1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/*
* Copyright (C) 2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "ExceptionExpectation.h"
#include "ExceptionHelpers.h"
#include "JSCJSValueInlines.h"
#include "JSObject.h"
#include "VMTrapsInlines.h"
namespace JSC {
ALWAYS_INLINE bool areKeysEqual(JSGlobalObject* globalObject, JSValue a, JSValue b)
{
// We want +0 and -0 to be compared to true here. sameValue() itself doesn't
// guarantee that, however, we normalize all keys before comparing and storing
// them in the map. The normalization will convert -0.0 and 0.0 to the integer
// representation for 0.
return sameValue(globalObject, a, b);
}
// Note that normalization is inlined in DFG's NormalizeMapKey.
// Keep in sync with the implementation of DFG and FTL normalization.
ALWAYS_INLINE JSValue normalizeMapKey(JSValue key)
{
if (!key.isNumber()) {
if (key.isHeapBigInt())
return tryConvertToBigInt32(key.asHeapBigInt());
return key;
}
if (key.isInt32())
return key;
double d = key.asDouble();
if (std::isnan(d))
return jsNaN();
int i = static_cast<int>(d);
if (i == d) {
// When a key is -0, we convert it to positive zero.
// When a key is the double representation for an integer, we convert it to an integer.
return jsNumber(i);
}
// This means key is definitely not negative zero, and it's definitely not a double representation of an integer.
return key;
}
ALWAYS_INLINE uint32_t wangsInt64Hash(uint64_t key)
{
key += ~(key << 32);
key ^= (key >> 22);
key += ~(key << 13);
key ^= (key >> 8);
key += (key << 3);
key ^= (key >> 15);
key += ~(key << 27);
key ^= (key >> 31);
return static_cast<unsigned>(key);
}
ALWAYS_INLINE uint32_t jsMapHash(JSBigInt* bigInt)
{
return bigInt->hash();
}
template<ExceptionExpectation expection>
ALWAYS_INLINE uint32_t jsMapHashImpl(JSGlobalObject* globalObject, VM& vm, JSValue value)
{
ASSERT_WITH_MESSAGE(normalizeMapKey(value) == value, "We expect normalized values flowing into this function.");
if (value.isString()) {
auto scope = DECLARE_THROW_SCOPE(vm);
auto wtfString = asString(value)->value(globalObject);
if constexpr (expection == ExceptionExpectation::CanThrow)
RETURN_IF_EXCEPTION(scope, UINT_MAX);
else
EXCEPTION_ASSERT_UNUSED(scope, !scope.exception());
return wtfString->impl()->hash();
}
if (value.isHeapBigInt())
return jsMapHash(value.asHeapBigInt());
return wangsInt64Hash(JSValue::encode(value));
}
ALWAYS_INLINE uint32_t jsMapHash(JSGlobalObject* globalObject, VM& vm, JSValue value)
{
return jsMapHashImpl<ExceptionExpectation::CanThrow>(globalObject, vm, value);
}
ALWAYS_INLINE uint32_t jsMapHashForAlreadyHashedValue(JSGlobalObject* globalObject, VM& vm, JSValue value)
{
return jsMapHashImpl<ExceptionExpectation::ShouldNotThrow>(globalObject, vm, value);
}
ALWAYS_INLINE std::optional<uint32_t> concurrentJSMapHash(JSValue key)
{
key = normalizeMapKey(key);
if (key.isString()) {
JSString* string = asString(key);
if (string->length() > 10 * 1024)
return std::nullopt;
const StringImpl* impl = string->tryGetValueImpl();
if (!impl)
return std::nullopt;
return impl->concurrentHash();
}
if (key.isHeapBigInt())
return key.asHeapBigInt()->concurrentHash();
uint64_t rawValue = JSValue::encode(key);
return wangsInt64Hash(rawValue);
}
static constexpr uint32_t hashMapInitialCapacity = 4;
ALWAYS_INLINE uint32_t shouldShrink(uint32_t capacity, uint32_t keyCount)
{
return 8 * keyCount <= capacity && capacity > hashMapInitialCapacity;
}
ALWAYS_INLINE uint32_t shouldRehash(uint32_t capacity, uint32_t keyCount, uint32_t deleteCount)
{
return 2 * (keyCount + deleteCount) >= capacity;
}
ALWAYS_INLINE uint32_t nextCapacity(uint32_t capacity, uint32_t keyCount)
{
if (!capacity)
return hashMapInitialCapacity;
if (shouldShrink(capacity, keyCount)) {
ASSERT((capacity / 2) >= hashMapInitialCapacity);
return capacity / 2;
}
if (3 * keyCount <= capacity && capacity > 64) {
// We stay at the same size if rehashing would cause us to be no more than
// 1/3rd full. This comes up for programs like this:
// Say the hash table grew to a key count of 64, causing it to grow to a capacity of 256.
// Then, the table added 63 items. The load is now 127. Then, 63 items are deleted.
// The load is still 127. Then, another item is added. The load is now 128, and we
// decide that we need to rehash. The key count is 65, almost exactly what it was
// when we grew to a capacity of 256. We don't really need to grow to a capacity
// of 512 in this situation. Instead, we choose to rehash at the same size. This
// will bring the load down to 65. We rehash into the same size when we determine
// that the new load ratio will be under 1/3rd. (We also pick a minumum capacity
// at which this rule kicks in because otherwise we will be too sensitive to rehashing
// at the same capacity).
return capacity;
}
return Checked<uint32_t>(capacity) * 2;
}
} // namespace JSC
|