    if (std::isnan(d))
        return jsNaN();

    int i = static_cast<int>(d);
    if (i == d) {
        // When a key is -0, we convert it to positive zero.
        // When a key is the double representation for an integer, we convert it to an integer.
        return jsNumber(i);
    }
    // This means key is definitely not negative zero, and it's definitely not a double representation of an integer.
    return key;
}

ALWAYS_INLINE uint32_t wangsInt64Hash(uint64_t key)
{
    key += ~(key << 32);
    key ^= (key >> 22);
    key += ~(key << 13);
    key ^= (key >> 8);
    key += (key << 3);
    key ^= (key >> 15);
    key += ~(key << 27);
    key ^= (key >> 31);
    return static_cast<unsigned>(key);
}

ALWAYS_INLINE uint32_t jsMapHash(JSBigInt* bigInt)
{
    return bigInt->hash();
}

template<ExceptionExpectation expection>
ALWAYS_INLINE uint32_t jsMapHashImpl(JSGlobalObject* globalObject, VM& vm, JSValue value)
{
    ASSERT_WITH_MESSAGE(normalizeMapKey(value) == value, "We expect normalized values flowing into this function.");

    if (value.isString()) {
        auto scope = DECLARE_THROW_SCOPE(vm);
        auto wtfString = asString(value)->value(globalObject);
        if constexpr (expection == ExceptionExpectation::CanThrow)
            RETURN_IF_EXCEPTION(scope, UINT_MAX);
        else
            EXCEPTION_ASSERT_UNUSED(scope, !scope.exception());
        return wtfString->impl()->hash();
    }

    if (value.isHeapBigInt())
        return jsMapHash(value.asHeapBigInt());

    return wangsInt64Hash(JSValue::encode(value));
}

ALWAYS_INLINE uint32_t jsMapHash(JSGlobalObject* globalObject, VM& vm, JSValue value)
{
    return jsMapHashImpl<ExceptionExpectation::CanThrow>(globalObject, vm, value);
}

ALWAYS_INLINE uint32_t jsMapHashForAlreadyHashedValue(JSGlobalObject* globalObject, VM& vm, JSValue value)
{
    return jsMapHashImpl<ExceptionExpectation::ShouldNotThrow>(globalObject, vm, value);
}

ALWAYS_INLINE std::optional<uint32_t> concurrentJSMapHash(JSValue key)
{
    key = normalizeMapKey(key);
    if (key.isString()) {
        JSString* string = asString(key);
        if (string->length() > 10 * 1024)
            return std::nullopt;
        const StringImpl* impl = string->tryGetValueImpl();
        if (!impl)
            return std::nullopt;
        return impl->concurrentHash();
    }

    if (key.isHeapBigInt())
        return key.asHeapBigInt()->concurrentHash();

    uint64_t rawValue = JSValue::encode(key);
    return wangsInt64Hash(rawValue);
}

static constexpr uint32_t hashMapInitialCapacity = 4;

ALWAYS_INLINE uint32_t shouldShrink(uint32_t capacity, uint32_t keyCount)
{
    return 8 * keyCount <= capacity && capacity > hashMapInitialCapacity;
}

ALWAYS_INLINE uint32_t shouldRehash(uint32_t capacity, uint32_t keyCount, uint32_t deleteCount)
{
    return 2 * (keyCount + deleteCount) >= capacity;
}

ALWAYS_INLINE uint32_t nextCapacity(uint32_t capacity, uint32_t keyCount)
{
    if (!capacity)
        return hashMapInitialCapacity;

    if (shouldShrink(capacity, keyCount)) {
        ASSERT((capacity / 2) >= hashMapInitialCapacity);
        return capacity / 2;
    }

    if (3 * keyCount <= capacity && capacity > 64) {
        // We stay at the same size if rehashing would cause us to be no more than
        // 1/3rd full. This comes up for programs like this:
        // Say the hash table grew to a key count of 64, causing it to grow to a capacity of 256.
        // Then, the table added 63 items. The load is now 127. Then, 63 items are deleted.
        // The load is still 127. Then, another item is added. The load is now 128, and we
        // decide that we need to rehash. The key count is 65, almost exactly what it was
        // when we grew to a capacity of 256. We don't really need to grow to a capacity
        // of 512 in this situation. Instead, we choose to rehash at the same size. This
        // will bring the load down to 65. We rehash into the same size when we determine
        // that the new load ratio will be under 1/3rd. (We also pick a minumum capacity
        // at which this rule kicks in because otherwise we will be too sensitive to rehashing
        // at the same capacity).
        return capacity;
    }
    return Checked<uint32_t>(capacity) * 2;
}

} // namespace JSC